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Abstract

Current Al systems allow people to express high-level intents in natural language, yet text-centric interfaces
force users to manipulate low-level text and parse long text outputs to achieve their goals. This mismatch creates
gulfs of execution and evaluation: users struggle both to iteratively refine and express their ill-defined intents, and
to assess whether non-deterministic Al outputs satisfy their complex, multi-faceted objectives. In this thesis, I
propose text disentanglement as a conceptual approach for closing these gulfs by disentangling text into interactable
components that encapsulate the high-level concepts that users cognitively consider when performing their tasks.

On the execution side, I develop interfaces that disentangle user intents into atomic and combinable building
blocks and into palettes of alternative interpretations. These ideas are instantiated in the "Cells, Generators, and
Lenses" design framework for composing LLM-powered writing workflows, and Stylette, which lets novices adapt
the style of websites by selecting from Al-generated interpretations of their natural language requests. On the
evaluation side, I introduce EVALLM, which summarizes model outputs into multi-dimensional scores along
user-defined criteria, and EVALET, which further surfaces semantically meaningful fragments from outputs that
influence their quality according to these dimensions. To understand and extend the underlying capabilities of
Al models, I present CUPID, a benchmark for disentangling user preferences from multi-session interaction logs,
and DESIGNLLM, a training framework that teaches models to natively disentangle user messages into diverse
response variants that capture distinct interpretations.

Across these contributions, user studies and technical evaluations show that text disentanglement helps people
generate and iterate on intents more flexibly, examine more alternatives, and make sense of model outputs more
effectively. Together, this thesis demonstrates that disentangling text into interactable components can scaffold,

accelerate, and enrich interactive alignment with Al models.

Keywords Human-Computer Interaction, Natural Language Processing, Human-AlI Interaction, Interactive Align-

ment, Interactive Evaluation
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also browse through the other trials by using the carousel at the bottom (F). . . ... ... .. ..
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Chapter 1. Introduction

1.1 Background

State-of-the-art AI models have shifted the paradigm for interactions between users and computers. Instead of
translating their high-level intents into low-level operations that a computer should perform, users can now simply
state their intents directly to the computer [247]. Through advancements in natural language (NL) understanding
and instruction following capabilities, recent models can perform tasks from user’s high-level, NL inputs. For
example, models can generate music [3, 66], images [236, 282], and even videos [44, 407] from user’s descriptions.
More advanced models, like Large Language Models (LLMs), possess general purpose capabilities that allow users
to perform ever more complex and unique tasks, from writing full research papers [221] to developing interactive
applications [253]. This new paradigm for human-computer interaction expands the space of possibilities of what
users can achieve through computers [358].

While users can now reach greater possibilities by simply expressing their intents to an Al model, the nature
of these intents and these Al models introduces new challenges in the interaction process. Specifically, while the
user’s intents are ill-defined and complex, the Al models are black box and non-deterministic. These qualities

carve new gulfs of execution and evaluation [138].

* Gulf of Execution: As user’s goals are ill-defined [306], they may be unsure about their goals and needs at the
start of a task—leading to them not being able to accurately describe their intents to the Al model [318, 332].
Furthermore, as the AI model is black box but highly susceptible to how inputs are formatted [223, 389],
users can struggle to foresee how they should ideally express or phrase this intent to the model [166] Thus,
the user can fail to know what actions (i.e., what to input or say) to take in order to achieve their goals—gulf

of execution.

e Gulf of Evaluation: Most Al models are non-deterministic, meaning that they can provide drastically
different outputs even for the same input. As a result, users cannot anticipate what the model will produce
for a given input [285]. Adding further challenge, as users’ intents are frequently complex (i.e., consist of
multiple interrelated objectives), they may expend significant cognitive effort assessing the output against
these various objectives [168]. Due to these reasons, users can struggle to verify that their actions led to

desired consequences—the gulf of evaluation.

Due to these gulfs, the users can only align the Al model (i.e., ensure it produces desired outcomes [332]) by
interacting with the model through iterative loops of execution and evaluation—providing inputs and inspecting
outputs. To allow users to reach the space of possibilities afforded by these Al models, interfaces should be designed
to support this process of interactive alignment. However, text has become the de facto interface between users and
Al models: the user inputs their intents into a text box and the model’s outputs are presented in a text box. While
this is particularly true for LLMs, interfaces for Text-to-Image (T2I) and Text-to-Video models also predominantly

rely on text as the main input interface. Text, however, introduces friction to interactive alignment:

¢ Execution: As users have complex intents that encompass multiple objectives, they must construct a single
piece of text (e.g., a message) that encodes all of these objectives—requiring mental and physical effort. More
challenging than expressing the initial intent, however, is iterating on that intent that has now been encoded

into text. For example, imagine a user has written: "write me a visionary, sci-fi-like research proposal about



personalized Al tutors with references to recent literature”. If the user’s intent changes (e.g., add/remove,
emphasize/de-emphasize objectives), the user has to edit the text to encode these changes (e.g., delete, add,
rephrase) or encode new text that expresses these changes (e.g., "make it more realistic, a bit less visionary").
Despite the user cognitively operating on these high-level objectives, these text-based interfaces force the

user to perform multiple low-level text operations to encode each of these high-level operations.

Evaluation For a given input, Al models frequently return complete and extensive text artifact (e.g., a multi-
paragraph research proposal). To understand if an output satisfies their intents, the user must inspect and
parse through the whole text. Specifically, the user must interpret what are the characteristics and attributes
contained in the text, and assess how these align or misalign with their intents. In the example where the
user requests a visionary research proposal with references to recent literature, the user may read through the
generated proposal, while checking each single citation and verify that only literature in the last 5 years were
cited. The user may also notice that the proposed idea involves modifications to existing research, which is
not as visionary as intended. Through this process, the user is essentially decoding high-level characteristics
from the text that are related to their intents (e.g., citation recency, technical novelty)—requiring significant

cognitive effort.

The key limitation of these text-centric interfaces is that the user is cognitively operating at a higher level of
abstraction (e.g., objectives in inputs, attributes in outputs). However, these interfaces require users to perform
low-level operations on the text (e.g., add, delete, parse, inspect). To interactively align the Al model, the user
must continuously encode their high-level objectives through low-level text manipulations, and then decode out
high-level qualities from outputs by parsing and interpreting the low-level text. This abstraction gap leads to

significant cognitive and manual effort.

1.2 Disentangling Text for Interactive AI Alignment

To address these challenges in interacting with state-of-the-art AI models, this thesis proposes the concept of text
disentanglement. Specifically, this thesis proposes: If the text encodes the high-level intents and attributes that the
user considers and cognitively operates on, what if we disentangled these intents and attributes out of the text and
presented them as interactive components to the user? Instead of operating on the low-level text, the user could
then directly operate and interact with components that represent the high-level abstractions that they are already
cognitively operating on. This disentanglement proposes benefits to users in both the execution and evaluation

phases of the interaction process.

1.2.1 Execution

Disentangling Intents into Building Blocks When interacting with an LLM, users may incorporate multiple
intents into a single request. As described before, to iterate on each of these separate intents, users must either
edit the request’s text or send additional requests that express changes to this intent—an effortful process. To
address this, this thesis proposes that the users’ input intents can be disentangled or decomposed into individual
building blocks. Then, each of these blocks can represent a distinct atomic intent, each block can be modified
independently, and the blocks can be composed into diverse composite intents (e.g., remove a single atomic intent,
create variations of only one atomic intent). This concept was instantiated in the Cells, Generators, and Lenses
design framework [166], a set of guidelines that describe how to design LLM-powered interfaces that allow users

to interact with the Al model through composable objects. Specifically, this framework introduces three types



of objects: Cells, represents text fragments, Generators, represent a set of model configurations, and Lenses,
represent output sets. The framework describes how users can create multiple variations of each object, compose
them together into diverse configurations, and experiment with these configurations in parallel. To showcase the
framework’s generalizability, three interfaces for different writing tasks (e.g., story writing, copy writing, email
composing) were designed using the framework. Furthermore, a comparative user study (N=18) demonstrated that

the disentangled objects helped users to more easily generate and experiment with the AI model.

Figure 1.1: The Cells, Generators, and Lenses framework proposed how to disentangle input text into more atomic
and composable objects.

Disentangling Intents into a Palette of Interpretations The Cells, Generators, and Lenses framework assumes
that each block represents a single intent. However, due to the ill-defined and ambiguous nature of users’ intents,
each block can actually be interpreted into multiple, diverse intents. For example, "a sci-fi-like proposal” can be
interpreted into multiple distinct intents: "style of sci-fi authors", "narrative structure”, "speculative technology",
etc. When the user is a novice in the task, their intents can become even more vague as they lack the expertise to
know what is needed in their task and they also lack the knowledge about the precise terminology to use [100]. If
the Al simply returns what it considers the best interpretation, this can cause problems: users may be forced to retry
if the intent was misunderstand and it prevents users from discovering alternative options that they were unaware
of. As a method to address this, Stylette [163] is a browser extension that allows novices to edit the code of any
website by simply expressing their intents, where this intent is disentangled into its diverse interpretations. Then,
instead of only returning the operations related to a single interpretation, the system returns a palette of operations
for all of the different interpretations—allowing the user to explore, test, and apply these flexibly. A comparative
study (N=40) showed that Stylette lowered the learning curve for the novice participants, helping them perform

changes to the website code 35% faster than when using a baseline.

Figure 1.2: Stylette disentangles users’ expressed intents into its diverse interpretations, creating a palette of
operations from all these interpretations that users can use to directly perform the intended operations.

1.2.2 Evaluation

Disentangling Outputs into Dimension Scores As LLMs frequently return complete and extensive outputs,
users need to expend significant cognitive effort in parsing the output according to the specific dimensions that

are related to their intents (e.g., recency of references, how visionary the proposal is). Only by interpreting the



output according to each dimension can the user determine whether the output satisfied their intents and, if not,
what should be improved. If the user is dealing with multiple outputs (e.g., they are creating an LLM application
and testing it with diverse inputs), this requires a prohibitive level of cognitive effort. Instead of requiring users
to do this interpretation themselves, if each output could be automatically disentangled according to each of
these intent-relevant dimensions, then users can easily gain an understanding of how well each output satisfies
their intents. EVALLM supports this by leveraging LLMs to evaluate outputs from another LLM according to
user-defined criteria—standards relevant to the user’s overall intents. For each output, the system returns scores
for each criterion, summarizing the output according to each of these dimensions. A comparative study (N=12)
showed that EVALLM, when compared to manual evaluation, helped participants compose more diverse criteria,

examine twice as many outputs, and reach satisfactory prompts with 59% fewer revisions.

Figure 1.3: EVALLM disentangles text outputs by automatically evaluating and scoring them according to each
user-defined criterion.

Disentangling Outputs into Functional Fragments While EVALLM effectively summarizes each output
according to dimensions of interest for the user, the system returns a numeric score for each output on each
dimension. These scores, however, are an opaque summary: users cannot directly interpret how the text was
composed and how these different components led to that score. Thus, users must still parse the actual outputs
to concretely understand where and how the outputs failed or succeeded at satisfying their intents. To address
this, EVALET disentangles outputs, not simply into scores for each dimension, but by identifying and surfacing
the actual components in the outputs that led to these scores. For example, a generated proposal that may have
received a score of 3 out of 5 regarding how "visionary" it is. EVALET could surface the following components
from the output: "proposes improvement on existing technology", "applies existing methods", "proposed benefits
are minimal", etc. A user study (N=10) found that EVALET helped participants identify 48% more actionable issues
in the LLM outputs.

Figure 1.4: EVALET disentangles text outputs by extracting and surfacing components that are relevant to the
user’s intents.

1.3 Benchmarking and Training Models on Text Disentanglement

Several of the approaches introduced in this thesis are dependent on an Al model to automatically disentangle

the relevant text artifacts. Thus, the success of text disentanglement for interactive alignment is dependent on



the Al model’s capability to disentangle the text. Through various technical evaluations in each chapter, this
thesis demonstrates that AI models are capable of effectively disentangling text with relatively simple artifacts
(e.g., single user message, multi-paragraph outputs). However, to support more interaction scenarios, these Al
models must possess the capabilities to disentangle more complex text (e.g., multi-session multi-turn chat dialogues,
multi-page paper). CUPID [167] assesses whether LLMs can disentangle user’s contextual and personal preferences
from multi-session interaction histories. If the models possess this capability, they can support personalization by
applying these disentangled preferences in future interactions.

Finally, this thesis presents preliminary results on DESIGNLLM, a novel training framework that teaches
LLMs to interact with users through text disentanglement, intrinsically. Instead of relying on additional layers to
disentangle the text post-hoc, which introduces latency in interaction, this framework trains models to disentangle
user messages into multiple interpretations—similar to Stylette—to produce responses composed of multiple
prototype artifacts. Each prototype embodies distinct attributes that allow users to explore the space of possibilities
and more efficiently realize their intent when interacting with the model—similar to how Cells, Generators, and
Lenses helps users explore by experimenting with diverse inputs. An evaluation with simulated users reveals that
DESIGNLLM enhances intent formation and satisfaction, when compared to the base model and other LLMs

trained for collaborative behaviors.

1.4 Contributions

This thesis makes two primary technical contributions: (1) computational methods for disentangling text into
constituent components or attributes, and (2) interaction techniques that leverage these components to support
execution-evaluation loops during human-Al interaction. The computational methods are validated through
experiments that assess their accuracy and robustness, and the interaction techniques are assessed through evaluation
studies that measure effects on users’ behaviors, the quality of their resulting artifacts, and their qualitative
experiences. Together, this thesis demonstrates how disentangling text can serve to scaffold, accelerate, and enhance
users’ interaction with AI models—enabling them to reach the diverse possibilities that are afforded by these
models but were previously challenging to reach.

Furthermore, this thesis proposes a comprehensive suite of contributions that spans the complete end-to-end
infrastructure—from conceptual frameworks to computational methods to interactive systems—necessary to support
text disentanglement as a practical approach for human-Al interaction. Specifically, this thesis contributes: (1)
design frameworks that guide interface designers to move towards disentangled interfaces; (2) standalone systems
that implement and demonstrate interaction techniques built on disentangled text to support iterative refinement of
user intents and granular evaluation of model outputs; (3) extensions or plugins that incorporate text disentangle-
ment capabilities into existing systems or interfaces; (4) computational pipelines that automatically decompose
and disentangle complex text into meaningful components; (5) AI models that are tuned to intrinsically support
interaction through text disentanglement, and (6) benchmarks designed to rigorously evaluate the robustness and
accuracy of these disentanglement methods.

Thesis statement: Disentangling text into interactable components supports interactive alignment of Al

models by facilitating input iteration and output assessment.

1.5 Thesis Overview

* Chapter 2 reviews prior work across four areas: (1) generative Al models and natural language interaction

paradigms, (2) formulating intents through prompt design and domain-specific input methods, (3) assessing



quality through evaluation systems and sensemaking at scale, and (4) closing the loop through learning from

human preferences and interaction histories.

Chapter 3 presents Cells, Generators, and Lenses, a framework for designing LLM-powered interfaces
where text inputs and outputs are disentangled into interactive objects that are persistent, multiplicable, and

composable to support intent iteration.

Chapter 4 introduces Stylette, a system that enables novices to manipulate the styling of website by speaking
their intents, which are then disentangled into diverse interpretations and corresponding operations that users

can directly apply and combine.

Chapter 5 describes EVALLM, a system that allows users to define their own criteria and then automatically
evaluate multiple LLM outputs on these criteria—disentangling each output into a set of scores for each

criterion.

Chapter 6 presents EVALET, a system that disentangles LLM outputs into fragment-level functions—i.e.,
semantically significant components or blocks of each output—and supports exploration and comparison of

these functions across outputs.

Chapter 7 introduces the CUPID benchmark that evaluates whether LLMs can disentangle users’ contextual

preferences from prior user-LLM interactions and apply these in new contexts.

Chapter 8 introduces findings on DESIGNLLM, a general training framework for LLMs that can interact

with users through text disentanglement.

Chapter 9 summarizes lessons from the proposed approaches for text disentanglement, and delineates the
main design dimensions, considerations, and limitations of this approach to guide future researchers and

practitioners in supporting human-Al interaction.



Chapter 2. Related Work

This chapter reviews prior work that lays the foundation to this thesis. In particular, the chapter reviews: generative
Al models and interaction with these models, supporting iteration and experimentation with AI models, assessing

the quality of Al model outputs, and closing the loop through learning and personalization.

2.1 Generative AI Models

Understanding the capabilities of generative Al models and the paradigms through which users interact with them

provides the foundation for supporting interactive alignment.

2.1.1 Diversity of Generative Models

The increased advancement, availability, and diversity of generative models have enabled humans to leverage
artificial intelligence (Al) to create a variety of artifacts. For example, researchers have developed models that can
generate music [135, 134, 307], sketches [126, 208, 87], graphic designs [388], and 3D models [24]. More recently,
extending on the GAN [114] and DCGAN [273] architectures, diffusion-based models [275, 281, 236, 289] have
pushed the boundary of image generation by producing realistic and high-resolution outputs from text instructions.
For language, the advent of massive-scale transformer-based [339] architectures—i.e., Large Language Models
(LLMs) [45, 203, 310, 37, 334, 59, 335, 293, 252]—has enabled the generation of diverse types of text with
previously unparalleled fluency and coherency.

Given a prompt as input (i.e., an instruction that may contain examples of expected outcomes), LLMs can
generate text that follows this prompt and even perform previously unseen tasks through zero and few-shot
learning. Due to the opportunities presented by these capabilities, HCI researchers have designed an assortment
of interfaces that leverage LL.Ms to support a variety of user tasks beyond writing, such as information seeking
and consumption [341, 23], learning [195, 193, 230], and prototyping [268, 262, 163]. These diverse generative
models can produce thousands of outputs based on the users’ relatively simple inputs. With the rising number
of generative models and with their outputs starting to see more real-life use—evidenced by Al art [51] and
commercial Al-powered writing tools [140, 181, 144, 362]—there is an increased need for designing interfaces

that can better help end-users to fully leverage the generative power of these models [124, 118].

2.1.2 Natural Language as Interaction Paradigm

Novices struggle to translate high-level goals into tool operations due to the vocabulary problem [100]—the
language used by the user and the tool do not match. Thus, empowering users to be able to design by simply stating
their high-level goals has been a long-standing goal for HCI researchers. To support this, researchers have proposed
diverse techniques and systems that can process users’ natural language expressions and translate this into tool
operations. For example, Query-Feature Graphs (QF-Graphs) [94] and CommandSpace [2] jointly modeled natural
language descriptions with feature names in design applications (e.g., GIMP and Photoshop) to help users identify
features based on their needs. Other systems support the use of natural language concepts to search for design
references or components—images [93], graphic designs [152], or 3D models [55]. Beyond searching, several
systems generate artifacts (e.g., images [186] or icons [403]) based on the semantic meaning of words, or facilitate

editing of existing artifacts by decomposing natural language expressions into operations [373, 188].



In particular, substantial effort has been dedicated to bridge natural language and complex programming
languages [237] to lower the barriers to programming. For instance, researchers have used semantic parsers [271]
and bimodal models [10] to map natural language to code. Such techniques enabled systems that allow novice
coders to quickly search for code snippets [283, 294], and non-coders to code small programs by demonstrating
and describing tasks [200, 229]. Beyond mapping, a line of work has also developed techniques that take natural
language as input and generate code—e.g., Python [385, 209], Bash commands [207], SQL queries [411], or API
calls [355].

Recent advancements in natural language processing (NLP), and especially in Large Language Models (e.g.,
GPT-3 [45]), have led to performance boosts in natural language understanding. For example, by only providing a
few natural language sentences, users can generate fully interactive video games with these models [392]. While
these advances in natural language interaction have enabled users to express high-level intents directly to computers,
as discussed in Chapter 1, this paradigm also introduces new gulfs of execution and evaluation when users’ intents

are ill-defined and Al models are black-box and non-deterministic.

2.1.3 Interaction Challenges and User Needs

To help users to better leverage the potential of generative models, a significant amount of research has investigated
how users wish to use these models. This body of work demonstrated that the “ideal” form to use these models
changes with the type of user, their goals, and the task. For example, several studies demonstrated that it is integral
for the user to lead the model [219, 248], while others demonstrated that there are benefits in the model taking the
lead [64, 123]. Beyond who leads, research has identified several other trade-offs: producing more generations
increases exploration but decreases efficiency [46], and more unexpected generations can provide inspiration but
can also seem less useful [190, 64, 380]. Due to these user-dependent factors, prior work [108, 118, 133] argues
that how generative models are used should adapt according to users’ changing goals. This highlights the need to
facilitating users’ interaction with these models, while also empowering user to adapt how they interact with these

models.

2.2 Formulating Intents: From Goals to Inputs

Translating user goals into effective inputs requires interfaces that bridge the gap between high-level intents and the

specific formats expected by Al models.

2.2.1 Prompt Design and Engineering

Although LLMs can execute complex tasks for users without users having to collect data or train these models,
designing satisfactory prompts can be an arduous task [213]. The specific format, phrasing, content, examples, or
even the order of examples used in prompts can significantly affect performance [223, 210, 287? , 213]. However,
as the space of possible natural language instructions is near infinite, users need to test as many possibilities as
possible to construct successful prompts [389, 211].

To help users identify effective prompts, researchers have proposed various tools that facilitate prompt design.
However, as the effectiveness of LLMs is significantly affected by minor variations in the input prompts, researchers
have also proposed interfaces to facilitate the task of creating these inputs (i.e., prompt design or engineering).
PromptMaker [148] and BotDesigner [390] allow users to create prompt templates and test them with different
inputs. Expanding on these ideas, another body of work [317, 366, 240, 166] supports users to create variations of

model inputs to test and compare model performance on these inputs. Beyond singular prompts, Al Chains [370],



PromptChainer [367], and ChainForge [20, 396] allow users to iterate on multi-step prompts using interactive
chains of prompts. Similarly, to facilitate iteration with text-to-image models, Opal [214] and 3DALL-E [215]
modularize user inputs into keywords and provide keyword suggestions to facilitate composition of inputs for image
generation. This decomposition approach supports iteration with the generative models by facilitating testing and

experimentation of diverse input combinations, inspiring the disentanglement techniques proposed in this thesis.

2.2.2 Configuration and Parameter Control

Beyond inputs, several interfaces for generative models have also explored how to facilitate iteration and exper-
imentation with both inputs and model parameters or configurations. GANSliders [73] and GANSpace [128]
support users to customize the generative process of GANs by manipulating underlying parameters through visual
feedforward sliders and semantic controls. Louie et al. [219] and Zhou et al. [415] provide more interpretable
parameters to help users control generated outputs. Furthermore, TaleBrush [61] supports more seamless control

over parameters by allowing users to sketch how the parameter should change or “flow” through a story.

2.2.3 Domain-Specific Input Methods

Beyond general-purpose prompt engineering, researchers have developed specialized interfaces for specific domains

and tasks.

Writing Support Tools

Advancements in natural language processing (NLP) has enabled the creation of tools that can support a diverse
array of writing tasks and processes. For example, researchers have proposed human-Al writing tools for story
writing [61, 64, 386], screenplay writing [239], poetry [111], and argumentative writing [397, 340]. Each of these
tools leverages Al to support different aspects of the writing process. A large portion of these approaches provide
automatic continuations to enhance writers’ productivity [190, 64, 308] with several of these allowing writers
to control the type of continuations that are generated by providing additional instructions [72, 386] or through
visual sketches [61]. Other tools support auxiliary processes during writing such as ideation [109, 266, 108, 402],
revision [82, 194], and reflection [340, 71]. This thesis builds on these prior literature by proposing a novel

approach, text disentanglement, to support user-LLM interaction in diverse tasks, including writing tasks.

Web Design and Manipulation

As web interfaces are visual representations of HTML and CSS code, various tools have been designed to facilitate
the process of modifying the code to produce desired visual changes. For example, openHTML [264] provides
an educational environment which shows HTML code, CSS code, and a website preview side-by-side. Other
systems [52, 278, 204] allow users to inspect the code behind pages to understand the connection between code and
visuals. Beyond inspection, Chickenfoot [40] allows end-users to write simple scripts to modify components, and,
more recently, Spacewalker [408] leverages genetic algorithms and crowdsourcing to generate design alternatives.
These tools, however, were designed with developers or learners in mind, and require the user to understand and
interact with the code—a task impractical for end-users with limited knowledge.

To make manipulation more practical, a separate line of research allows users to modify a website’s visuals
by directly interacting with the visuals. CrowdAdapt [246], CrowdUI [256], and XDBrowser [245] allow users to
modify the positioning of web components through direct manipulation (e.g., drag-and-drop). Aimed at designers

who have limited coding knowledge, Poirot [330] and CoCapture [57] provide designer-specific widgets to support



design editing and animation authoring, respectively, directly on websites. These tools, however, still require the
user to expend time and effort deciding between and performing various possible editing operations. Example-based
systems [179, 189, 91] aim to reduce this mental and manual effort by allowing users to copy the styles of other
websites. This thesis proposes how this process can be simplified further: by disentangling users’ intents into
diverse editing operations, interfaces can support users to explore and realize their needed editing operations in web

design.

2.3 Assessing Quality and Making Sense

Understanding whether Al outputs satisfy user intents requires methods that go beyond simple metrics to provide

interpretable, actionable insights into output quality and model behavior.

2.3.1 Natural Language Generation Evaluation

Natural language generation (NLG) is the family of NLP tasks where the goal is to generate text that satisfies
a communicative goal (e.g., summarize a document) while possessing several desired qualities (e.g., fluent,
coherent) [106, 244, 117, 86]. While recent years have brought significant progress in NLG, especially due to
LLMs, a constant obstruction to progress has been the difficulty of evaluating these tasks [156, 80, 378]. Unlike
classification tasks where performance is measured by comparing a prediction to a ground-truth label, generation
tasks are ill-posed—i.e., multiple dissimilar outputs can be equally valid. While researchers have proposed
automatic metrics that compare outputs to several ground-truth references (e.g., BLEU [260], ROUGE [206]), the
space of valid outputs in open-ended generative tasks can be overwhelmingly vast, making it nearly impossible
to create sufficiently comprehensive references sets. Thus, human evaluations where annotators rate or rank
generated text have become the golden standard [106]. However, the cost and effort involved in recruiting human
annotators can make this type of evaluation prohibitive during early development stages. As an alternative, recent
work [199, 406, 99, 217, 384, 58] has employed LLMs to simulate annotators and automatically evaluate outputs
on their overall quality or a pre-defined set of criteria—demonstrating agreement with human evaluations on par

with the level of agreement between human evaluators [406].

2.3.2 Interactive Evaluation Systems

Evaluation is fundamental to the development of machine learning models for real-world applications. Beyond
assessing performance on a single metric, practitioners (e.g., developers, researchers, engineers) assess more
fine-grained model behaviors to identify flaws and potential improvements [277]. Traditionally, Machine Learning
(ML) models are evaluated on benchmarks with automated metrics, where performance is aggregated into a single
statistic or score. However, this provides limited signal into how the model behaves, what its flaws are, and what

are the specific areas for improvement [277, 393, 242].

Fine-Grained Evaluation of ML Models

To support fine-grained assessments, prior work has introduced various systems that allow practitioners to inter-
actively evaluate outputs. For example, Zeno [48], the What-If Tool [360], and Errudite [368] help practitioners
to identify slices or subsets of data that may reveal distinct model failures. Beyond testing on existing input data,
Polyjuice [369] and AdaTest [276] allow practitioners to generate potentially challenging input data to test a model’s

behavior and iteratively evaluate models by creating challenging input data and testing how the models behave
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on these cases. To aid practitioners in resolving issues after models are deployed, Angler [279] combines online
and offline data to help practitioners prioritize performance issues, and Deblinder [47] allows practitioners to
collect and analyze model failure reports from crowdworkers. Furthermore, researchers have proposed various
tools [48, 360, 368, 279, 309] that help practitioners to unpack evaluations by identifying slices or subsets of data,

and testing models on these to identify specific flaws or limitations.

Tailored Evaluation of LLMs

The general-purpose capabilities of LLMs have enabled novel Al-based applications, but have also increased the
difficulty in verifying that these models perform as intended. Specifically, as these models are applied to new tasks
and contexts, there are no benchmarks or metrics to automate evaluation [168] and, as their input and output space
is near infinite, the models have to be tested with numerous and diverse samples [389, 211]. More recently, the
success of LLM-as-a-Judge [406] (i.e., LLMs evaluating other LLMs) has led to several systems [168, 151, 22, 299]
that employ LLM-based evaluators to support interactive evaluation on diverse aspects or criteria. By assessing
outputs on multiple criteria, these approaches offer a multi-dimensional view of model performance. However,
as they only provide holistic scores and overall justifications, practitioners must manually review the outputs and
justifications to identify specific strengths and weaknesses and validate evaluations [168, 105]—requiring effort
that is impractical at scale. Inspired by these approaches, we incorporate LLM-powered simulated evaluators to
support interactive evaluation of LLM prompts on user-defined criteria and investigate how users interact with these
evaluations to refine prompts. This thesis proposes how LLM outputs can be disentangled based on users’ intents or

goals to facilitate interpretation and evaluation of LLMs according to their unique tasks and contexts.

2.3.3 Sensemaking and Comparison at Scale

Substantial work has explored how to support large-scale sensemaking of text artifacts to identify patterns and
distill insights [185, 350, 112, 383, 158, 258, 272, 259]. Recent work has started to investigate how to support
sensemaking over LLM outputs [320, 150] to facilitate exploration and analysis of diverse outputs. For example,
Luminate [319] guides LLMs to generate outputs according to key dimensions and then visualizes these outputs
according to these dimensions, helping writers explore the space of plausible outputs. Gero et al. [110] explored
various designs and algorithms (e.g., unique words, exact matches) to support comparison of LLM outputs and
help users form mental models of how the LLM behaves. Policy Projector [184] “maps” LLM input-output pairs
into a 2D space to help users explore common groups of outputs, classify these groups, and define policies or
rules on the model’s behaviors based on these classified groups. This significant body of work on interactive
evaluation and sensemaking highlights the need for more granular analysis of model performance. This thesis
extends these approaches by proposing text disentanglement as a method to evaluate and make sense of outputs at a
more fine-grained level—analyzing semantically meaningful components or attributes within outputs rather than

treating outputs as monolithic artifacts.

2.4 Closing the Loop: Learning and Personalization

To continuously improve alignment, Al systems must learn from interactions and adapt to individual user preferences

across different contexts.
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24.1 Alignment with Human Values and Preferences

To reduce harms and increase helpfulness, research has explored how to align LLMs with human values [29, 28]
by training them on general preferences [29, 28, 257, 69, 159]. Recent work has taken a more personalized
view to alignment, considering individual preferences and values [313, 337]. For example, Kirk et al. [172]
collected a preference dataset with detailed user information (e.g., demographics, behavior attributes). Other work
explored prompting LLMs with user profiles [381, 345], interaction logs [26], or user-written artifacts [291, 290].
Alternatively, Jang et al. [142] and Lee et al. [192] fine-tuned LLMs on decomposed preferences to produce diverse
responses for users. More recently, PREFEVAL [404] evaluates whether LLMs can identify user’s global preferences

from long-context conversations.

2.4.2 Learning from Interaction Histories

LLMs possess the capability to interact with human users [349]. User-LLM interactions can organically reveal
details about user intents and preferences [170, 302], enabling models to align themselves with users. Recent work
explores how to extract feedback from user-LLM interactions [78, 364], and how to enhance LLMs’ memory to
leverage user knowledge from interaction histories [412, 347, 413, 363, 157]. Other work focused on training
LLMs to capture richer details from user interactions by clarifying intents or eliciting information [270, 197, 15].
This work on personalization highlights the importance of understanding and applying user preferences across

contexts—a capability that benefits from disentangling contextual preferences from interaction histories.
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Chapter 3. Cells, Generators, and Lenses: Design Framework for
Object-Oriented Interaction with Large Language Models

This chapter presents the first example of text disentanglement during the execution phase of interactive alignment.
Cells, Generators, and Lenses is a design framework that proposes how interfaces can be designed to decompose
users’ text inputs into interactive objects that can be independently manipulated and composed together. This

chapter has adapted, updated, and rewritten content from a paper at UIST 2023 [166]. All uses of "we", "our" and

"us" in this chapter refers to coauthors of the aforementioned paper.

3.1 Motivation & Contributions

Large language models (LLMs)—e.g., ChatGPT [251], GPT-4 [252], PaLM [59], LLaMa [335]—have enabled
users to write without actually writing. Users can delegate the manual effort of producing text to these models
to increase productivity [46], inspire new ideas [50], or quickly “sketch” passages [61]. Besides shouldering
the effort of producing text, LLMs can also enhance auxiliary processes such as editing [181, 82], feedback
exchange [140, 340], or reflection [71]. However, when using these models, users are faced with a new task:
manually configuring the model’s generative process to produce desired outputs. Namely, users need to compose
the inputs to the model [133, 321] (e.g., prompt engineering [370]) and adjust the model’s parameters [190] (e.g.,
increase the temperature to generate more out-of-distribution text). Furthermore, users may want to configure
how they view and explore the generated outputs based on their goals and tasks [64, 231]—e.g., using a list to
carefully read specific edits or a spatial visualization to quickly compare the similarity between rough drafts. Thus,
to accomplish their writing goals with LLMs, users need to configure the whole generation process—input, model,

and output.

Figure 3.1: Cells, generators, and lenses is a design framework for object-oriented interaction with large language

models (LLMs). Input units, model instances, and output spaces are represented as interactive objects: cells,
generators, and lenses, respectively. By integrating these objects in their designs, designers can create interfaces that
support users to flexibly create, modify, and link these objects to iterate and experiment with diverse configurations
for the generative process of LLMs.
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However, due to the black box and non-deterministic nature of LLLMs, users can struggle to interpret why
the models generated certain outputs and how one can “correct” them [285]. Users may then need to repeatedly
experiment with generation configurations to understand their effect [219, 60, 325]—expending significant effort.
In creative tasks, iteration (i.e., repeatedly developing an idea) and experimentation (i.e., enumerating and testing
diverse ideas) are integral to understanding and exploring the design space [300, 68]. Thus, beyond the goal of
understanding the models, users need to iterate and experiment with generation configurations to open up the vast
space of writing alternatives that they can produce.

Despite the user needs for iterating and experimenting, LLM-powered writing interfaces largely adhere to
the design of conventional text editors. These interfaces typically provide end-users with only one text area for
inputs, which is frequently shared with the output, and one control panel to configure global settings for the
parameters [386, 249, 7, 322]. To test different inputs and parameters in this type of interface, the user has to try
each configuration one-by-one while overwriting previous configurations. As configurations are overwritten, the
end-user cannot store previous configurations (i.e., versioning) to return to them if future iterations do not result in
satisfying outputs [359], which introduces friction and hinders experimentation. Furthermore, these interfaces do
not allow end-users to prototype configurations in parallel [81], which can create hurdles for comparing the effects
of different configurations or combining aspects of the configurations for further iteration and experimentation.
These limitations call for interfaces to move away from the designs of conventional text editors, and move towards
a new paradigm that focuses on facilitating end-users’ configuration of LLMs’ behavior.

In this chapter, we introduce a design framework for interfaces that support object-oriented interaction with
LLMs through cells, generators, and lenses (Fig. 3.1). Unlike existing interfaces where end-users interact with
one input area, parameter setting, and output space, our framework proposes how interfaces can reify [34] the
generation components so end-users can compose configurations by interacting with persistent, multiplicable,
and composable objects. Within this framework, each object becomes its own configuration sandbox where
end-users can experiment and iterate with changes, without affecting other configurations that they have created.
Furthermore, our framework describes how interfaces can support end-users to flexibly assemble and reassemble
these objects into diverse concurrent configurations—supporting parallel prototyping [81] and mix-and-match
between configurations. Interface designers can use the framework to create interfaces that support their end-users’
iteration and experimentation in their target writing tasks.

To demonstrate the value of our framework, we evaluate it according to three dimensions: generalizability (can
it be applied to diverse writing tasks?), effectiveness (can it support end-users’ iteration and experimentation?), and
usability (can designers use and apply our framework?). First, to demonstrate how our framework can generalize,
we applied it to design three interfaces that support diverse tasks: (1) story writing, (2) copywriting, and (3) email
composing. Second, to evaluate effectiveness, we conducted a controlled study (N=18) where we investigated how
end-users’ iteration and experimentation is affected by the ability to create and compose multiple configuration
objects. We observed that, when using our framework-based interface, participants were encouraged to generate
more outputs, experiment with more inputs, and use generated outputs more substantially in their final writing.
Finally, to demonstrate the usability of our framework, we conducted a workshop where we invited designers
(N=3) and asked them to re-design existing writing interfaces with our framework. We found that the framework
bootstrapped designers by illustrating concrete ways to design interactions for iteration and experimentation, and
inspired them to reify other aspects of their interfaces to further support end-users.

Our framework aims to guide the design of a new line of interfaces that enable object-oriented interaction with
LLMs to support end-users’ iteration and experimentation with generation configurations. To bootstrap the design
and development of interfaces based on our framework, we released our interface components for cells, generators,

and lenses as an open-source React]S library: https://github.com/kixlab/llm-ui-objects.
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3.2 Cells, Generators, and Lenses

To design writing interfaces that support iteration and experimentation with LLMs, this chapter proposes a
design framework that conceptualizes the components of generation configurations as interactive objects. The
framework describes how to design interfaces that encapsulate these objects and the interactions that can be
supported on and between these objects. Prior work has demonstrated how elevating task elements (e.g., visual
attributes [375], spatial selections [376], text passages [127]) into interactive objects can simplify and facilitate
users’ workflows [33, 62, 377, 373]. By supporting object-oriented interaction, interfaces can allow end-users
to maintain task elements, which would have previously been transient, as persistent objects that can be reused
and composed into new combinations [374]. Further, with persistent and composable objects, end-users can
combine these into multiple parallel prototypes, which could prevent fixation and encourage experimentation [143].
Additionally, if end-users are able to create and maintain alternatives in parallel, they can readily compare these
alternatives to solve problems [107] and understand the task in greater depth [42].

Inspired by the advantages of reifying task elements into reusable objects [34], in this chapter, we investigate
how to reify the components of generation configurations into persistent, multiplicable, and composable objects.
Specifically, we first conducted a systematic literature survey of prior work on interactions with LLMs to identify
user needs, challenges, and design insights. Furthermore, we also review work on other types of generative models
as HCI researchers have investigated diverse models prior to LLMs and these share various similarities. Then, based
on this survey, we propose a design framework for interactive objects for LLMs that consists of cells, generators,
and lenses. These three objects respectively represent the input, model, and output—the main configuration
components for LLMs. By employing our design framework, designers can create interfaces that allow end-users to
(1) create and maintain multiple variations of these generative components as objects, and (2) link them to each

other to assemble and re-assemble various configurations in parallel.

3.2.1 Cells

Cells (Fig. 3.2) are object representations of discrete input units—i.e., fragments of text. For example, a
cell can represent a sentence, a phrase, or a word. With respect to LLM prompts, a cell can also represent an
instruction line (e.g., a specification) or an example of the expected behavior. Our decomposition of input into cells
is analogous to how computational notebooks decompose code into cells, which has been shown to be effective
in supporting flexible customization and testing [357, 201]. Below, we describe and justify two interactions that

designers should support regarding cells, create and assemble.

Cell

create

O modify

copy

Figure 3.2: Cells are object representations of input units (e.g., sentences). To create variations of inputs, users
can create, copy, modify, and assemble cells. Cells that have been assembled together are shown connected by blue
edges.
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Create

Users can create new cells to populate with differing inputs, or copy existing cells and edit them into
various versions of the same input. With existing interfaces, users have to overwrite previous inputs when testing
new variations as they are frequently only presented with a single input area, usually a text box [386, 249, 7].
In contrast, by interacting with cells, users can create and maintain various generation inputs that they can
experiment with—allowing them to more easily answer their own “what if”” questions about the effect of inputs on
outputs [321, 324, 194]. For example, if a user is composing a poem generating prompt that specifies requirements
such as topic and form, they can create alternative cells for each requirement (e.g., one cell for “haiku” and one for
“sonnet”). In certain tasks, the generated output in one interaction turn can become part of the input for the next turn
(e.g., generating continuations that are added to a story). In these cases, the generations themselves can become
cells and allow the user to test how different generated outputs affect future generations (e.g., generating alternative
storylines). As multiple text fragments can occupy significant screen space, designers can provide mechanisms
to “minimize” cells in their interfaces. However, to prevent occluding the content of cells and hindering users’
access [34], cell minimization should be designed such that it hints at the content by, for example, only decreasing

font size or summarizing the text into keywords.

Assemble

Our framework suggests that interfaces should split the input text into interactive cells as prior generative
interfaces showed that partitioning can facilitate iteration on inputs [13, 43, 352, 370]. As units, cells can then be
assembled together into generation inputs (e.g., sentences into an essay and requirements into a prompt) which
allows users to quickly assemble input variations [32, 214] or to mix-and-match the variants [388, 366]. Finally,
disentangling inputs also helps users to “lock” portions of the input and experiment with the effects of each
portion separately—encouraging systematic testing [390]. This portion-wise experimentation can allow users to
interactively align generations with their intentions [8, 403] and to more intuitively gain an understanding of the
models [387, 285]. Designers can provide different forms of interaction for cell assembly based on the task and
how cells are used. For example, the user could assemble cells by dropping them into a container, by selecting cells
from multiple parallel configurations to mix-and-match, or by drag-and-dropping between cells to create the links.
As cells can represent different types of text fragments (e.g., line, phrase), interfaces should have pre-defined rules

that dictate how these text fragments are concatenated once cells are assembled. For example, an interface that

Generator

parameter T

modify

parameter T 4\

generations

oot

Figure 3.3: Generators are object representations of generative model instances (i.e., the type of model and its
parameters). Users can create generators, modify their parameters, and then link them to one or multiple cells to
generate outputs. Generators display their parameter settings in their faces (represented as letters in the diagram).
Additionally, generators can maintain their own history to help users track how parameters have increased and
decreased, and what generations resulted from these changes.

«
parameter N

Create
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represents lines as cells should assemble them by concatenating the text with line breaks, and one that represents

phrases as cells should concatenate them with spaces.

3.2.2 Generators

Generators (Fig. 3.3) are object representations of model settings (i.e., type of LLM and parameter values).

Create

With generators, the user can create several model instances and separately modify each one (i.e., choose
a different model and/or parameters) to experiment with their effects. Prior work on various types of generative
models has revealed that different models and parameters can satisfy different user needs as they can produce
different results [220, 125, 153]. Regarding writing and LLMs, Lee et al. [190] found that different parameter
settings can fulfill different writing goals (e.g., diverging vs converging), and Chung et al. [61, 60] argued that
interfaces should facilitate parameter adjustment to support writers’ control over the generative process. But,
in existing interfaces, users cannot modify the underlying parameters [386, 316] or can only customize one
global set of parameters [219, 249, 7, 303, 111, 113]. In comparison, designing interfaces with generators can
allow users to simultaneously maintain several model instances, where each addresses a different sub-task or
need [133]. Additionally, as the effect of configuration changes cannot be fully predicted due to the black box
and non-deterministic nature of LLMs, users need to iteratively test different configurations and, as they iterate,
may want to return previously tested configuration [359]. By reifying model configurations into generators, users
are able to use these objects to maintain previously promising configurations—i.e., versioning. Similar to cells,
generators should also be designed such that they visually hint at their parameter settings and also support efficient

access to edit these parameters.

Link

Generators can be freely linked to different cells or cell ensembles to produce outputs. These links can be
many-to-many to help the user test various combinations of inputs and model parameters. For example, users can
link the same cell to multiple generators to compare the effects of different parameter settings, or link multiple cells
to one generator to experiment with a range of inputs. Designers can create interfaces that make the linking process
explicit (i.e., the user drag-and-drops between cells and generators to create links) or implicit (i.e., the user selects

cells to use as input and then clicks on a generator to use its configurations to generate).

Track

As objects, generators can also keep track of their individual history of parameter changes, generated outputs,
and linked cells used as input. To support this history, interfaces can log all of the generation events (i.e., input text,
parameter settings, and an array of generated outputs) for each generator. With this tracking, users can examine
and explore their iterative process to carry out sensemaking on how parameters affected the resulting generated

outputs [11].

3.2.3 Lenses

Lenses (Fig. 3.4) are object representations of spaces that represent and visualize the generations produced. For

example, these can include a list [64], a gallery [327], or a real-time confidence visualization [232].
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Link

By linking generators to lenses, users can represent the generation outputs in diverse ways. Effective
representations of the generations support the exploration of the generations and sensemaking of the models’
capabilities [98, 356, 395, 415]. However, as revealed by work on human-AlI writing interfaces, the “most effective”
representation can be dependent on two dimensions. First, the user’s needs: when brainstorming storylines, for
example, visually representing the generated story arc can help with sensemaking [61] but, when choosing the
next sentence for a story, a list of generations allows the user to concretely compare them [386, 108]. Second, the
generation amount (i.e., length or number of alternatives): as they write, users may want to see longer or more
alternatives and, due to the increased reading cost, interfaces need to provide user’s with different ways to parse and
examine these [46]. Thus, our framework suggests interfaces to include a variety of lenses to help users customize
how they visualize and explore generations (e.g., linking a generator to a suitable lens, switching between lenses, or

comparing generators by linking them to one lens).

Assemble

Lenses can also be assembled together to view the same generation outputs through multiple representa-
tions [231, 308]. For example, a list lens and a sentiment scatterplot lens (i.e., predicts sentiment of text) could
be joined to allow the user to explore both the content and sentiment of generated text. As users consider various
characteristics or metrics when making sense of generation outputs [74], allowing them to assemble lenses can

support more comprehensive sensemaking.

3.3 Applying the Framework

To illustrate how our framework can generalize to diverse writing tasks, we applied it to design and develop
three interfaces for different tasks: story writing, copywriting, and email composing. Specifically, we exhibit how
cells, generators, and lenses can be adapted into interface design to support end-users iteration and experimentation
in the context of specific tasks. We designed these interfaces based on existing ones that support the same tasks to
demonstrate how the interaction changes when our framework is applied. To gain a preliminary understanding
about how end-users could use our interfaces to iterate and experiment, we invited two participants to use each
interface (total N=6, 3 female, 3 male), where all participants had previous writing experiences and at least a basic

understanding of machine learning (ML). We describe these preliminary observations after describing each interface.

Lens

alssemble

Figure 3.4: Lenses are object representations of output spaces that represent and visualize generations from linked
generators (e.g., a list or a 2D grid). Lenses can be assembled together to visualize the same generations in multiple
ways.
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Furthermore, through the development of these interfaces, we modularized UI components for cells, generators,
and lenses and have packaged these into an open-source ReactJS libraryl. In contrast to frameworks such as
LangChain [53] that facilitate the development of backends for LLM applications, we hope that this library can

foster wider adoption of our framework by facilitating the development of frontends for LLM-powered interfaces.

3.3.1 Copywriting Interface

Our copywriting interface (Fig. 3.5) allows end-users to create advertisements from a couple of product
specifications. The interface was designed based on copywriting tools [64, 362, 144] that provide forms where
end-users specify requirements for the desired advertisement (e.g., tone, audience) and an LLM then attempts
to generate it. By offloading the effort of writing to the model, end-users can use these tools to produce various
alternatives for their advertisements. However, as end-users can only interact with a single form, every edit
overwrites previous specifications and can hinder end-users’ abilities to recall previous attempts or to iterate on
these attempts by combining them.

To address these issues, we applied our framework to design a new copywriting interface. In this interface,
end-users can create and maintain specification alternatives as cells, and then assemble these into new combinations
(Fig. 3.5a). To allow end-users to test various model parameters, the interface allows them to create multiple
generators, each with its own parameter settings (Fig. 3.5b). Finally, to help end-users navigate the advertisements
they generated, the interface provides two lenses that are assembled together to allow navigation based on content,

similarity, sentiment, or emotion (Fig. 3.5¢).

Composing the Specifications

In our copywriting interface, end-users compose specifications for their desired advertisement (e.g., product

description, tone, keywords) by creating and editing cells in the prompt area (Fig. 3.5a). In each line, the user can

Figure 3.5: The copywriting interfaces allows end-users to provide a set of specifications to generate advertisements
by creating and editing cells (a). In the generator tray (b), end-users can create multiple generators and modify their
parameters (d-1). Then, by clicking on a generator, end-users can generate advertisements that are presented in a
list (c-1) or a 2D space (c-2), and rated according to their predicted emotion or sentiment. To look back on how the
parameters of each generator were changed and what outputs it generated, end-users can also browse through the
history of each generator (d-2).

lhttps ://github.com/kixlab/llm-ui-objects
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specify a different specification type (e.g., “tone”), and then create multiple variations for that specification by
adding or copying cells in that line (e.g., “informative, friendly” or “comical, humorous”). By selecting a cell for
each line or not selecting any for some lines, the user can mix-and-match different specification sets to use as inputs

when generating.

Generator Tray

Under the prompt area, the interface shows the tray of generators where end-users can create, copy, and
maintain multiple settings for the model’s parameters (Fig. 3.5b). Each generator presents four parameters that the
user can modify: engine (i.e., the model type and version), temperature (i.e., the degree to which out-of-distribution
tokens are generated), presence penalty (i.e., penalty on the probability of generating tokens that have already been
generated), and best of (i.e., number of candidate outputs to generate from which the model returns the “best”).2
Generators show the current value for each parameter in its face and users can change these value by clicking on a
parameter to reveal a control panel (e.g., dropdown menu, slider). By clicking on a generator, the user can start
generating outputs with that generator’s parameters and the currently selected specifications as the input, which are
concatenated with line breaks. To look back on how parameter changes may have affected the outputs, end-users
can open the history panel to browse through the generator’s individual log of parameter changes and generated
outputs (Fig. 3.5d-2).

Lenses: List, Space, and Rating

Initially, end-users are presented with the list lens (Fig. 3.5¢-1, left) which presents generations as a list of text
entries that are grouped at two levels: the input that was used, and the parameters that were used. This two-level
grouping can help end-users distinguish where they made changes to the generation configurations and compare
generations across groups. To explore generations based on their similarities and differences, end-users can toggle
the space lens (Fig. 3.5¢-2, left) where outputs are presented as dots in a 2D space where closer dots represent more
semantically similar outputs. Next to the toggleable list-space lens, end-users can view a different representation
of the outputs through the rating lens (Fig. 3.5¢c-1 and Fig. 3.5¢-2, right). The rating lens provides a high-level
impression of the generated advertisements based on their emotion (i.e., joy, sadness, anger, optimism) or sentiment
(i.e., positive, negative, neutral)—the user can toggle between these two options. If the end-user finds a generated
advertisement that they like, they can click on it to copy it to the text editor (Fig. 3.5¢) where they can then edit and

combine it with other generations.

Use Cases

For the copywriting interface, the two participants were asked to write advertisements for two imaginary
products: an Al-based language teaching service, and a super-insulated tumbler. To generate fragments that
had the “tone” that they desired, participants created various specifications in individual cells: the portion of
the advertisement that should be generated (P1, P2), the target audience (P2), or adding generated fragments as
examples (P1). Further, participants experimented with various specification sets by copying, modifying, and
assembling different cells. By experimenting with the cells and generators, participants were also able to better
understand the effect of inputs and parameters on the generations. For example, at the beginning of the session, P4
tried only experimenting with one cell that had “keyword” as the prefix, and mentioned how this allowed her to

learn how that specific cell affected the output. Also, both participants iterated by alternating their experimentation

2Among the parameters provided by the OpenAl API, these were identified to be the most useful parameters by end-users in our preliminary
studies.
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between cells and generators: experimenting with generators until outputs appeared adequate, reusing that generator
with different cells until outputs defied expectations, and then debugging by testing different generators again—
resembling more systematic testing [390]. Regarding the lenses, both participants used the rating lens to quickly
compare generations from diverse configurations, and then used the list lens to identify specific phrases that they
liked.

3.3.2 Email Composing Interface

During email composition, as the end-user frequently has a concrete idea of what to write, the LLM can
instead help with how to write it (e.g., changing the tone, paraphrasing). To support this, existing LLM-powered
interfaces for emails [92, 181] provide designated “brushes” that allow end-users to select text and perform specific
generative functions on the selected text [149]. However, these existing interfaces do not allow end-users to design
their own LLM-powered brushes to satisfy their personal needs.

To enable greater customization, we applied our framework to envision an email composing interface (Fig. 3.6)
that packages cells, generators, and lenses into brushes—allowing the user to design their own reusable LLM-
powered brushes by iterating with these objects (Fig. 3.6b). For each brush, end-users can assemble cells to specify
the brush’s purpose (Fig. 3.6¢c), set multiple generators, and choose their preferred lens to show the generated
outputs (Fig. 3.6e). We considered that, compared to copywriters, email writers would be more task-driven and
less inclined to explore various cell-generator-lens permutations. Thus, we limited linking to one-to-many where
each brush can only house one cell ensemble and one lens, but multiple generators. This design limits end-users to
consider one input alternative at a time but, with a single click of a brush, they can simultaneously test multiple

generators and compare them in one visual space.

LLM-Powered Brushes

To the right of the text editor (Fig. 3.6a), the user can create and manage the LLM-powered brushes (Fig. 3.6b).

To use a brush, the user simply clicks on the corresponding button or, if a brush performs actions on user-selected

Figure 3.6: In the email composing interface, end-users can write an email in the text editor (a), and create
dedicated LLM-powered brushes that can be configured to perform specific generative functions (b). For each
of these brushes, the user composes an instruction prompt with cells (c¢), sets multiple generators (d), and selects
between the list, space (e-3), or plot lenses (e-2) to present the outputs. When the user clicks on a brush, the model
runs according to the designed configuration, generates outputs, and displays these in a hovering lens.
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text (e.g., paraphrase a chosen phrase), the user should first select text in the editor. To modify the configurations

behind a brush, the user can hover over a brush and click on the right arrow to display its configurations.

Composing the Prompt

Similarly to the copywriting system, end-users configures the input for the brush by using cells to represent
individual specifications (Fig. 3.6¢c). A difference is that this interface provides two additional types of cells:
“selection” and “whole text”. When the input is assembled, a “selection” cell is transformed into an input line by
concatenating the user-written prefix with text that the user selects in the editor, and a “whole text” cell concatenates

the prefix with all of the text in the editor.

Generator Set

Each brush can hold several generators (Fig. 3.6d), which function like those in the copywriting interface.
When a brush is used, the interface generates outputs with the parameters of each contained generator—with the

same specification cells as input.

Lens: List, Space, and Graph

After an LLM-powered brush is clicked, the generated outputs are shown in a lens that hovers over the text
editor. For each brush, the user can choose between three lenses: list, space, and plot. The plot lens (Fig. 3.6e-2)
presents generations as dots in a scatter plot where the axis represents the output’s score for a sentiment or emotion
class. By setting what class to use for each axis, the user can choose their preferred “metrics” to explore the outputs
with (Fig. 3.6e-1).

Use Cases

For the email writing interface, the two participants were instructed to write an email to a professor apologizing
for not attending lectures, but asking for a passing grade in the course. Both participants mostly designed LLM-
powered brushes that refined sentences or phrases in their emails (e.g., “change the text to be more persuasive” or
“change text to be more professional”). For each brush, both participants created multiple generators as it allowed
them to quickly identify the parameters that worked best for that brush’s function—supporting efficient testing and
evaluation. Compared to the other participant, one participant tested larger sets of generators simultaneously and

was able to more quickly pinpoint what component of the pipeline he needed to iterate on.

3.3.3 Story Writing Interface

LLMs have also been employed for story writing. Various interfaces [140, 386, 7, 249] provide end-users with
a text editor where they can write a story and then use an LLM to generate continuations for their story. While these
interfaces can help end-users to quickly develop one plotline, they can struggle to manage and iterate on multiple
plotlines in parallel as they would have to juggle alternatives in and out of the single editor. However, as identified
by Dow et al. [81], parallel prototyping can prevent fixation and lead to higher quality and creative outputs.

By applying our framework, we introduce a story writing interface (Fig. 3.7) that partitions stories into cells to
enable writers to assemble these into branching and parallel plotlines (Fig. 3.7b). In this interface, end-users can
experiment with and compare configurations by linking cells to multiple generators (Fig. 3.7¢) and linking multiple

generators to the same lens (Fig. 3.7d-3).
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Figure 3.7: With the story writing interface, end-users can explore multiple, alternative plotlines. The user can
create multiple plotlines by creating branching cells in a tree representation (b). Each cell contains a story sentence
and is represented as a block enclosing a keyword extracted from the sentence. The most opaque block is the
currently selected cell and it is shown highlighted in the editor. The user can create multiple generators (c), and then
drag-and-drop between cells and generators to link them. Then, by clicking on a generator, the user can generate
continuations to the linked cell which are then displayed in three types of lenses: list lens, space lens, or peek lens

(d).

Branching and Parallel Paths of Cells

Next to the text editor, the user can view the tree representation of cells (Fig. 3.7b). Each cell represents a
sentence and it is presented only with a keyword extracted from its content to prevent the screen from becoming
excessively busy. Paths down the tree represent ensembles of sentences or, in other words, separate plotlines that
the end-user has created. To view and edit the text of a plotline in the editor (Fig. 3.7a), end-users can click on a
cell in the tree to ensemble all of the down the tree up to the selected cell. End-users can add more cells to create

more branching paths by typing continuations in the editor, copying cells, or connecting cells to one another.

Linking Paths to Generators

The user can also extend a path by generating continuations. For this, end-users can drag-and-drop link a cell
and one or more generators by drag-and-drop (Fig. 3.7c). When the user clicks on a generator, it will take the text

in the path down to the linked cell as input to generate outputs.

Lenses: List, Space, and Peek

The user can choose between three lenses in this interface: list (Fig. 3.7d-1), space (Fig. 3.7d-2), or peek lens
(Fig. 3.7d-3). The peek lens automatically extends the story from the linked cell by periodically generating a new
sentence—until the user clicks on the generator again to stop it. When the end-user clicks on a generated output in

any lens, it is added as a new cell that branches out of the cell that was used as input.

Use Cases

For the story writing interface, the two participants were asked to write a story based on a starting sentence.
Through the objects, the participants were able to explore multiple plotlines. P6 generated multiple branches from

the initial story prompt which they then developed individually with the same generator. Similarly, P5 created
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two branches, but developed each with a different generator to simultaneously test possible plotlines and model
parameters. In terms of lenses, both participants used the peek lens to develop plots that they found interesting but
did not know how to progress, and used the list and space lens to build on plots more deliberately. Both participants
initially expanded horizontally—developing multiple plotlines with various generators—and mentioned how this

helped them quickly identify both promising configurations and plotlines.

3.3.4 Implementation

We implemented the three interfaces using HTML, CSS, JavaScript, and ReactJS. The text editors were built
using the SlateJS library3. To request and post-process the generations, we built a backend server with Flask that
obtained generations through the OpenAl API*. The HuggingFace Transformers library [361] was used to process
the generations for sentence similarity [103], sentiment [284], and emotion [241]. The KeyBERT technique [121]

was used to extract keywords for the story writing interface.

3.4 Evaluation

To investigate the effectiveness of cells, generators and lenses in supporting end-users’ iteration and experimen-
tation, we conducted a between-subjects study where we compared our copywriting interface against a baseline that
only provides one modifiable configuration. For this study, we focused on copywriting as a task, as we expected that
this task would require substantial experimentation and iteration: the writer needs to effectively transmit a message
with a limited set of sentences. In this study, participants were asked to write two advertisements, back-to-back,

based on the provided product descriptions. In this study, we posed the following three research questions:

* RQI1. Can cells, generators, and lenses promote users’ experimentation and iteration with various generation

configurations?
* RQ2. How are users’ generative processes affected by the presence of cells, generators, and lenses?

* RQ3. How do cells, generators, and lenses affect users’ perceptions about the generative model and their

final outcomes?

3.4.1 Participants and Apparatus

We recruited 18 participants (3 female, 15 male, age M=21.7 and SD=1.9), all of whom reported being
comfortable with English reading and writing, and interest in creative writing. All of the participants had prior
experiences with Al-based writing support tools (e.g., grammar checkers, autocomplete), but had no experiences
writing with LLMs. Participants were randomly divided into the treatment group, which used our copywriting
interface, and the control, which used a baseline. Although similar to our interface, the baseline (Figure 3.8) limited
end-users to one input alternative per line, one set of parameter settings, and only a list representation of outputs.
This baseline resembles existing interfaces for LLMs where end-users can only work with one configuration and
must continuously overwrite it to iterate and experiment.

During the task, participants were asked to write advertisements for two products from a crowd-funding site®:

a plant-based jerky, and a portable air conditioner. Participants were provided with the descriptions available on the

3https://docs.slatejs.org/
4https://openai.com/api/
>The study was conducted in early 2022 before the widespread adoption LLMs due to models like ChatGPT.
6https://kickstarter.corn
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funding pages of each product. To provide participants with a starting point and help them understand how they
could prompt the model, we also provided them with a basic advertisement generation prompt (see Supplementary
Materials).

3.4.2 Study Procedure

The study took place face-to-face while strictly following COVID-19 guidelines. Participants were provided
with a laptop that had their assigned interface open. After reading and signing the informed consent form,
participants first received a short explanation of the generative model they would be interacting with in the study,
and a short tutorial on how to use their assigned interface. After the walkthrough, participants received the
description of the first product. The order in which participants saw each product was also counter-balanced.
Participants were then given 15 minutes to read the product description and use the given interface to write an
advertisement that was two to five sentences long. After the allocated time, participants completed a short survey.
After the survey, participants proceeded to the second product: they used the interface to write an advertisement
for 15 minutes and completed the same survey. After the second advertisement and survey, a short interview was

conducted where participants were asked about their experience.

3.4.3 Measures

For measures, we collected participants’ survey responses after each advertisement. Similar to prior work [191,
386, 190], we asked participants to rate their agreement on a 7-point Likert scale (1: Strongly Disagree, 7: Strongly

Agree) with the following statements:

Figure 3.8: The baseline interface resembles our copywriting interface, but presents the users with only one cell
per instruction line, one generator, and one lens.
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Helpful: "I found the Al helpful."”

* Ease: "I found it easy to write the advertisement."

o Experiment: "I felt that I experimented with various ideas and generated alternatives."
e Tterate: "I felt that I iterated various times on ideas and the generation process."

e Pride: "I’'m proud of the final advertisement.”

e Unique: "The advertisement I wrote feels unique."

Additionally, we measured quantitative metrics related to participants’ generation processes. For each
advertisement written by participants, we measured the number of times that they generated, and the number of
different unique inputs and unique parameter settings that were used to generate. Additionally, to measure the
degree to which participants accepted the models’ generations, we calculated the similarity between their final
advertisements and the generated suggestions. While prior work [190] evaluated acceptance of Al generations by
measuring the proportion of generations that were selected, in our study, we saw that participants frequently used
fragments from generations without explicitly copying them with the interface. Thus, we calculated the BLEU
score [260]—a measure used to evaluate the similarity between a piece of text and references—between participants’
final advertisements and the generations they received. Additionally, to evaluate whether participants saw diverse
or similar generations, we measured the Self-BLEU score [416], a metric frequently used to measure the diversity
of generated outputs. The Self-BLEU score calculates the average BLEU score between each generation and all

other generations.

3.4.4 Results

Overall, our results demonstrated that our copywriting interface encouraged participants to generate more, with
more diverse inputs, and, as a consequence, make greater use of the generated outputs in their final advertisements.
These findings suggest that supporting object-oriented interaction for generation configuration, which is enabled by
applying our framework, could support iteration and experimentation with LLMs. However, the benefits of the
framework might have been moderated by the difficulties in modifying the individual configuration components.
For the statistical analysis of measures, we conducted a Shapiro-Wilk test to determine if the data was parametric
(noted with "P") or non-parametric (noted with "NP"). Then, we compared conditions with an independent T-test

(if the data was parametric) and a Mann-Whitney U test (if non-parametric).

Generate More and With More Inputs

Our results indicate that treatment participants generated more and with a greater variety of inputs. Participants
in the treatment condition generated significantly more times (M=9.78, SD=3.07) than those in the control condition
(M=6.33, SD=3.77, p=0.006). Additionally, participants in the treatment condition generated with a significantly
higher number of unique inputs (M=5.89, SD=1.66) than those in the control condition (M=3.06, SD=2.17,
p<0.000).

As creating multiple cells allowed treatment participants to maintain various alternative inputs, they were less
inclined to fixation and more prone to experimentation. We observed in the study that both treatment and control
participants dedicated significant time to “set up” their inputs at the start of the task. Before generating for the
first time, participants carefully read the product descriptions and thoroughly edited the template input provided.

However, after set up, most control participants only made a minimal number of edits to their initial input. For

26



example, P10C (participant 10, Control condition) mentioned, “I didn’t really change the text in the [input] much. 1
felt that I had set all my desired instructions and didn’t think about adding new instructions because I thought it
would be enough with [what I had].” In contrast, treatment participants mentioned that the ability to create multiple
cells encouraged them to experiment with different inputs, even if they were not confident that it would yield
better results. P7T (Treatment condition) mentioned, “I set multiple options for each line because I didn’t know
specifically what I wanted so I could have various sets of options to [experiment with].” Similarly, P9T mentioned
how having multiple cells encouraged him to test more inputs beyond his initial one him: “[1 would] have multiple
[cells] and then just toss words in. If you relied too much on your first [set of cells], it wouldn’t be efficient.” This
comment suggests that supporting the creation of multiple objects in the interface allowed participants to perform

parallel prototyping [81].

Barriers to Modifying Inputs and Parameters

Despite treatment participants testing more inputs with multiple cells, the possibility of creating multiple
generators did not significantly increase their experimentation with parameters. We observed no significant
difference in the number of unique parameter settings used by treatment participants (M=4.17, SD=2.93) and
by control participants (M=3.04, SD=2.50, p=0.936). While some treatment participants mentioned how using
multiple generators helped them experiment and “find the best combo” of parameters (P1T), the majority felt that
it was challenging to test parameters as it was difficult to predict the effect of changes. Specifically, participants
mentioned that the function of the parameters was “not explicit” (P6C), and that deciding between continuous
values made changes feel “arbitrary” (P9T). This difficulty in predicting and evaluating the effect of parameters is
analogous to the understanding and information barriers in end-user programming [174].

Similarly, although treatment participants did experiment with more inputs, modifying inputs was also not a
simple task. While the effect of input changes was easier to predict and distinguish, participants mentioned that
deciding on how to change the input could be challenging. For example, PSC mentioned, “I didn’t know what
[input] could have done what I wanted to do here.” Unlike model parameters that had well-defined sets of values
(e.g., a numerical value within a given range), participants could not think of how to change the inputs. Due to this,
several participants expressed how they would want the interface to provide keywords (P2C) or suggest prompts
(P12C) on how to change the input. As discussed by Zamfirescu-Pereira et al. [390], this challenge of identifying

how to modify or add to LLM inputs (i.e., prompts) resembles the selection barriers in end-user programming [174].

Higher Adoption of Generated Outputs

Analysis of participants’ generations and their final advertisements revealed that treatment participants made
greater use of the LLM’s generations in their writing process. The BLEU scores showed that the advertisements of
treatment participants were significantly more similar to their generations (M=0.884, SD=0.125) when compared to
the similarity between the advertisements and generations of control participants (M=0.768, SD=0.196, p=0.045).
This result suggests that, due to how treatment participants generated and experimented more with cells, generators,
and lenses, they were able to produce outputs that they were more satisfied with and more willing to incorporate
into their final writing. The self-BLEU score for the similarity between received generations revealed no significant
differences between the generations of treatment participants (M=0.712, SD=0.119) and those of control participants
(M=0.680, SD=0.139, p=0.438). This indicates that the two groups of participants saw generations that were
similarly diverse. However, considering that treatment participants generated more and thus saw more generated
outputs, this could also suggest that treatment participants had a larger pool of different generations available to

use—the pool size was bigger but with the similar degree of diversity. Thus, this implies that treatment participants

27



Helpful Ease Experiment Iterate Proud Unique

Treatment 5.889 (0.936) 5.944 (0.911) 4.778 (1.133) 5.222(1.356) 5.722 (0.650) 4.500 (1.118)
Control 6222 (0.711) 6.000 (0.667) 5.333(1.155) S5.111(1.197) 5.278 (1.044)  4.056 (1.353)
p-value 0.307 0.960 0.082 0.755 0.195 0.304

Table 3.1: Mean and standard deviation (in parentheses) of participants’ subjective ratings across conditions.
Ratings showed no significant differences between the perceptions of treatment and control participants.

used cells, generators, and lenses to explore a wider portion of the generation space.

Subjective Perceptions

According to the survey results (Table 3.1), both groups indicated positive perceptions regarding the LLM’s
helpfulness and their final advertisements (i.e., pride and uniqueness)—with no significant differences between the
two conditions. For most participants, the study was their first experience interacting with an LLM and they were
surprised by the high quality of the results. For example, P1T mentioned how some of the generated outputs were
“perfect” and P10C described how the model was “really good” compared to other models they had tested before.
The novelty of the model and its performance led to positive ratings from most participants.

The survey results also revealed that treatment participants rated the task to be relatively easy (i.e., mean
rating close to 6) and had no significant difference with control participants (“Ease” in Tab. 3.1). Considering that
treatment participants generated more, tested more inputs, and also had to interact with more cells, generators and
lenses, these results suggest that our framework might have reduced effort in other sub-tasks (e.g., remembering
previous inputs). This finding is further supported by considering how, as treatment participants generated more,
they also had to read through more outputs, which was effortful and time-consuming. Although participants did
use the various lenses to browse through the outputs, they ultimately resorted to using the list lens to read each
generation to ensure that they did not overlook any promising outputs. P11T said, “At some point, I generated 10
or more sentences and |[...] it took a long time to read through them.” Also, P7T noted how it would be useful if
the lenses surfaces specific aspects of the outputs that could be improved. Considering how all of the participants
checked outputs for desirable characteristics (e.g., keywords, creative staring lines), these results indicate a need for
lenses that can efficiently represent different user-desired characteristics.

Surprisingly, despite quantitative measures indicating that treatment participants generated more and with
more unique inputs, there was no significant difference in their perceptions on their amount of experimentation
and iteration. Several participants in both conditions mentioned how the generative model would frequently return
similar outputs. For example, P17T mentioned that “most of the time the Al was generating similar text”. Due
to the aforementioned barriers in modifying inputs and model parameters, participants were frequently unable
to control the model to generate more diverse outputs. Considering that participants in the treatment condition
generated more frequently and experimented with more inputs, it is possible that they developed higher expectations
that the model would return diverse outputs. However, as the model did not fully match their expectations, this

resulted in them perceiving that they experimented less than they actually did.

3.5 Design Workshop

Finally, we evaluate our framework in terms of usability: can interface designers, beyond ourselves, effectively
use and apply our framework to design writing interfaces that support end-users’ iteration and experimentation? For

this purpose and gain expert critiques about our framework, we conducted a workshop where we invited interface
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designers to follow our framework and design writing interfaces that support object-oriented interaction.

3.5.1 Participants

We focused our recruitment on graduate students in the field of HCI with prior experience designing interfaces
and using LLMs for writing. Through recruitment posts in online communities of a technical university, we recruited
three designers (1 female, 2 male, age M=27.7 and SD=4.7). All participants were graduate students in industrial
design (2 M.S., 1 Ph.D.) and currently conducting research in HCI. The participants provided samples of previous
designs, which included interfaces for ride-sharing, social communities, and journaling. Participants’ previous
experiences with LLM ranged from use for composing emails or translating to actually developing LLM-powered

interfaces.

Study Procedure

Participants were first provided with an introduction to the workshop, including a brief reminder about
LLMs and an explanation of our design framework—i.e., its motivation, the interactive objects and their possible
interactions, and the three interfaces we designed. After the introduction, participants were asked to choose the
Al-powered writing interface that they would re-design. Participants were provided with three interface options,
where each supported a different writing task and writing process: poetry [338], screenplay [239], or essay [71].
Then, we provided participants with a link to a Figma7 document that contained screenshots of the interface
to re-design, a summarized explanation of our design framework, and pre-made design components for cells,
generators, and lenses. Participants were then asked to design a new interface by adapting the basic workflow and
features supported in the chosen reference interface, but by applying our framework to integrate cells, generators,
and lenses. We decided on this type of re-design task as our goal was to see if designers could apply our framework
to incorporate the objects into interface designs, instead of observing whether they could ideate new designs from
scratch. After designing for one hour, we concluded with a group interview where each participant described their

design, how they used the framework, and their experiences of applying the framework.

3.5.2 Findings

Overall, designers could apply our framework to design LLM-powered writing interfaces with the goal of
supporting end-users’ iteration and experimentation. We observed that our framework not only bootstrapped
participants’ design process by supplying the interactive objects as design materials, but also encouraged them
to consider how they could further modularize their envisioned end-users’ generative process to support iteration
and experimentation. In this section, we describe how each participant integrated and designed each of our
framework’s objects, and the reasoning behind their designs. Finally, we present participants’ overall perception of
our framework. We denote the designers as DP (designer for the poetry writing interface), DS (for screenplay), and
DE (for essay).

Cells

Designers integrated cells into their designs in diverse ways to support iteration and experimentation. Specifi-
cally, all designers envisioned interfaces where end-users could create multiple versions of inputs and assemble them
differently each time they generated. Designers reflected that this would help end-users to “create diverse variations

and compare the generated results” (DS). Beyond this, designers also envisioned novel ways for designing or

7https://www.ﬁ gma.com/
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using cells. For example, DP envisioned that the LLM could help users “think of inputs” by brainstorming and
generating them for the end-users to use as cells. Additionally, DS designed an interaction where end-users could
select individual sentences from cells to use the selection as temporary cells to help end-users “experiment with
diverse inputs at the sentence-level”. Finally, DE mentioned that, in essay writing, “what content to include is
more defined and that, instead, the writer needs help to assemble this content.” Thus, his interface “extended cells”

to contain drafts of paragraphs, rather than shorter text-like phrases.

Generators

In terms of generators, all participants produced designs that supported multiple generators with their differ-
ences in how they envisioned that generators would be linked to cells. DS’s design resembled our storywriting
interface where end-users link individual cells to generators, while DE’s design resembled our email composing
interface where end-users create multiple generators and all of them are used when generating. Unlike our designs,
DP envisioned that end-users would chain configurations [370], where generated outputs from one configuration
step would used as inputs for the next. Thus, as he expected that “[the effect of each step] would be affected by
each generator’s configurations”, he designed the interface to allow end-users to create multiple generators at each

generation step.

Lenses

All of the participants produced designs where lenses were assembled to provide end-users with various views
of the output. Both DP and DS designed interfaces that enabled end-users to use multiple assembled lenses to
“explore” (DP) and “evaluate” (DS) generated outputs. To provide further control, DE’s essay writing interface was
envisioned to provide two views for generated outputs: a draft view, which displayed text, and an analysis view,
where end-users could customize how they analysed generations by “adding [lenses] that they prefer” from a set

of pre-defined lenses.

Framework as Design Material and Inspiration

As illustrated by their application of cells, generators, and lenses, designers were able to apply our framework
to design LLM-powered writing interfaces with the intention of supporting iteration and experimentation. Regarding
the framework, designers noted how them, by thinking in terms of the framework, they were able to “determine
how [they could] facilitate end-users use of LLMs in the interfaces they design” (DS). Particularly, participants
felt that the cells and generators were “concrete” and “detailed” (DE)—serving as actionable design materials.
However, perceptions regarding the lenses were mixed. Both DS and DE mentioned that “it was not clear how the
[different] lenses could be used [...] and where they could be used” (DS) due to how there is greater “freedom”
on how they can be designed (DE). Thus, they both mentioned that they required more time to think about how
to incorporate lenses into their designs. In contrast, DP mentioned how “how having less concrete guidance on
how to design lenses granted designers with more flexibility” about what type of views to support and how. These
comments indicate that, while more concrete examples for lenses should be incorporated into the framework, a
more abstract description can allow designers to adapt lenses for their intended tasks.

Beyond facilitating the integration of cells, generators, and lenses into their designs, participants noted
how the framework inspired them to consider how they could further modularize the generative process in their
interfaces. DE mentioned how the framework “inspired” him to design his essay writing interface to enable
end-users to maintain multiple versions of their input and generated drafts as individual “tabs”. In his poem writing

interface, DP incorporated an intermittent step through which end-users test their cells and generators by generating
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partial outputs in a sandbox—helping them identify fruitful configurations before proceeding to generate the full
poem. Similarly, while the existing screenplay writing interface had end-users sequentially generate elements of a
screenplay (e.g., title, characters, setting), DS modularized the generation of these elements so her end-users could
iterate and experiment on each of these elements individually. Thus, these findings suggest that, by encouraging
an object-oriented perspective, our framework could encourage designers to envision further affordances and

interactions that support iteration and experimentation with LLMs.

3.6 Discussion

In this chapter, we present cells, generators, and lenses, a design framework for supporting object-oriented
interaction with LLMs. We propose that designers can integrate object-oriented interaction in their interfaces to
mitigate end-users’ challenges in interacting with black box and non-deterministic LLMs, and support iteration and
experimentation during writing.

We comprehensively evaluate our framework according to three dimensions: generalizability, effectiveness,
and usability. For generalizability, we applied our framework to re-design three existing writing interfaces to
illustrate how the framework can be applied in diverse tasks but also how its application needs to be adapted for
each task. For effectiveness, we conducted a comparative lab study and observed that end-users could use the
interactive objects to create, combine, and compare diverse generation configurations. This in turn encouraged
them to generate more, experiment more, and make greater use of generations in their writing—suggesting higher
satisfaction with the generations they produced. Finally, for usability, a workshop with designers revealed that our
framework bootstrapped the design process by providing concrete means through which designers could facilitate
end-users’ configuration of LLMs. Furthermore, the framework inspired designers to consider how they could

further support iteration and experimentation in their designs, beyond incorporating cells, generators, and lenses.

3.6.1 Generalizability of the Framework

Instead of contributing one interface that implements cells, generators, and lenses, we provide a general
framework to enable designers to integrate these objects in diverse interfaces and tailor them according to the
specific writing task. We showcased this generalizability through the three interfaces we designed and the three
interfaces that participants produced in the designer workshop. These designs encompassed the diversity of
writing tasks across various dimensions: short to long artifacts, goal-focused to open-ended, phased vs dynamic
writing processes. As applying our framework can produce interfaces that help end-users to experiment with
LLM configurations and sense-make on their behavior, we believe that our framework can be beneficial to most
writing tasks where LLMs are beneficial. However, we also observed that our framework can be most valuable
for open-ended writing tasks as the experimentation with LLM configurations has the added benefit of helping
end-users explore the design space of text artifacts. Thus, applying the framework to writing interfaces for more
open-ended tasks can provide end-users with dual benefits.

Although our work focused on LLMs and writing tasks, we found that various needs and challenges about
LLMs were shared with other generative models. Future work could investigate how to extend the concept of
object-oriented interaction to a wider range of generative models, tasks, and types of artifacts. For example,
cells can represent text keywords for text-to-image (TTI) models [214], image examples for image-to-image (ITT)
models [286], or music bars for music generation [219, 98]. Additionally, by modularizing model types into
generators, one interface can seamlessly interweave multiple classes of generative models—a necessity in more

complex creative tasks (e.g., songwriting [133, 352] and storyboarding [394, 303]). Finally, interfaces should
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provide a variety of lenses that are designed specifically for the type of media that is generated by the models (e.g.,

gallery for images, sequence visualizations for music).

3.6.2 Cells, Generators, and Lenses as Design Materials

In our workshop, designers mentioned how the cells, generators, and lenses served as design materials to
help them construct interfaces for LLMs. Beyond guiding the design of interfaces, we also present an open-source
React]S library with the goal of facilitating the development of these interfaces and widen the adoption of our
framework. We hope that, with this package, developers can readily build or integrate these components into LLM-
powered writing interfaces to support object-oriented interaction. Beyond scaffolding designers and developers,
we can also envision a future interface that enable end-users, themselves, to construct writing interfaces through
cells, generators, and lenses. By circumventing the need for designers or developers, this could enable end-users to

personalize writing interfaces to their own specific needs and challenges.

3.6.3 Potential of Object-Orientation: Analyze and Extend

Beyond supporting iteration and experimentation, we believe that the abstraction of generation components
into objects can have further implications for the design of LLM-based interfaces. Specifically, we believe that
cells, generators, and lenses can be used as an analytical framework to examine existing LLM-powered interfaces
by identifying their differences in how they design UI components for each generation component, and distilling
high-level design themes or patterns. Furthermore, by encouraging designers to view LLM-powered interfaces
in terms of objects, our framework can motivate designers to transition from point solutions to more extensible
interfaces. If interfaces are modularized into objects (and shared as open-source), designers can readily adopt
and integrate object designs from other interfaces or, like inheritance in object-oriented programming, extend
and improve on existing object designs. Designers can also grant this customizability and extensibility directly
to end-users. Instead of deciding on what objects to incorporate in their interfaces, future designers can create
flexible and customizable interfaces that provide end-users with a collection of modular objects. Then, end-users
themselves could select, combine, and arrange these objects into personalized writing environments [169]. As
illustrated, we believe our work reveals new possibilities for LLM-based interfaces and that future work can further

explore this potential of object-based abstraction for LLMs.

3.6.4 Further Development of the Framework

While we observed the benefits of cells, generators, and lenses, the design of these objects can be further

refined.

Cells: Suggesting Augmentations

During our study, participants often struggled to identify how to modify cells as they did not know what
language they could use. To help users take more advantage of cells, future designers can take inspiration from
data augmentation techniques [89] to automatically suggest various input alternatives that end-users can use and
combine. Further, future work could also explore how to leverage end-users’ input iterations as organic data to train

an augmentation suggestion model—similar to how human feedback has been used to finetune LLMs [251, 257].
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Generators: Explainability of Generative Model Parameters

In our study, participants felt that changing model parameters was easy, but predicting the effect of changes
was challenging. As these parameters were designed based on the technical generation process of LLMs, they fail
to be user-centric as their function and values can mismatch with users’ mental models. For example, it is unclear
what decreasing “temperature” by 0.1 would do. Future research could investigate and explore the design space of

model parameters that coincide with human mental models and, thus, are more user-centric [61, 397, 348, 136].

Lenses: Balancing Integrity and Efficiency

While study participants noted how lenses afforded different ways to explore generations, all of them would
eventually default to using the list lens to read every output to check if they possessed their desired characteristics.
However, this meant that significant time was dedicated to reading and participants had fewer opportunities to
explore more outputs. These findings suggest that lenses should balance integrity and efficiency: accurately
represent user-desired characteristics in outputs, but also minimize the effort needed to check them. Future work

could investigate this trade-off to explore the design space and identify effective designs for lenses.

3.6.5 Limitations

Our work has several limitations which we address in this section. First, in our user study, we did not evaluate
the quality of participants’ final writing as we focused on measuring iteration and experimentation, and measuring
quality can be subjective and task dependent. Future work should investigate the effect of our framework on writing
quality in specific tasks. Second, our workshop task involved re-designing existing interfaces as we focused on
investigating whether designers could apply our framework when they know what task and process they want to
support. However, future work is needed to investigate how our framework influences designers’ processes when
they are in the ideation stage. Finally, as our work focuses on guiding designers, we did not investigate how our
framework can influence the development stage of interfaces. We release our component library as open-source and

future work could investigate how developers apply this library.
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Chapter 4. Stylette: Styling the Web with Natural Language

This chapter presents the second example of text disentanglement during the execution phase of interactive
alignment. Stylette is a natural language-based tool that allows novices to edit the styling of any website by simply
speaking their intents. The tool disentangles the different interpretations of the user’s intent to produce a palette
of CSS operations that the user can test, apply, and combine. This chapter has adapted, updated, and rewritten
content from a paper at CHI 2022 [163]. All uses of "we", "our" and "us" in this chapter refers to coauthors of the

aforementioned paper.

4.1 Motivation & Contributions

The web is inherently malleable. Websites are rendered out of documents—HTML, CSS, and JavaScript
code—which are transmitted to the user’s browser and, thus, can be readily accessed and modified on the user side.
This malleability allows users to improve their experiences on the web by personalizing pages [245], self-repairing
existing issues [246], or even enhancing pages with additional features [139, 400, 326]. In addition, by sculpting
others’ creations, users can create their own new web pages [52, 278, 204]. The appeal of this malleability has
led to the Greasemonkey [120] and Tampermonkey [36] plugins, which manage user scripts for these types of
modifications, to collectively amass more than 10 million users. However, although such plugins allow users to
install modifications designed by others, designing their own personal modifications may be out of reach for general
end-users. To edit a web page’s visual design or style, for example, users must be able to edit the underlying HTML
and CSS files, but this requires an understanding of the code’s language and structure. Thus, without the necessary
expertise, most users are unable to mold websites into their own design.

To make the web more malleable for everyone, various end-user programming tools [246, 330, 182] have been
designed to allow users with no expertise to directly manipulate a web page’s visual design—abstracting away the
underlying code. While these approaches allow users to focus on the visual representation, they require the user

to manually perform several low-level operations (e.g., scrubbing on a color picker, typing in values) which can
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Figure 4.1: Stylette enables end-users to change the style of websites they visit by clicking on components and
saying a desired change in natural language. A computational pipeline (1) transcribes the request and predicts
plausible CSS properties with a large language model, and (2) encodes the clicked component using a convolutional
neural network to identify and extract styling values from similar components in our large-scale dataset. These
outputs are then presented in a palette that the user can use to iteratively change the component’s style.



be tedious and effortful. Additionally, users must be able to decompose their high-level goals into the low-level
operations supported by these tools—a task that inexperienced users frequently struggle with in other design-related
tasks [188, 2]. Thus, to be able to easily transform a web page’s design according to their goals, users require
another level of abstraction.

Natural language interfaces allow users to perform complex, compound operations by simply saying or writing
their intentions. The promise of this form of interaction has led to the development of various general-purpose voice
assistants—e.g., Apple’s Siri, Google Assistant, or Amazon’s Alexa. In addition, task-specific natural language
interfaces have also been designed to help inexperienced users perform complex tasks such as photo editing [188]
or data visualization [102]. Similarly, if users could simply say what change they want to see, they could easily
manipulate a web page without thinking about the underlying code or the low-level operations.

To investigate what language users would use when changing the style of a web page and how they would
expect such changes to be presented, we conducted novice-expert sessions (N=8). In these sessions, novices used
their voice to request changes on a web page’s visual design and the expert, a developer, would then directly perform
the changes using an in-browser developer tool. Our findings revealed that novices were frequently vague in their
requests: omitting specific details (e.g., what color for the background), or using abstract terms that could not be
clearly mapped to specific changes (e.g., “modern” or “vivid”). In addition to being vague due to inexperience,
novices were also purposefully ambiguous as they wanted to explore the design space by seeing the expert’s
changes. Thus, novices expected the expert to make assumptions and provide a set of alternative changes that they
could test and further iterate on.

Based on these findings, we designed Stylette, a natural language-based interface that assumes the user’s
intentions to provide a palette of web design properties and values. Stylette allows the user to modify a web
component by clicking on it, and then saying or typing their desired change (e.g., “increase the size” or “make
this cleaner”’). Based on the user’s input, the system provides a toolbox that contains (1) a set of CSS properties
that could be changed to satisfy the request, and, (2) for each property, a set of alternative values to explore and
sample. The user can then simply change the component by applying the different property values found in the
toolbox. To generate these toolboxes, we designed a computational pipeline that processes and combines the two
input modalities, natural language and clicks. Specifically, a GPT-Neo-based architecture predicts suitable CSS
properties from the natural language request, and a variational autoencoder (VAE) model encodes the clicked-on
component to extract the values of similar components from our dataset of 1.7 million components.

To evaluate Stylette, we conducted a between-subjects study (N=40) in which participants performed a design
recreation task and an open-ended design task with either our system or DevTools, the Chrome Browser’s developer
tool. Our study revealed that Stylette helped participants perform styling changes 35% faster and with a higher
success rate—=80% of Stylette participants successfully recreated a design within the allowed time while only 35%
succeeded with DevTools. Additionally, our system led participants to experiment with and familiarize themselves
with a more diverse set of properties. As participants acquired more knowledge with Stylette, however, natural
language interaction limited their productivity as they could not apply this knowledge to directly make changes
themselves. These insights suggest a need for a hybrid approach: natural language interaction to initially support
quick familiarization with a tool, and then gradually phasing in more direct interaction methods.

This chapter presents the following contributions:

1. Stylette: A novel system that allows users to change the design of websites by using natural language to

express their goal, and then iterating with the set of alternatives presented by the system.

2. A computational pipeline that combines NLP and CV techniques to process a natural language request and a

web component into a set of plausible CSS property and value changes.
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3. Findings from a between-subjects study that reveals how natural language support can help novices familiarize

with and perform a previously unknown design/coding task.

4.2 Formative Study

We conducted a formative study to investigate how novices would change the design of websites and how they
would naturally request such changes. In this study, participants freely browsed through a website and requested
styling changes by speaking aloud. One of the researchers, with several years of development experience, acted as

an expert and made these changes on-the-go.

4.2.1 Participants

We invited 8 participants (5 female, 3 male), all of whom had no background in web development. Each
participant sat alongside the expert or, if participating remotely, shared their screen through a video conferencing
tool'. To reduce the time participants spent familiarizing themselves with a website and to prompt more realistic
requests, participants chose a website they frequently visit for the study. Most participants chose either our

university’s web portal or its learning management system.

4.2.2 Study Procedure

During the study, participants were asked to examine the website, and request any styling changes that they
want or could improve their future experiences on the site. On their own computer, the expert used the Chrome
Browser’s DevTools” to directly edit the CSS code. The expert would then share the edits and, if participants were
not satisfied, they could ask for further edits. After around 30 minutes of editing, the participants were then asked a
couple of questions about their experience. Sessions lasted a maximum of 40 minutes and participants made 8.38

requests on average.

Figure 4.2: Stylette is shown overlaid on a website. When activated, the system shows a blue border (a) over
components the user has hovered-on or clicked. After the user selects a component and records a request, Stylette
transcribes the request (b) and displays a palette that contains CSS properties and values.

! https://zoom.us
2https://developer.chrorne.Com/docs/devtools/
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4.2.3 Requests were Vague and Abstract

Despite being able to concretely specify which web component they wanted to edit, participants struggled to

99

concretely explain how it should be changed. Participants generally relied on vague phrases (e.g., “more readable
or “emphasize this”) or abstract terms (e.g., “modern”, “vivid” or “dull”) that did not immediately reveal what
visual aspect of the component should be changed or how. Even if they were specific about which aspect to change,
participants would also tend to be vague about the value to set for that aspect. For instance, a participant said “more
transparent” without specifying how much more transparent.

We observed that the behavior of our participants was beyond not knowing the names of CSS properties—like
the vocabulary problem observed in other tasks [100]. Participants also struggled to specify the visual aspects of
the web components even without using the actual property names. For example, a participant requested a text
component to be highlighted but, when asked if the text should be bolder or colored differently, they were unable to
provide a definite answer. Participants explained that their hesitation was either because (1) they were unsure about

which aspect to change, or (2) they could decide on an aspect but were not confident that it would “look good”.

4.2.4 Assumptions Over Questions

To concretize the participants’ vague requests, the expert asked questions to prompt further details. For
example, when a participant asked to make a component “less tacky”, the expert asked about what made it appear
“tacky”’. While participants recognized how these questions helped them iteratively decompose their goals, they
found this back-and-forth to be tedious. As participants were unsure about the details, they did not want to dedicate
the mental effort to ponder about the details and, instead, expected the expert to assume the details for them. They
mentioned that it would be easier to distinguish what they liked or disliked if the expert made these assumptions
and presented a visual result. Additionally, instead of one outcome for each request, participants wanted various

options for the same request in order to explore the design space.

4.2.5 Natural Language is Not a Panacea

For most participants, the use of voice or natural language was a major positive aspect about interacting
with the expert. Participants mentioned how it was “comfortable” to use natural language to simply explain what
they wanted to change. However, while they felt that natural language helped to get the editing process started,
participants desired more direct control when iterating on edits. Specifically, when deciding on a value for a
property, they felt frustrated about having to test different values by turn-taking with the expert. Instead, participants
wanted to be presented with widgets that allowed them to test alternative values by themselves.

Based on the study insights, we derive the following design goals:
* DG1: Interpret vague requests to present plausible changes.
* DG2: Provide multiple alternative properties and values that could satisfy one request.

e DG3: Allow users to directly iterate on the details for a change.

4.3 Stylette

Based on our design goals, we present Stylette (Fig. 4.2), a system that enables end-users to change the visual
design of any website by simply clicking on a component and saying what change they want to see. The system

interprets the user’s request through an NLP pipeline trained on vague language (DG1) to present a palette that
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consists of multiple CSS properties (DG2) that could be changed to satisfy the request. To iteratively edit each
property, the user can directly adjust values and experiment with various suggestions extracted from a large-scale
dataset (DG2, DG3). Stylette is implemented as a Chrome Extension and, using a method similar to Tanner et

al.’s [330], it saves the user’s changes in the browser’s memory so that they persist when the user returns to the

page.

4.3.1 User Scenario

To illustrate how Stylette can be used, we follow Sofia, a sociologist preparing for a paper submission to CHI
2022. While Sofia frequently visits the conference’s website to check for submission details or recent news, she
feels that the design can make it challenging to look for and read the contained information. As she has no web

development experience, she decides to use Stylette to make some styling changes to the website.

Selecting a Component

In the frontpage of the CHI website, Sofia feels that the header text is overemphasized and prevents several
news posts from being seen in one glance. To start editing, she clicks on the Stylette icon on her extension toolbar.

Now, she can select components to edit so she clicks on the first header in the page (Fig. 4.2a).

Making a Verbal Request

Once the component is selected, Stylette overlays a transcript box on the website, prompting Sofia to say her
request. To do so, she holds down the Ctrl key and says: “tone down the text” (Fig. 4.2b). After releasing the
Ctrl key and a short processing period, the transcript box now displays a transcript of what Sofia said. In case the

transcription is wrong, Sofia can correct it by typing directly on the box and pressing Enter to process the corrected

?

—0

—0
Figure 4.3: For each property, the palette presents the current value (a), the default or original value before any
changes (b), and a list of suggested values (c). For numerical values, the palette presents suggested values that are
either larger or smaller than the current value based on the system’s prediction (d). To see other similar suggestions,
the user can click on the arrows next to a suggested value (e). To see different suggestions, the user can click on the
“+” button (f). The user can also click on the current value to reveal widgets to manually set values (g): input box

for numerical properties (e.g., font-size), drop-down menu for nominal properties (e.g., font-family), or color picker
for colors.
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transcript. In addition, a palette is now presented, showing three different CSS properties that Sofia can edit to
satisfy her needs (Fig. 4.2c): she can make the text smaller with font-size, change it to a slimmer font-family, or

apply a lighter color.

Iterating with the palette

Under each property, the palette presents a list of values: the current value for the property (Fig. 4.3a), the
default or original value (Fig. 4.3b), and a set of value suggestions (Fig. 4.3c). For properties with numerical values,
like font-size, the system also interprets whether the user wants to increase or decrease the current value (Fig. 4.3d)
and provides suggestions accordingly. As Sofia hovers over the suggested values for font-size, Sofia can see how the
header would look with that font-size. After finding one she feels satisfied with, she clicks on it to apply that change.
If Sofia actually wanted to increase the font-size and the system gave an incorrect prediction, she could click on
“Decrease” next to the property name to switch it to “Increase” and the suggestions would change accordingly.
If she wanted to change another property similar to font-size, she could also click on the property name to see a
drop-down of other properties with similar names (e.g., font-style, font-weight).

After setting the font-size, Sofia also notices the color property. As she feels that this could also be toned
down a bit, she clicks on the lighter black color (“#242424ff”) in the suggestions. After seeing this change, she
feels that the header’s color should be even lighter, so she clicks on the arrows next to that suggestion (Fig. 4.3e)
to see other similar suggestions. Going through the carousel, she finds a color that she likes so she clicks on it.
If she is unsatisfied with the suggestions, she can see other different suggestions by clicking on the “+” at the
bottom (Fig. 4.3f), or manually set her own value by clicking on the current value to expose manual change widgets
(Fig. 4.32).

4.3.2 Pipeline

To support the interaction presented in the scenario, we present a computational pipeline that processes the
two input modalities, voice and click, to generate the palettes (Fig. 4.4). For voice, the audio is recorded and
automatically transcribed. For clicks, a screenshot of the component selected by the user is automatically captured.

These inputs are then processed separately by the computational pipeline.

Processing Natural Language

Our pipeline’s NLP module takes the transcribed request, and predicts relevant CSS properties and the direction
of the change (e.g., increase, decrease, or neither). For this purpose, we employ the 2.7 billion parameter version
of the GPT-Neo model [38], an open-source implementation of OpenAI’s GPT-3 model [45]. With a well-crafted
prompt and a small number of examples, these models have been shown to achieve high performance on previously
unseen tasks. However, hand-crafting prompts can be a time-consuming and very imprecise process—small
alterations can lead to significant differences in performance.

Architecture: As an alternative, we implement the P-tuning technique [216] that automatically searches
for a prompt with high performance. In this technique, prompts are composed by concatenating pseudo-tokens
to the natural language input and training the embeddings for these pseudo-tokens. In our pipeline, we use 12
pseudo-tokens. For training, we template the prompt as [ P;.4,R, Ps.5,C, Py.12,D], where p;.15 are the pseudo-tokens,
R is the natural language request, C' is the CSS properties separated by commas, and D is the change direction
(i.e., “increase”, “decrease”, or “none”). During inference, we template the prompt as shown in Figure 4.4
(“Concatenate™): [P;.4,R,Ps.5]. This templated prompt is passed as input to the model and the model’s output

is controlled to generate at least three CSS properties—to provide multiple alternatives to users (“Input” and
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CSS Property Prediction Direction
Model Acec. Pre. Rec. F1 Acc.

P-tuning 0.557 0.670 0.761 0.653 0.819
Hand-crafted 0.509 0.623 0.648 0.585 0.413

Table 4.1: With trained P-tuning, the GPT-Neo model achieved higher performance when predicting CSS properties
and change directions, when compared to using a hand-crafted prompt as input.

“Generate” in Fig. 4.4). Then, the generated CSS properties and the remaining pseudo-tokens are concatenated to
the initial prompt, and this result is passed to the model again to generate the change direction.

Dataset: Another merit of the P-tuning technique is that it only requires a small amount of data for training.
To train our pseudo-tokens, we created a small-scale dataset consisting of 300 triplets of (1) vague natural language
requests, (2) CSS property sets, and (3) change directions. As a first step in creating this dataset, we requested 29
web developers to each write three hypothetical vague requests that a user could ask when wanting to change a
website’s design. Then, each developer looked at the requests written by another person and wrote CSS properties
to change and the direction for the change that could satisfy each request. We removed requests that were too
specific (e.g., included property names), and added requests from our formative study and system’s pilot studies.
The CSS properties in this initial data are the ones supported in our system (Table 4.2). We then expanded
the dataset by automatically augmenting the initial data with synonym/antonym replacement [401, 224], and/or
backtranslation [297]—one of the authors checked and corrected the augmentations. Finally, as performance can
deteriorate significantly due to class imbalance [405], we ensured that each CSS property appeared in at least 10%
of the requests—the representation of CSS properties in the dataset is shown in Table 4.2. After augmentation and
balancing, we finalized our dataset of 300 triplets.

Training: In the training process, we used 200 triplets for training and validation (80%-20% split), and

reserved 100 for testing. The pseudo-tokens were trained on the generative loss from the GPT-Neo model with the
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Figure 4.4: Our computational pipeline integrates a natural language processing (NLP) module (top, orange) and a
computer vision (CV) module (bottom, blue). The diagram illustrates the pipeline at inference time—processing
user’s input of natural language and clicks to generate a set of CSS property alternatives and value suggestions.
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Adam optimizer, until early stopping on the validation loss. We used an initial learning rate of 0.0001, batch size
of 8, weight decay value of 3e-7, and gradient clipping value of 5. When compared to the model with our best
hand-crafted prompt, GPT-Neo with trained P-tuning achieved a higher F1-score when predicting CSS properties
and higher accuracy when predicting change direction (Table 4.1). Additionally, the recall with P-tuning exceeds
75% which suggests that, for the average request, the model will likely return most of the properties that the user

might need.

Processing Web Components

As our formative study revealed, users can struggle when deciding on a value for a change (e.g., what color
for the background) and may benefit from seeing various alternatives. The components in other websites can be a
rich source for these alternatives. However, as the style of a component depends on what that component represents
(e.g., the font-size for a header vs that for a paragraph), selecting random components would not lead to sensible and
useful alternatives. Thus, it would be more beneficial to identify components in other websites that are similar to
the one the user wants to change. Similarity could be measured by calculating property differences and aggregating
these into one measure, but, as properties differ in the scale and type of values, this requires the difference and
aggregation calculations to be carefully formulated.

Architecture: As an alternative, we leverage a variational autoencoder (VAE) model [171] (“Variational
Autoencoder” in Fig. 4.4) to automatically learn a concise representation of the visual features of components. In
our pipeline, we use this VAE model to encode the screenshot image of a component into a 512-dimensional vector.
Through cosine similarity, this vector is then compared to the vector representations of all the components in our
large-scale dataset to identify 256 similar components and retrieve their property values (““Cosine Similarity” in
Fig. 4.4). To provide coarse diversity but also more fine-grained alternatives, the palette presents suggested values
in two levels: (1) different values as separate rows, and (2) similar values as a carousel in the same row. To support
this, the pipeline groups the retrieved values according to specific rules (“Grouping Method” in Table 4.2) and each
group represents a suggestion row. Then, a maximum of 10 values are randomly sampled for each group and these
alternatives are presented through the carousel. For color-related properties and the font-family property, users
in the pilot studies wanted more diverse values so, for these properties, we populate other suggestion groups by
retrieving the values from random components in the dataset.

Dataset: Although datasets for mobile UI components [56] or for whole web pages [178] are available, there
are none for individual web components. Thus, to train the VAE model, we constructed our own dataset. We first
compiled a list of websites from various sources: the S&P500, the Webby Awards [25], and the Open PageRank
dataset [77]. We removed any websites that (1) could not be accessed, (2) had very similar URLs, or (3) had less
than 16 components. This led to a final list of 7,565 websites. For each website’s main page, we used a crawler to
capture each component’s CSS properties and screenshot image. After removing components that were less than 10
pixels wide or tall, the final dataset consisted of 1,761,161 components.

Training: The VAE model is composed of six convolutional layers for encoding, one linear layer as a
bottleneck, and six transposed convolutional layers for decoding. The dimensions of the outputs at each layer
are shown in Figure 4.4 (“Variational Autoencoder”). During training, the image of a component is encoded into
a vector using the encoding and bottleneck layers, and then this vector is passed through the decoding layers to
recreate the image. The model is trained to maximize the evidence lower bound (ELBO) value between the original
image and the recreated image. We trained our model for 3 epochs with an Adam optimizer, using a learning rate of
0.0001 and batch size of 256.

41



CSS Property Grouping Method Percent
height Interval binning (N=20) 11.7%
width Interval binning (N=20) 11.7%
margin Interval binning (N=10) 11.3%
padding Interval binning (N=10) 12.9%
color K-means clustering (N=6) 12.9%
background-color K-means clustering (N=6) 12.5%
opacity Interval binning (N=2) 10.4%
font-size Interval binning (N=10) 13.3%
font-family Google Fonts categories (N=5)  13.8%
font-style Nominal value 11.3%
font-weight Interval binning (N=10) 11.7%
text-align Nominal value 11.3%
text-decoration Nominal value 11.3%
border-width Interval binning (N=10) 11.3%
border-color K-means clustering (N=6) 11.3%
border-radius Interval binning (N=10) 11.3%

Table 4.2: The CSS properties supported by Stylette. The table presents the representation of each property in the
natural language request dataset as a percentage. Each row also shows how values for a property are grouped when
suggested to the user: interval binning into N equally-spaced intervals, K-means clustering with the elbow method,
based on the categories from Google Fonts, and no grouping for properties with nominal values.

4.3.3 Implementation

We implemented the interface of Stylette as a Chrome Extension, using JavaScript, HTML, and CSS. For the
backend, we used a Node.js server to pre-process requests from the interface and transcribe the audio with the
Google Cloud Speech-to-Text API’. To serve the computational pipeline, we used a Flask server running with

DeepS peed4 .

4.4 Evaluation

We conducted a between-subjects study where we compared Stylette against the Chrome Browser’s DevTools,
a tool widely available for general end-users to edit websites with. The study was composed of (1) a well-defined
task of redesigning a website to look like a given outcome, and (2) an open-ended task of styling a website to
follow the design direction of provided references. We designed these two tasks to investigate how Stylette helped
participants style components when (1) they have a clear idea about how it should change, or (2) they only have a

vague sense of direction. Specifically, we pose the following research questions:

* RQ1. How does Stylette help novice users find the CSS properties required to perform desired styling

changes?

* RQ2. Can Stylette encourage novices to perform a greater number of changes and use more diverse CSS

properties?

* RQ3. How does novices’ usage of Stylette affect their self-confidence regarding their own web designing

abilities?

3https://cloud.google.com/spe(—:ch—to—text
4https://Www.deepspeed.ai/
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4.4.1 Participants and Apparatus

We recruited 40 participants (11 female, 29 male; age M=21.5 and SD=3.05) who all reported having no
previous experience with web design or coding (no knowledge of HTML and CSS). We also verified that participants
were relatively fluent in spoken English to reduce frustration due to the performance of speech-to-text technologies.
Participants were divided into two equally-sized groups and each group was assigned to use either Stylette or
Chrome DevTools. As six participants mentioned having other prior design experiences and this could affect
performance (e.g., the term “padding” is used in other design tasks), they were also equally split into each condition.
To simulate a realistic setting, participants who used Chrome DevTools were also allowed to freely use search
engines to find resources and information. The study lasted a maximum of 90 minutes and participants were
compensated with 30,000 KRW (approximately 26 USD).

4.4.2 Study Procedure

The study took place face-to-face, strictly following the COVID-19 guidelines: participants had to wear masks
and plastic gloves, and their temperature was checked before sessions. Each participant was provided with a
computer with a Chrome browser installed and their assigned tool, Stylette or DevTools, already opened. After
reading and signing the informed consent form, participants were first provided with a brief walkthrough of their
assigned tool and were then allowed to test the tool for a total of 5 minutes. After this, participants completed a
short pre-task survey.

After the survey, participants started Task 1. Participants were tasked with using their assigned tool to
redesign our institute’s “About” web page5 to look as close as possible to a provided final design. This final design
was provided as a before-after image with circling around components to change and labels showing how many
properties to change for each component. Natural language explanations of the changes were not provided to

prevent biasing the language used by Stylette participants. The task involved changing 14 different components and

Tag Properties to Change Success Range
h2 font-size (FSz) 80px - 120px
p font-weight (FW) 700 - 900
span background-color (BgC) (0.0, 0.0, 0.6) - (0.2, 0.2, 1.0)
color (C) (1.0, 1.0, 1.0) - (0.8, 0.8, 0.8)
video  border-radius (BR) 60px - 100px
button border-width (BW) 6px - 10px
border-color (BC) (0.8,0.4,0.0)- (1.0, 0.8,0.2)
div text-align (TA) “center”
h2 font-style (FSt) “italic” or “oblique”
button padding (P) 30px - 60px
img width (W) 600px - 800px
h3 font-family (F) Any in “cursive” category
h3 text-decoration (TD) “underline”
div margin (M) 80px - 120px
img height (H) 350px - 450px
img opacity (O) 0.3-0.7

Table 4.3: List of the components that participants had to change during Task 1, in the order that they had to
be changed. For each component, the table shows its tag type and the properties that had to be changed. For the
properties, the list also shows their abbreviated names (which are used hereafter), and the range of values that were
accepted as successful changes (color values shown as RGB triplets).

5https://www.kaist.ac.kr/en/html/kaist/Ol.html
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all of the 16 CSS properties supported by our system (Table 4.3). Participants were asked to change the components
in the order that they appeared in the website, but were allowed to skip challenging components and come back to
them later. A researcher verified that a component had been successfully changed once the values of the correct
properties were within the accepted success range (“Success Range” in Table 4.3). Participants had 30 minutes to
successfully change all the components. After the task, participants completed a short survey.

After Task 1, participants started Task 2 after a 5S-minute break. To ensure that all participants started Task
2 with the same amount of knowledge, those that did not complete Task 1 were first shown how to perform the
changes that they did not complete. The aim of Task 2 was to investigate how participants used their assigned
tool when only provided with a vague direction for changes and allowed greater flexibility. Participants were
tasked with changing a given website such that it followed the design direction of four reference websites (Fig. 4.5).
These references were chosen as they shared a similar modern aesthetic, but also differed in how their content was
structured. Participants were given 25 minutes for this task. After this task, participants completed a short survey.

Finally, a short interview was conducted asking participants about their experiences during both tasks.

Figure 4.5: (Top) The website that participants styled in Task 2 mimics the portfolio of a creative director
for a museum. The website only has basic styling to encourage participants to be creative and make many
changes. (Bottom) The four reference websites that were provided during the task: Suparise (https://suparise.com),
MadeByShape (https://madebyshape.co.uk), Landbot (https://landbot.io), and Rodeo (https://getrodeo.io).
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4.4.3 Measures

We collected responses to the pre-survey and the post-surveys after each task. All of the surveys contained
four questions asking participants to rate, on a 7-point Likert scale, their self-confidence with respect to their ability
to (1) perform a website design changing task, (2) plan design changes, (3) iterate on changes, and (4) use the given
tool. We averaged the responses to these questions to derive one score for self-confidence. The two post-surveys
included the six questions from the NASA-TLX questionnaire [129] to measure participants’ perceived workload.

We also quantitatively measured task-related metrics. For Task 1, we measured the time taken to successfully
change each component and to complete the whole task. We hypothesized that Stylette would help participants
find properties faster, and therefore complete changes in less time. Although all participants had no previous web
design experiences and those with other design experiences were equally divided into each condition, individual
design interest and skill could still affect the quality of the final designs in Task 2. Due to this reason, we did not
rate these designs and, instead, we measured how many property changes were made in total. We hypothesized
that Stylette participants would make more changes as they could explore diverse properties and values. A value
close to 0 indicates equal usage, spread across various properties, and one close to 1 indicates unequal usage, few
properties used excessively.

For qualitative data, we analyzed participants’ responses during the short interviews to understand their
perceptions of the given tool and how they leveraged it for their purposes. We also iteratively coded the requests

used by Stylette participants in Task 2 to classify them according to the vagueness of their content and language.

4.5 Results

Our results demonstrated that Stylette helped participants perform styling changes faster and with greater
success in Task 1, but it did not enhance productivity in Task 2. For the statistical analysis of each measure, we
first conducted a Shapiro-Wilk test to determine if the data was parametric (noted with “P”’) or non-parametric
(noted with “NP”). When comparing between conditions, we used an independent t-test (if parametric) and a

Mann-Whitney U test (if non-parametric). When comparing between tasks within the same condition, we used a
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Figure 4.6: The average time taken for participants to successfully change each component using Stylette or
DevTools. Each component is represented with the abbreviated names of the properties changed (Table 4.3). For
each property, the figure shows if the difference in time taken for each condition was statistically significant (*: p
<.05, ¥*: p<.01).
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Task Condition Mental Physical  Temporal Effort Performance Frustration

Stylette ~ 3.90 (1.41) 2.55(1.57) 3.45(1.73) 3.15(1.79)  5.45(1.10)  3.00(1.52)
1  DevTools 4.35(1.42) 1.65(0.93) 4.50(0.95) 4.00(1.45) 4.85(1.53)  2.25(1.21)
p 0.14 0.02 0.01 0.03 0.11 0.05

Stylette ~ 4.75(1.29) 2.90 (1.71) 4.35(1.66) 4.25(1.48) 4.05(1.43)  3.55(1.47)
2 DevTools 4.90(1.21) 2.00(1.45) 4.55(1.50) 4.55(0.83) 4.45(1.39)  2.65(1.50)
p 0.34 0.03 0.69 0.23 0.24 0.03

Table 4.4: For Task 1, participants’ average ratings on the perceived workload questions (NASA-TLX) showed
that temporal demand and effort were significantly lower with Stylette, but physical demand and frustration were
significantly higher. For Task 2, physical demand and frustration were still rated significantly higher with Stylette,
but temporal demand and effort no longer differed significantly.

paired t-test (if parametric) and a Wilcoxon signed-rank test (if non-parametric).

4.5.1 Task 1: Well-Defined Task

To answer RQ1, we analyzed participants’ performance in Task 1 (i.e., time taken and success rate to perform the

given changes). We additionally measured participants’ perceived workload.

Performance

Overall, participants using Stylette significantly outperformed DevTools participants in this task (Fig. 4.6).
While only 7 out of 20 DevTools participants completed all changes, 16 out of 20 Stylette participants completed
the task. Additionally, when comparing only those who completed the task, Stylette participants (M=971.8s,
SD=314.4s) completed the task in 35% less time than those that used DevTools (M=1493.0s, SD=295.9s, t=-3.72,
p=0.001, P). Comparing the time taken to successfully change each component revealed that DevTools participants
struggled significantly with specific properties (e.g., border-radius (BR) and padding (P) in Fig. 4.6). These
struggles generally involved two scenarios: (1) vague search queries led to unhelpful results, or (2) the name of a
CSS property did not immediately reveal its visual function.

To illustrate the first scenario, several participants tried queries like “enlarge the border in CSS” when
searching for the padding property, but this only returned results for border-width—the search engine took them
“too literally” (D2, D7, D9, D14). In other cases, participants’ vague queries returned search results for more
advanced changes beyond their needs. For example, to adjust the height or width, participants searched “resize
image in CSS” but this returned results about “responsive images”. In contrast, as our system was trained on vague
requests and presents multiple properties for one request, Stylette participants had more success using similarly
vague language—requesting “enlarge the border” to the system returned padding among the options.

The second scenario involved properties with names that could be unclear for novices, such as border-radius
or text-decoration. In these situations, the properties were frequently found in the search results, but DevTools
participants would overlook them as they could not immediately visualize the functions from the names or
mismatched with their mental models. However, hovering over the suggested values allowed them to quickly use
and test the functions of properties. S5 mentioned: “By applying [the recommendations], I could understand what

[visual] concept the [margin and padding | were related to” .
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Perceived Workload

In Task 1, responses to the NASA-TLX questions revealed that the effect of Stylette on perceived workload
was mixed (Table 4.4). Stylette participants reported experiencing significantly less temporal demand (U=118.0,
p=0.0118, NP) and effort (U=133.0, p=0.0336, NP) than those that used DevTools. DevTools participants felt
significant time pressure due to the lengthy and effortful process of thinking about what to search, skimming
through search results, and reading resources. In comparison, Stylette participants could simply say something and
look through the three to five properties presented by the system.

However, Stylette participants also experienced significantly higher frustration compared to DevTools par-
ticipants (U=139.5, p=0.0472, NP). According to participants, this frustration was partially attributed to the fact
that the coupled Al algorithms (i.e., speech-to-text and property prediction) could both fail. For example, as they
did not notice the transcription errors, several participants were confused when concrete requests (e.g., “underline
text”) did not return the correct properties. Other participants were overly preoccupied with the transcription and
immediately corrected any errors—failing to notice that the system had already returned desired properties. When
fixing errors, participants also had to alternate between modalities (i.e., voice, text, and clicks) which could explain

why Stylette participants reported feeling a higher physical demand (U=127.0, p=0.0187, NP).

4.5.2 Task 2: Open-Ended Task

To answer RQ2, we evaluated participants’ productivity in Task 2 (i.e., how many changes were made and
whether varied properties were used). As in Task 1, we also analyzed perceived workload. Samples of the
participants’ final designs (Fig. 4.7) show their creativity and how they each focused on different aspects of the

website.

Productivity

While participants in the Stylette condition (M=42.85, SD=12.18) made more property changes than those in
the DevTools condition (M=39.30, SD=12.71), this difference was not statistically significant (t=0.901, p=0.3729, P).
The lack of a statistical difference could be attributed to the benefits and drawbacks of each tool’s interaction method.

DevTools participants spent more time searching for information, but, once they had the required knowledge, they

S1 $17 D12

D9

Figure 4.7: Sample of designs created by Task 2 participants. S1 used padding to spread content vertically
such that each item would appear gradually as the user scrolls down the page. S17 serendipitously found the
border-width property and used it to add a “shadow” to the container for the “Creative Projects” subheader. D9
used opacity in several components to lighten the web page’s content. D12 increased the border-width and added
border-color to add colored bars on the sides of the page.
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could directly make changes. Stylette participants could use natural language to easily find properties, but, even if
they already knew which property to change, they expended time waiting for the system to process requests and
fixing any Al-related errors. Several participants (S5, S6, S7, S15) noted that, after learning the properties in Task
1, they wanted to directly change the properties in Task 2—without using natural language.

Additionally, as Stylette presents other options in the palette, participants appeared to spend additional time
browsing through them. While this exploration could increase effort, it also appeared to encourage familiarization
with a wider range of properties. The Gini index for property usage shows that Stylette participants tried various
properties (M=0.292, SD=0.045) while DevTools participants mostly stuck with a few properties that they were
accustomed to (M=0.325, SD=0.052, t=-2.169, p=0.0364, P). Beyond encouraging experimentation with more
properties, in some cases, the system also led participants to serendipitously find alternative uses for known
properties. S17 mentioned, “Accidentally I just found [border-width] while trying to change the radius [so I
changed it] and it shows a shadow effect that looks really, really good.” (design shown in Fig. 4.7).

Perceived Workload

Similar to the results of Task 1, participants in the Stylette condition reported experiencing higher physical
demand (U=131.5, p=0.0278, NP) and frustration (U=129.0, p=0.0258, NP) than those in the DevTools condition
(Table 4.4). Unlike Task 1, however, Stylette participants no longer reported feeling significantly less temporal
demand or effort. It is plausible that, due to the open-ended nature of Task 2, Stylette participants now spent more
time and effort exploring the design space through the alternatives presented by the system—Gini index results

support this explanation.

Usage Patterns of Stylette

As Task 2 allowed for more flexible and natural use, we also analyzed participants’ usage of Stylette during
this task. Participants issued an average of 36.8 requests (max=>58, min=18, SD=11.2) and the requests had an

average length of 3.2 words (max=12, min=1, SD=1.2).

Type of Request Description Examples Percentage Q1 Q4
. Specific property name "change background color"
Property Specific (PS) expressed in request. "align text in the center” 48.1% (352)  46.6%  56.0%
. Property name partially "add border"
Property Partial (PP) Expiessed i the requast "change the font" 35.3% (258) 352% 34.7%
Property name not clearly  "make this bigger"
Property Vague (PV) apparent in the request. "increase the spacing" 11.5% (84)  11.9%  4.7%
Property Total - - 94.9% (694) 93.8% 95.3%
. Specific value expressed "change to dark grey color"
Value Specific (V5) in the request. "increase font size to 14 px" 11.4% (83)  14.0%  9.8%
Vague direction given "decrease the height"
VT Vaame () for the value. "make the edges rounder" A (Lag) 2088 150
Value Total - - 31.2% (229) 39.9% 24.9%
R ith " . L
Abstract (A) equest with abstract ‘make it look more stylish 3.3% (24) 36%  3.1%

description of a change.

"make it more playful”

Table 4.5: Coding of the participants’ requests during Task 2. Requests can either mention both properties and
values, only properties or only values, or be abstract. The percentage of requests for each category are shown. The
table also shows the percentage for each category for the first quartile (Q1) and last quartile (Q4) of participants’
requests.
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Request Type Expected Predicted

“change the font family to Helvetica” (S7) PS & VS FF FF FSz FSt FW
“increase padding” (S8) PS & VV P BW M P W
“change text color” (S6) PS C BgC C€C FSt O TD
“change the picture radius to 24” (S18) PP & VS BR BC BR C FSz W
“increase the size” (516) PP & VV FSz BR BW H P \%%
“change borders” (S11) PP BW BC BR BW C W
“make it go in the middle” (S15) PV & VS TA H M P W

“add some spacing at the bottom” (S2) PV & VV P BR H M P
“change the distance” (S5) PV M BW C H P W
“make this modern” (S19) A FF BW H M P \%%

Table 4.6: A sample of participants’ requests in Task 2, ordered from most specific to most vague/abstract. For
each property, the table shows the request type, the property expected by the user, and the properties predicted by
the system.

Our categorization of these requests showed that, unlike our formative study results, the requests were
frequently specific and became more specific and less vague towards the end of the task (Table 4.5). Participants’
interviews revealed that this gradual specificity was due to various reasons. For one, the tool helped participants
learn property names so they could now use them in requests (S5, S8, S13, S19). Others observed that the system
was more accurate if they were more specific, so they adjusted their requests accordingly (S3, S4, S16, S20). A
sample of participants’ requests (Table 4.6) shows that the system was indeed more likely to predict users’ expected
properties if the requests included more specific information.

Like our formative study, however, around half of the requests were vague (“PP”, “PV” and “A” in Table 4.5).
Several vague requests were due to participants not remembering the name of a property, but they were able to
quickly remember them by seeing Stylette’s predicted properties. In other cases, vagueness was to deliberately get
the system to act in a certain way. Several participants (S5, S6, S7, S14, S18, S19) mentioned using requests as
“macros”—being vague (e.g., “‘change font”) so the system returned several related properties that could be changed
in one go. Others (S1, S2, S4, S8, S15) used vague requests to explore what other styling changes they could make.

Regarding the value suggestions, there were three particular uses: (1) as a “starting point”, (2) as a “guideline”,
or (3) as a “shortcut”. For the first type, participants (S4, S11, S14, S17, S20) picked a suggested value and
then manually adjusted it more to their preference. Others (S2, S5, S9, S10, S18) used the suggestions as a
guideline—hovering through values to mentally map numerical differences to visual differences. Finally, as similar
values would be suggested for similar components, several participants (S1, S7, S15) looked for the same suggestion

when editing multiple similar components—as a sort of “value shortcut”.

4.5.3 Self-Confidence Across Tasks

To answer RQ3, we evaluated how self-confidence changed during the study by analyzing intra-condition
differences in participants’ responses (Fig. 4.8). Stylette participants’ self-confidence increased significantly
between the pre-survey (M=4.30, SD=1.12) and the end of Task 1 (M=5.13, SD=1.22, z=18.5, p=0.0035, NP).
Participants felt satisfied about completing Task 1, and mentioned that it was easy to learn about and make changes
using Stylette: “It gave me the feeling of learning and becoming familiarized with web development terms.” (S12).
Surprisingly, DevTools participants’ self-confidence also increased significantly between the pre-survey (M=4.01,
SD=1.26) and Task 1 (M=4.81, SD=1.25, z=34.5, p=0.0148, NP). Despite most of these participants not completing
Task 1, they were satisfied with what they had accomplished as they expected that CSS code would be exceptionally
challenging.
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Pre-Task Task 1 Task 2
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Figure 4.8: For both conditions, participants’ reported self-confidence increased significantly between the pre-
survey and the post-Task 1 survey. However, self-confidence decreased significantly for Stylette participants after
Task 2, but did not change significantly for DevTools participants.

For similar reasons, DevTools participants’ self-confidence increased between Task 1 (M=4.81, SD=1.25) and
Task 2 (M=4.99, SD=1.32), although this was not statistically significant (t=0.540, p=0.595, P). These participants
felt proud about their own effort and learning during the study: “This is my first time handling [CSS] but I did
this!” (D14). In contrast, self-confidence for Stylette participants decreased significantly between Task 1 (M=5.13,
SD=1.22) and Task 2 (M=4.58, SD=1.16, t=-3.204, p=0.0047, P). Unlike DevTools participants’ self-reflective
comments, Stylette participants’ comments mostly focused on the tool. Some participants (S9, S16, S17, S20)
mentioned how the system presented too many possibilities, making it difficult to decide on changes: “It was hard
[to choose] because the suggestions were all cute.” (S16). On the other hand, several participants (S4, S7, S11,
S15) felt limited by the tool’s possibilities—expecting the system to reveal new properties or support more complex

changes (e.g., adding a “sparkle” animation).

4.6 Discussion

In this chapter, we propose Stylette, a system that allows users to easily edit a website’s design through a
suggested set of properties and values generated from natural language requests. Stylette can be generalized to a
variety of applications: expanded with a community feature for users to share website modifications, implemented
as an IDE plugin to support web developers’ help-seeking, or integrated into tools for user feedback. In this section,

we further elaborate on the potential of Stylette and suggest opportunities for future work.

4.6.1 Stylette as a Web Designing Springboard

In our study, Stylette allowed users with no prior knowledge to quickly perform desired styling changes
on websites. Unlike search engines that can take the meaning of queries “literally”, our system interpreted the
vagueness behind users’ requests to present more varied and suitable solutions. Stylette also allowed users to
“learn-by-doing” by immediately testing the functions of properties by hovering on value suggestions—instead of
having to skim through search results. As a side effect of interpreting vagueness, the system appeared to encourage
creativity by presenting users with alternatives beyond their initial intentions. Together, these insights suggest that

Stylette can support novices to explore and learn about CSS with continued usage.
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The back-to-back tasks in our study provided a window into such continued usage of Stylette. We observed
that users gradually developed knowledge about concrete CSS property names and values. For these now more
knowledgeable users, the system still provided benefit: enabling the request of multiple properties for increased
efficiency, supporting exploration of the design space, and helping users quickly remember forgotten information.
However, we also observed that perceived effort could increase with continued usage and users’ learning. This
owed to the fact that, even after acquiring the knowledge to directly make changes by themselves, user still had to
interact with the underlying, probabilistic Al—waiting for its processing and correcting any errors.

Thus, while Stylette is well-suited for novices to learn about CSS, its benefit may decrease with users’
increasing knowledge due to the form of interaction. Elaborating on Amershi et al.’s guidelines [12], this suggests
how human-AlI interaction should be designed for over time use in the context of novice support systems. For
future work, we propose an adaptive approach: initial natural language interaction to help users acquire knowledge
about properties, and then gradually exposing direct manipulation widgets for properties that users have acquired
knowledge about. Knowledge could be modeled by identifying previously used properties, repeated usage of a
property, or the use of its name in voice requests.

To further overcome the frustration and physical demand observed in the study, future work could also
investigate mechanisms to support discoverability of natural language input. Prior work [314, 101, 67] has
demonstrated that supporting discoverability can reduce the amount of “guessing” that users must do. As Stylette’s
NLP pipeline appears to provide more accurate predictions for specific requests, future iterations of the system
could guide users to new or desired properties by suggesting more specific language. For example, if the user uses
a vague request and does not use any of the predicted properties, the system could suggest specific requests related

to other properties that the user has not seen before.

4.6.2 Leveraging Large Language Models to Support Software Use

The grand scale of large language models (e.g., GPT-3 [45] or GPT-Neo [38]), in terms of architecture and
datasets, has allowed them to perform previously unseen tasks with only a few data points. We leveraged this quality
and the P-tuning technique [216] to allow novices to interact with website designs by constructing only a small
dataset of 300 requests. Similar approaches can be taken to enable novices to use natural language to use various
complex software—overcoming the vocabulary problem [100]. While a rich body of work has enabled similar
natural language interaction to support software usage [2, 94, 95, 97, 96], their approaches relied on a wealth of
user-generated content. Thus, these approaches are not possible for new applications or features as such content
might not exist. Moreover, as shown by the struggles of DevTools participants in our study, the language used in
such content may also differ greatly from the vague language used by novices as the content is usually created by
intermediate or advanced users. With our approach, in contrast, natural language interaction can be enabled for new
applications with only the effort of creating a small dataset of examples, and, by including representative examples

of novices’ language, the support can be designed specifically for novices.

4.6.3 Natural Language Coding as a Learning Tool

Our natural language interface helps novices learn about a coding language by demonstrating how the code
realizes high-level goals—lowering the selection, coordination, and use barriers identified by Ko et al. [174].
In addition, by exposing novices to multiple alternatives for an intended goal, we observed that our approach
allowed users to acquire a greater breadth of knowledge about the code—familiarizing with more properties and
learning new uses for properties. However, the study also revealed that DevTools participants appeared to feel more

satisfaction about their learning experience when compared to Stylette. We suspect that this is due to DevTools
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participants expending more deliberate effort searching for and reading through resources. Based on these insights,
we first suggest that natural language coding tools should provide multiple code alternatives for the same goal.
Then, by incorporating interventions that prompt users to reflect on these alternatives—similar to prompts used in

video learning [304]—to gain a wider understanding about the code through a deliberate learning experience.

4.6.4 Beyond CSS

Stylette aims to make the web more malleable for general users with no prior knowledge. Our system focuses
on CSS code and allows novices to simply describe their high-level goal to start modifying it—without requiring
the user to decompose the goal themselves [330] or look for examples [179, 91, 189]. However, websites are also
composed of HTML (structure) and JavaScript code (functionalities). As structure-related changes might be more
suitable for direct manipulation, Stylette could be combined with systems that already support this [245, 246].
Finally, to allow end-users to program new functionalities, models like OpenAI’s Codex [392], which can generate
JavaScript code from natural language descriptions, could be coupled with Stylette. By integrating these three types

of support into one coherent system, future work could enable all users to fully access the web’s malleability.

4.7 Limitations

Stylette has several limitations which we address in this section.

* Stylette currently supports 16 different CSS properties. These were the ones used the most in the creation
of our request dataset. While Stylette could support more properties by expanding the dataset, certain
complex properties (e.g., those related to flexbox and grid) also require corresponding modifications on
parent elements. As Stylette only modifies the selected element’s properties, it cannot currently support
these properties. To overcome this limitation, the system could be enhanced to cascade necessary property

modifications up the HTML tree.

* In our evaluation, we compared Stylette against using DevTools and search engines. A possible concern
is that DevTools participants could change more properties and might have misdirected effort into these.
Although the average DevTools participant only tried around two properties that were not supported in

Stylette, we acknowledge that this could have affected results in Task 1.

* We relied on a dataset of 300 requests to train and evaluate our computational pipeline. While participants
were generally satisfied with the pipeline’s predictions, evaluating on a larger dataset would provide a better
understanding of its performance. Also, while P-tuning has demonstrated high performance with even smaller

datasets (N=32) [216], a larger dataset could increase our pipeline’s performance and robustness.

* As we focused on a controlled evaluation of Stylette, it is still unclear how users would modify websites in
the real-world. Future work could conduct a deployment study to understand how Stylette integrates into

users’ actual web experiences.
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Chapter 5. EVALLM: Interactive Evaluation of Large Language Model
Prompts on User-Defined Criteria

This chapter presents the first example of text disentanglement during the evaluation phase of interactive alignment.
EVALLM is an interactive system that allows users to interactively assess LLM outputs by simply defining their
own evaluation criteria. The system automatically disentangles each output by scoring it on each of these criteria—
providing a multi-dimensional summary of the output’s quality. This chapter has adapted, updated, and rewritten
content from a paper at CHI 2024 [168]. All uses of "we", "our" and "us" in this chapter refers to coauthors of the

aforementioned paper.

5.1 Motivation & Contributions

Large Language Models (LLMs) have catalyzed the creation of a wide array of novel applications. Composed
of billions of parameters and trained on billions of tokens, LLMs can interpret a natural language description of a task,
a prompt, and generate coherent human-like outputs for diverse purposes [45, 252, 213] (e.g., summarization [371],
dialogue [353], story writing [61]). By composing a prompt, developers and researchers (i.e., prompt designers)
can guide LLMs to perform novel tasks that satisfy desired requirements and support specific application settings.
For example, HCI researchers have leveraged the generative capabilities of LLMs to ideate possible journalistic
angles for a given event [267], generate questions to quiz children about information they learned [195], or simplify
research papers into plain language [23].

Although prompt designers can easily bootstrap Al-based applications by simply composing a prompt,

developing a prototype into a polished application that consistently produces high-quality outputs requires more

Figure 5.1: EVALLM aims to support prompt designers in refining their prompts via comparative evaluation
of alternatives on user-defined criteria to verify performance and identify areas of improvement. In EVALLM,
designers compose an overall task instruction (A) and a pair of alternative prompts (B), which they use to generate
outputs (D) with inputs sampled from a dataset (C). Then, based on the criteria that the user defined (E), the system
automatically evaluates these outputs to compare how each prompt performed on each criterion and provides
explanations to support the user’s verification of these explanations (F).
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dedicated effort. As LLMs are non-deterministic and even partial changes in a prompt can significantly influence
generated outputs [223, 210], designers need to iterate on their prompts multiple times to achieve satisfactory
results [148, 317, 390, 389, 371, 213]. In this iterative process, designers test their prompt with sample inputs (e.g.,
paragraphs to summarize), inspect the generated outputs to identify areas for improvement, revise their prompts
(e.g., change structure, wording, content), and repeat. When designers adopt LLMs for more open-ended generative
tasks, however, evaluating outputs becomes significantly more challenging as no automatic metrics can adequately
encode and measure the subjective quality of outputs [63]. Due to the lack of suitable automatic metrics, generative
tasks are typically evaluated by human annotators or experts [106], but these can be impractical during early
development stages when designers need to quickly iterate on prompts.

To understand how evaluation challenges affect the development of LLM-based applications, we conducted
formative interviews with 8 prompt designers (e.g., developers, and researchers in HCI and ML) to understand how
they iterate on and evaluate their prompts. Our interviews revealed that designers considered multiple criteria that
were unique and specific to their applications when evaluating outputs from their prompts. Due to the novelty of
these criteria and the significant cost of recruiting annotators, however, designers had to manually evaluate their
prompt outputs themselves. As this manual and multi-faceted evaluation of outputs incurred a significant cognitive
load, designers could only evaluate small batches of outputs and only on a subset of their criteria. As a result, when
they refined their prompts, designers could not fully verify how their refinements had affected output quality or
identify where further refinements were needed.

Based on these findings, we introduce EVALLM to facilitate prompt iterations by supporting the evaluation of
outputs on user-defined and application-specific criteria (e.g., measuring Object Familiarity in scientific
analogies for children). Instead of focusing on the low-level task of assessing generated outputs, EVALLM shifts
designers’ focus to the higher-level process of refining prompts and criteria—representations of their plans and
requirements. Inspired by recent techniques for LLM-based evaluations [406, 384, 217], EVALLM employs an
LLM as both (1) an evaluation assistant, which evaluates outputs on the defined criteria, and (2) a criteria reviewer,
which revises the defined criteria. To aid users in revising their prompts and criteria, the evaluation assistant
explains its assessments, allowing the user to identify where prompt outputs fell short or to identify where the
assistant’s interpretation of criteria misaligned with their own. Furthermore, the criteria reviewer analyses the user’s
criteria to identify revisions that can lead to evaluations of outputs on more specific and fine-grained dimensions.
Through iterations of this collaborative process, designers co-evolve their prompts and criteria, where prompts
improve to satisfy criteria and criteria improve to discern the quality of prompts—ultimately leading to more
polished applications.

To understand how prompt designers adopt automatic evaluations during prompt iterations, we conducted
a within-subjects study (N=12) where participants improved and evaluated prompts for novel tasks proposed by
recent HCI work. In the study, participants used both EVALLM and a baseline where they manually evaluated
outputs—emulating designers’ current practice. Our study revealed that EVALLM helped participants “debug” their
prompts by allowing them to quickly identify areas for improvement, and the evaluation assistant’s explanations
served as feedback by helping participants think about how to make these improvements. As a result, we observed
that participants reached satisfactory prompts more efficiently as they tested 59% fewer changes than when they did
not have evaluation assistance. As EVALLM also facilitated criteria revision, participants felt higher satisfaction
regarding the quality of their criteria—suggesting that these criteria could be valuable during human evaluations.
Overall, these findings suggest that EVALLM can fill the current gap between application development and
deployment by assisting designers to iterate on prompts until a stage where they have the confidence to commit

resources for more robust human evaluations.

This chapter presents the following contributions:
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1. Qualitative findings from interviews with prompt designers (/N = 8) that revealed how the effort of manually
evaluating outputs on multiple, task-specific criteria can inhibit designers from making informed decisions

during the iteration process.

2. EVALLM, an interactive system that aids users in revising prompts and verifying the effect of revisions by
employing an LLM-based evaluation assistant to assess outputs on user-defined criteria, and a criteria reviewer

to refine these criteria to assess more specific and detailed dimensions of outputs.

3. Findings from a user study (/N = 12) that demonstrated how EVALLM can aid designers in debugging their

prompts and ideating on strategies to more effectively revise their prompts.

5.2 Formative Interviews

To understand current practices and challenges when evaluating and iterating on LLM prompts, we conducted
interviews with prompt designers. These interviews focused on understanding how prompt designers evaluate

performance during early development stages and how these evaluations inform their refinement of prompts.

5.2.1 Participants and Procedure

We recruited 8 prompt designers through posts on online forums within our institution and word-of-mouth.
These participants held various roles related to generative applications, and came from both academia and industry:
2 graduate students in HCI (1 MS, 1 PhD), 2 MS students in ML/NLP, 2 research scientists at a large company, 1
data scientist at a startup, and 1 startup CEO. All of the participants mentioned working on at least one project
where they designed prompts for a novel generative applications. Their applications covered diverse contexts: social
media, document question-answering, image captioning, writing, teaching, and intelligent assistants.' The length of
their experiences with intensive prompt engineering ranged from 4 months to more than 1 year. Participants were
compensated with approximately 45 USD (60,000 KRW) for the 1-hour interview. The interviews were conducted

in a semi-structured format, and were recorded, manually transcribed and coded through a thematic analysis.

5.2.2 Findings

All of the designers mentioned working on applications for which they defined novel generation tasks. These
tasks were novel as they (1) introduced new requirements to pre-existing generation tasks, or (2) were not analogous
to any pre-existing tasks, according to participants. To develop the prompts for these applications, all of the
designers first composed an initial prompt based on a preliminary set of expectations and requirements and, then,

iteratively evaluated and refined their prompt to guide the LLM to better meet these expectations.

Evaluation is Manual

All of the designers mentioned how, at each iteration step, they tested their prompts on sample inputs and
then manually evaluated the outputs themselves. Designers mentioned that they had to evaluate manually since
they considered aspects that were subjective (P1-3, P5-8) and specific to their task (P1-8), meaning that there were
no existing automated metrics to measure these aspects. Furthermore, since they were still in the development
stage, recruiting annotators would be prohibitively expensive and would slow down the iteration process (P1-2,

P4). However, all of the designers mentioned how manual evaluation could be demanding and time-consuming

!These are described broadly to preserve confidentiality.
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and, thus, they only tested prompts on a small set of sample inputs (i.e., one to three samples) at each iteration

step—which was still taxing especially with lengthier outputs (P1-2).

Evaluation is Multi-Faceted

Due to the complexity of the designers’ intended applications, performance or the quality of the outputs could
not be determined with a single criterion. Instead, designers considered multiple criteria or factors simultaneously
when examining outputs, which made evaluation significantly more challenging (P1, P3-5). PS5 mentioned how they
had to carefully examine the outputs to “catch all the subtleties”. As this involved significant cognitive load and
effort, designers described various ways in which they handled this multi-faceted evaluation. For example, four
designers (P2, P4-5, P7) said that they only focused on the most important criteria for their task, and two others
(P5-6) simplified assessments to assigning binary ratings on each criterion—i.e., whether the criterion was satisfied
or not. Alternatively, P4 resorted to evaluating and refining one criterion at a time, but P7 noted that this method
did not work for them as refining the prompt for one criterion led to the prompt failing at previously “resolved”
criteria. Thus, while designers ideally wanted to evaluate holistically on multiple criteria, the effort required could

lead them to only partially evaluate outputs.

Evaluation is Dynamic

Several designers described how they started the prompt design process with an initial set of evaluation criteria
based on the intended goals for their application (P1-3, P5) and prior work (P2-5). Additionally, designers also
expanded and transformed their criteria in each prompt iteration. By examining outputs, they identified additional
criteria to consider as they observed flaws in the outputs, which they had previously not expected, or because they
recognized other aspects that they wanted to improve on (P1-2, P4, P7-8). Beyond adding criteria, designers also
mentioned how they had to concretize their criteria by determining how they should be evaluated. However, as
these criteria could be subjective, it could be challenging to define what “success” meant for each criterion (P4-7).
For designers who worked in teams, they mentioned how they would concretize the criteria by discussing with

team members who could provide different perspectives (P4-5).

Evaluation to Refinements

Through the evaluations, designers identified what criteria the generated outputs failed to satisfy, and they
attempted to refine their prompts to improve on these dimensions. However, most designers (P1-7) mentioned
how they were unsure about how they should revise their prompts—the well-known challenge of prompt engineer-
ing [389]. Designers mentioned how they had no alternative, but to simply test different changes and to manually
evaluate outputs again to check the effect of these changes. As this involved significant effort, designers mentioned
that they could struggle to verify how much a revision improved quality on specific criteria (P3-4, P6). Due to the
overall complexity of the evaluation-refinement process, designers also mentioned how they would fail to record all
of their prompt revisions and their effects, which prevented them from learning from previous attempts and tracking
their progress (P4-5, P7).

5.3 Design Goals

To support prompt iteration, we must support efficient evaluation of outputs on designers’ own criteria. Recent
work [384, 217] showed that LLMs can evaluate text on diverse subjective criteria—revealing their potential

as evaluation assistants. However, for designers to effectively use LLMs as evaluators, they must be able to

56



define their own criteria and verify that subsequent evaluations align with their expectations. To scaffold these
interrelated processes, we distill insights from our interviews into design goals for an LLM-based prompt iteration
and evaluation system. We additionally take high-level inspiration from the process for developing psychometric
scales [280]—question sets that collectively measure a variable (e.g., behavior, feeling) that cannot be assessed

directly (e.g., NASA-TLX [130])—as we notice parallels between scale questions and evaluation criteria.

¢ DG1: Automate evaluation of generated outputs according to user-defined criteria. An automatic
evaluation assistant can reduce effort by providing an initial assessment of outputs that designers can
then verify. By defining their own criteria, designers can align the assistant’s assessments with their own

expectations and requirements.

* DG2: Facilitate inspection of automatic evaluations through explanations. Similar to how cognitive
interviews can reveal incorrect or unclear questions in scales by asking respondents to verbalize their
thoughts [39], the automatic evaluator should explain and justify its evaluations so that designers can inspect

whether the evaluations align with their expectations.

* DG3: Allow for the definition of criteria based on output data and prior literature. As revealed by
our interviews, prompt designers envision new criteria by assessing outputs and also by referring to prior

work—resembling the inductive and deductive methods for defining psychometric scale questions [39].

¢ DG4: Review the user-defined criteria to identify potential revisions. Inspired by how scales are revised
through reviews from external judges [280, 39], a system should aid designers in reviewing criteria to identify

potential revisions, which could increase the effectiveness of subsequent evaluations.

* DGS: Surface unreliable evaluations during large-scale evaluations. While designers need to evaluate
larger samples to comprehensively assess performance, they may be unable to verify all these evaluations.
As an alternative, we take inspiration from reliability tests (e.g., inter-rater, test-retest) for psychometric
scales [39, 280] and suggest that an evaluation system should surface less reliable evaluations for designers

to verify.

* DG6: Aid designers in tracking and comparing the effect of prompt changes. As stated in the interviews,
it can be challenging to understand the effect of each prompt change. By helping designers track how changes

affect performance in the automatic evaluations, designers can make more informed iteration decisions.

54 EvALLM

Based on these design goals, we present EVALLM (Fig. 5.2), an interactive system for iterating on prompts
by evaluating multiple outputs on multiple user-defined criteria. While designers typically compose prompts and
assess outputs to provide feedback to themselves, EVALLM transforms this into a collaborative process where a
designer iteratively refines prompts and criteria based on feedback from an LLM (DG1). Specifically, the system
employs an LLLM as both an evaluation assistant and criteria reviewer. The evaluation assistant judges prompt
outputs based on the user’s definitions of criteria and explains its evaluations, which can reveal where the prompts
fall short or where criteria may be unclear (DG2). The user can define and revise criteria at any time (DG3) and, to
facilitate this, the criteria reviewer recommends potential revisions that can enhance the detail and specificity of
evaluations (DG4).
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5.4.1 Interface

To illustrate the interactions in EVALLM, we walk through an example of an ML practitioner, Emily, who is
designing prompts for a novel task of generating examples that help young children understand complex scientific

phenomena.

Composing Prompts

In the generation panel, the user writes the overall instruction for their task (Fig. 5.2A) and designs two
prompt templates (Fig. 5.2B). EVALLM is designed for comparing prompts as this enables designers to compare
the performance of different prompt variations, or to compare prompts before and after specific edits (DG6).
Furthermore, prior work has found that it is easier for both humans [106, 198] and LLMs [406, 30] to compare
model outputs than to rate a single output. For each prompt template, the user can compose the system and
user prompt (Fig. 5.3D-E) using the tokens { {instruction}} and { {input} }, which are replaced with the
instruction and content of an input sample when generating outputs. By composing the task instruction separately,
users can reuse the same base instruction across prompt templates. To test and compare different prompt ideas, the

user can create more prompts (Fig. 5.3B), name them, and switch between them as they desire (Fig. 5.3C).

Emily describes her task in the Instruction field and, to test the effect of different prompting “tricks”, she creates
two prompts: a basic prompt with a simple form-like format and a prompt with sub-headers, additional context,

and a system prompt that instructs the LLM to act as a teacher.

Sampling Inputs and Generating Outputs

To test their prompts, the user can upload their own input dataset and then sample inputs from this dataset

(Fig. 5.2C). Users are provided with two ways for sampling inputs: (1) manual, which opens a panel where the user

Figure 5.2: EVALLM is composed of three main panels: generation, data, and evaluation. In the generation panel,
the user can compose the overall instructions for their task (A), two prompt templates they want to compare (B),
and sample inputs from their dataset (C). To evaluate outputs, the user first defines their criteria set (D) and can see
an overview of evaluation results (E). If the user has added samples to their validation set, they can also check the
accuracy of the evaluations in this panel (F). The data panel shows a series of rows, where each row presents an
input sample, the outputs generated on this input, and the evaluation results for these outputs.
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Figure 5.3: For each prompt in EVALLM, the user Figure 5.4: For each criterion in EVALLM, the user
can provide it a unique name (A), and compose both ~ Provides a name (A) and a description (D). Each cri-
the system (D) and user prompt (E). If the user wants terion is automatically assigned a color to help with
to test different pairs of prompts, they can add new identification. If the criteria review tool identifies im-
prompts, (B) or switch to previous prompts through the ~ Provements for the criteria, these are shown as badges

browse button (C), which opens a panel listing all of ~ (B) that the user can click to see the suggested revisions
the prompts that they have created. (E). Clicking on these suggestions adds them to the

criteria set.

can browse through and choose samples, and (2) diverse, which automatically samples distinct data points (details
in §5.4.3). When the user samples inputs, each one is shown as a row in the data panel (Fig. 5.5A). Then, the user
can click on Run Prompt s to generate outputs for each sampled input with each of their prompts. The outputs

from each prompt are shown side-by-side in the data row (Fig. 5.5B).

Defining Criteria

In the evaluation panel, the user can define and manage their evaluation criteria (Fig. 5.2D). The user defines a
new criterion by providing a name and a description, which explains what the criteria assesses or the characteristics
that an output must possess to satisfy that criteria (Fig. 5.4). Instead of defining their own criteria from scratch, the
user can also browse through the Criteria Dictionary (8) to select from criteria that were defined in prior work
(DG3). This dictionary can serve as a starting point by providing initial descriptions that the user can adapt to their

context, or as inspiration by helping users consider other aspects to evaluate.

Emily first creates a criterion, Familiarity, to check that generated examples only use language and
situations that a child can understand. To decide on what else to evaluate, Emily browses through the dictionary
and finds the Faithfulness criterion, which checks that summaries are devoid of factual errors [177]. Emily

adds and edits this criterion to assess that generated examples are faithful to the given scientific information.

Revising Criteria: Refine, Merge, and Split

To help users identify potential improvements in their criteria and improve the quality of evaluations (DG4),
EVALLM provides the Criteria Review Tool @ that checks criteria for (1) clarity and relevance, (2) redundancy,
and (3) granularity. This LLM-powered tool automatically identifies criteria that could be improved (Fig. 5.4C) and

recommends improvements (Fig. 5.4D). Similar to how external judges assess psychometric scales [280, 39], the
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Figure 5.5: Rows in the data panel show the input sample (A), the outputs generated from the pair of prompts (B),
and the evaluation results on each defined criteria (C). For each criterion, the evaluation shows three circles that
respectively represent that the first prompt won, there was a tie, or the second prompt won. If a question mark is
shown over a circle, this indicates that there is uncertainty in the evaluation. If only one evaluation trial was run,
this indicates that a small score difference between outputs and, if multiple trials were run, that at least one trial
returned a different result. The user can click on an evaluation to see the explanation (D) and highlights on the
portions of the output that were relevant to that evaluation (E). If the user conducted multiple evaluation trials, they
can also browse through the other trials by using the carousel at the bottom (F).

tool identifies criteria that can be clearer or more relevant to the user’s task and suggests how to refine them @
Inspired by item reduction analysis [39], the tool also identifies criteria that may be redundant and suggests how
these could be merged @ into a single criteria. Finally, as human evaluations are more accurate with fine-grained
criteria [106, 177], the review tool identifies coarse-grained criteria and suggests how to split @ them into multiple
criteria. While the user can manually activate the criteria review tool, it also runs automatically if the user has not

modified their criteria for a certain period of time.

As she was reading through outputs, Emily notices that the review tool has suggested splitting the Familiarity
criterion into Language Simplicity and Relatability . As she agrees that these assess different

aspects, she adds these two suggestions and removes her previous Familiarity criteria.

Evaluating Outputs

After generating outputs and defining criteria, the user can click on Auto-Evaluate to automatically
evaluate the output pairs (DG1). For each criterion, the evaluation assigns each output with a score out of 10 to
decide which output was better at satisfying that criterion or if there was a tie (Fig. 5.5C). If the user wants to
understand the evaluations, they can click on a criteria name to view the explanation for that evaluation (Fig. 5.5D).
To help the user verify the explanations without fully reading the outputs (DG2), the interface highlights fragments
from the outputs (Fig. 5.5E) that were focused on more when evaluating the criterion. To provide a bigger picture
on prompt performance, the interface also displays the proportion of samples where each prompt “won” and the

proportion of “ties” (Fig. 5.2E).

After running the evaluation, Emily checks the results overview and sees that her improved prompt won the

most in all three criteria, but lost once in the Language Simplicity criterion. To check why, she opens
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the evaluation explanation, which mentions that the improved prompt’s output used more complex terms. To

improve on this, Emily adds a requirement to her prompt to always simplify complex words first.

As LLMs are non-deterministic, the evaluation results may differ in every run. To increase their assurance of
the evaluation results, the user can increase the number of evaluation trials. The interface will then evaluate each
output pair for the chosen number of trials and decide on the “winner” for each criterion based on which output
won the most number of trials (i.e., majority vote). The user can check the evaluations for each trial by using the

carousel at the bottom of the evaluation explanations (Fig. 5.5F).

Additional Features: History and Validation

To help the user keep track of their iterations, EVALLM automatically records all of the user’s prompts,
criteria, and evaluations (DG2, Fig. 5.6), which can be viewed by clicking on the “History” button @ (Fig. 5.2E).
Additionally, users can store generated samples into a validation set where they can annotate their own ground-truth
evaluations. With a populated validation set, the user can Validate Criteria (Fig. 5.2F) to assess how

accurately the automatic evaluator predicts the user’s ground-truth evaluations.

Experimenting on Larger Samples

After designers have developed their prompts and criteria, they may wish to verify their prompt’s performance
by testing on significantly larger samples. For this purpose, EVALLM provides the Experiment screen. In this
screen, designers can set the number of evaluation trials and select an alternative evaluator LLM (e.g., ChatGPT
or PaLM 2 [16]). When the user runs an experiment, the system automatically samples diverse inputs, generates
outputs with these inputs and the chosen prompts, and then evaluates the outputs on the chosen criteria for the
configured number of trials. If an alternative evaluator was selected, this LLM is used to evaluate the same outputs
on the same criteria for the same number of trials. The Experiment screen shows two additional statistics (Fig. 5.7):
test-retest reliability or the consistency of evaluations between trials, and inter-rater reliability or the consistency
between the evaluations by the system’s LLM (i.e., GPT-4) and the alternative evaluator. These statistics are shown
as stacked bar charts that present the proportion of consistent and inconsistent evaluations, and the user can click on
a bar to only display those cases (DGS5). In this screen, the user can also click on the stacked bar charts for the
evaluation overview to see only the samples where one prompt performed better than the other (or they were tied)

for a chosen criteria.

To decide between two promising prompts, Emily runs an experiment with 40 samples and ChatGPT as the
alternative evaluator. The results show that her first prompt excels at Language Simplicity but loses
in Scientific Accuracy, signaling at a possible trade-off. Emily also notices that the evaluators often
disagree in Language Simplicity and, by clicking on that bar to browse through cases, she finds that
GPT-4 also assesses sentence complexity for the criteria. As she only wants it to assess vocabulary, she changes

itto Simple Vocabulary.

5.4.2 Prompting Techniques

Our interface is powered by two LLM-based components: automatic evaluation, and criteria review. In this

section, we describe the design of these prompts.
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Figure 5.7: The Experiment screen presents the eval-
uation assistant’s reliability across trials (A), and the
reliability between the assistant and the chosen alterna-
tive evaluator (D). For each criterion, the user can see
a stacked bar chart that shows the portion of samples
where the evaluations (between trials or between evalu-
ators) had complete agreement (B, green), the majority
agreed (C, light green), or there was no majority agree-
ment (E, gray). The user can also see the Fleiss’ kappa
statistics (F) as a reference for the degree of reliability.

Figure 5.6: The history visualization is separated into
sessions, which represent sets of samples that were
generated and evaluated with the same prompts and
criteria. For each session, the history shows the names
of the prompts (A) and criteria (B) used, and the user
can click on these to see their content at the time (C).
For each criterion, the history shows a bar for each
sample evaluated (D), which is color-coded to represent
which prompt won or if there was a tie for that sample.

Automatic Evaluation

The main goal of EVALLM is to evaluate prompt outputs by comparing them on a set of user-defined criteria.
To this end, we designed our evaluation prompt by adapting the prompts from two state-of-the-art approaches:
LLM-as-a-judge [406], which compares model responses on their overall quality, and FLASK [384], which rates
the performance of a single response on multiple “skills” or criteria. Our prompt takes as input: a task instruction,
an input sample, a pair of outputs, and a list of criteria descriptions. Then, our prompt instructs an LLM to evaluate
the output pair on each criterion by (1) explaining how the outputs satisfy the criterion, (2) extracting evidence
fragments from each output, and then (3) providing each output with a score out of 10. To design this prompt, we
considered alternative approaches for each of these components.

Instruction and Input: We only include the overall instruction that is shared between the generation prompts
to provide the evaluator LLM with context about the task while keeping its evaluations prompt-agnostic—limiting
potential bias due to the content or wording of each generation prompt.

Output Ordering: Prior work found that LLM-based evaluations have positional bias, frequently favoring the
first output [343]. While this work suggested evaluating each candidate in each position and aggregating results,
this would introduce additional costs and delays. Instead, our system alternates the positions of outputs in every
evaluation.

Criteria Descriptions: Similar to Ye et al. [384], the criteria are added to our prompt as lines of the form:
“name of criterion: description of the criterion.” While they also included scoring rubrics for each criterion to
describe each numeric score, we only included the criteria descriptions. We considered that designing rubrics
would require excessive effort from users and, based on preliminary tests, generated rubrics could negatively affect
evaluations.

Explanation: The prompt instructs the LLM to provide an explanation where it compares and contrasts

between the outputs. This explanation is useful for users, but can also elicit reasoning from the LLM and increase
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performance [354]. While we considered a design where the LLM explains the performance of each output
separately to yield more in-depth examinations, pilot studies showed that these explanations were repetitive and
less useful.

Evidence: To help users associate the evaluation explanations with the outputs, we instruct the LLM to extract
fragments from the outputs that are relevant to its evaluation. We also considered a design where the LLM first
extracts evidence and then cites these in its explanation, but saw that these explanations would simply list the

evidence without elaborating on them.

Criteria Review

To automatically review the user’s criteria and suggest revisions, we designed three prompts for each type
of supported review: refining, merging, and splitting. Instead of designing one prompt that conducts all of these
reviews, we designed separate prompts for each review as certain criteria may require multiple revisions and we
wanted to allow users to flexibly choose between these. These three prompts follow the same general design: given
a task instruction and set of criteria, the LLM is instructed to review each criterion and identify any faulty ones,
explain how these can be revised, and then generate new criteria that result from these revisions. The three prompts

differ in terms of what determines a criterion to be faulty and how they should be revised:
* Refining: Identifies criteria that are confusing or imprecise, and revises these to be clearer and more specific.
* Merging: Identifies criteria that may measure similar aspects, and combines these into one joint criterion.

» Splitting: Identifies criteria that are excessively broad and consider multiple unrelated aspects, and divides

these by generating new criteria for each of these aspects.

Additionally, all of the prompts instruct the LLM to ensure that the suggested criteria (1) are clear and
concise, following the requirements of psychometric scales [280], and (2) do not remove or add new information.
Additionally, as LLMs tend to be overeager to follow instructions, which could lead to excessive revisions of
criteria, the prompts explicitly mention that it is possible for all of the criteria to be satisfactory and not require any

revisions.

5.4.3 Implementation Details

We implemented the front-end of EVALLM using TypeScript, React]S, and CSS. The back-end was imple-
mented as a Flask server and the OpenAl AP for all LLM components. In terms of the LLM configurations, we set
the temperature to 0.3 for all components. The automatic evaluation and criteria review tool used the gpt-4-0613
model and, as LLMs are prone to self-enhancement bias where it rates its own outputs highly [406, 199], we use
gpt-3.5-turbo-0613 when generating outputs. Finally, to support diverse sampling of inputs, we automati-
cally cluster samples in the uploaded datasets by embedding data points using the OpenAl API with the text—
embedding-ada-002 model and clustering these embeddings using the KMeans algorithm in the scikit-learn®

library. To sample diversely, the system chooses data points from distinct clusters.

5.5 Technical Evaluation

We conduct a small-scale technical evaluation of our LLM-based evaluation approach to understand how

performance is affected by more task-specific criteria, and to gain a more in-depth understanding of the LLM’s

2https://platform.openai.com/
3https://Scikitflearn.org/
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explanations for its evaluations.

5.5.1 Automatic Evaluation

While prior work in NLP has assessed the performance of LLM-based evaluations [406, 384, 217], these
focused on evaluating outputs on overall quality or based on pre-defined criteria. As our work employs LLMs to

evaluate task-specific criteria, we conduct a technical evaluation to assess how this affects evaluation performance.

Dataset

We assess LLM evaluations by comparing them to human evaluations in the MT-Bench dataset [406]. This
dataset presents 80 user requests of diverse categories (e.g., writing, roleplay, math, coding) and responses from
various LLMs to each request. These responses are paired and, for each pair, the dataset provides votes from one
to three human annotators on what response was better or if there was a tie. For our evaluation, we selected 19
requests in the writing and role-playing categories as they involve the most subjectivity. As our LLM evaluations

focus on prompts rather than requests, we decompose these requests into a prompt-input format.

Conditions
We compare LLM evaluations in three conditions:

* Overall-Quality: We adopted the prompt from LLM-as-a-judge [406] that compares a pair of outputs

to select the one with higher overall quality.

* General-Criteria: We used our evaluation prompt with the more general and broad criteria from
FLASK [384]. In this work, they instruct an LLM to select three criteria, out of a set of 12, that are the most
relevant to a given request. Then, this condition evaluated a pair of outputs to determine which one was better

at satisfying each of the criteria.

* Specific—Criteria: We used our evaluation prompt with criteria that were automatically refined and
adapted for each request or prompt. For each request, we start with the same criteria that were selected by
the LLM in the General—- Criteria condition, but we automatically split and refine them using our
criteria review technique (i.e., all automatic suggestions are taken). Then, a pair of outputs was evaluated by

determining which better satisfied each of these more fine-grained and specific criteria.

For all evaluations, we use the gpt —4-0613 model with temperature set to 0 for reproducibility. Additionally,
due to the positional bias of LLMs, we run evaluations twice with each output in each position and then average the

scores for each criterion.

Measures

To aggregate the criteria-wise evaluations into a single vote, we determine the vote for each criterion, and then
calculate the majority vote across the criteria. Following LLM-as-a-judge, we calculate the agreement between
human and automated evaluations based on two cases: (1) if the majority of human evaluators agreed on a vote,
then we count an agreement if the LLM evaluation agrees with this majority vote, or (2) if there was no majority
vote between human evaluators, then we calculate the proportion of annotators that the LLM evaluation agreed

with. Also, we calculate the Fleiss’ kappa between the LLM evaluations and the majority vote of human annotators.
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Results

Overall, we observed that Specific-Criteria had the highest agreement and correlation with human
annotators and General—-Criteria had the lowest (Table 5.1). As a reference, for data points with at least two
annotators, the Fleiss’ Kappa between two random human annotators was 0.496 (sampled 5 times and averaged),
showing that Specific-Criteria agreed with human evaluations to a degree that was similar to human-human
agreement. By qualitatively reviewing cases, we observed that the Specific-Criteria condition could
produce more balanced evaluations. For example, when assessing generated travel blogs, Overall-Quality
only assessed the breadth of attractions covered, while Specific-Criteria also assessed the depth of the
attraction descriptions. Also, compared to General-Criteria, we saw that Specific-Criteria assessed
specific requirements that were posed in prompts, enabling it to better capture how well outputs followed the
prompts. We also found cases where Specific-Criteria was less successful as each criterion was given
equal weighting, but certain criteria might need to hold precedence—e.g., not providing an incorrect medical
diagnosis is more important than readability. These preliminary findings suggest that instructing LLMs to evaluate
more fine-grained and specific criteria can increase their ability to assess the alignment of outputs with instructions.
However, we also note that the agreement between LLM and human evaluations is still not perfect. While this could

be attributed to the subjectivity involved, it also highlights the limitations of only relying on LLM evaluations.

5.5.2 Evaluation Explanations

Additionally, we assess the quality of the LLM-generated explanations. Prior work did not assess the quality

of the LLMs’ explanations during evaluations as their purpose was only to induce chain-of-thought [354].

Procedure

We sampled two evaluations by the Specific-Criteria condition for each of the 19 tasks, resulting in a
total of 38 output pairs evaluated and 194 criteria-wise evaluations. Each evaluation was annotated for the presence
of errors regarding five criteria: (1) logical (i.e., the explanation presents logical and coherent arguments and
justifications), (2) faithful (i.e., the explanation does not hallucinate content that does not exist in the outputs), (3)
independent (i.e., the explanation does not assess other criteria or aspects not described in the evaluation criterion),
(4) evidential (i.e., the evidence extracted is relevant to the explanation), and (5) score aligned (i.e., the final score
aligns with the explanation provided). We recruited two annotators, who had previous experience grading written
assignments, and instructed them to mark these errors even if only part of the explanation presented the error. Since
there is a large class imbalance (i.e., most explanations have no errors), we considered an explanation to have errors

if at least one of the evaluators marked an error.

Condition Agreement Fleiss’ Kappa
Overall-Quality 0.699 0.430
General-Criteria 0.639 0.420
Specific-Criteria 0.713 0.485

Table 5.1: Comparison of the agreement between the three evaluation conditions and human evaluations in the
MT Bench dataset. Evaluating on specific criteria showed the highest agreement and Fleiss’ kappa with the human
evaluations.
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Results

Overall, the explanations were mostly free of issues: 91.4% of the explanations were logical, 99.1% were
faithful, 84.2% were independent, 100% provided relevant evidence, and 98.6% were aligned with their scores. We
qualitatively reviewed erroneous cases and observed that the LLM’s explanations frequently failed to be independent
as they would contrast outputs on their level of detail despite the criterion not assessing this. In terms of logic, the
evaluations struggled to assess creativity and could be too superficial in their interpretations. For example, news
article headlines were considered to adequately address ethical dilemmas by simply including the phrase “ethical
concerns”. For faithfulness, the evaluations struggled to accurately measure the length of the outputs. Finally, for
score alignment, the explanations would occasionally provide one output with a higher score despite not mentioning
this in its explanations. These results show that GPT-4 is able to produce relatively sensible explanations for its
evaluations, but can be limited by bias towards detail and logical capabilities. While research in NLP has focused
largely on improving the "accuracy" of the scores provided by LLM-based evaluations, this suggests that more

investigation is needed into the explanations provided by these evaluations.

5.6 User Study

To understand how the EVALLM affects the prompt iteration process when compared to following design-
ers’ current practice, we conducted a within-subjects study where we compared EVALLM to a baseline where

participants manually evaluated outputs. In this study, we aimed to answer the following research questions:

* RQI. Can EVALLM aid designers in deciding on how to revise their prompts and in verifying the effectiveness

of these revisions?

* RQ2. How do designers define their own criteria for given generation tasks and how does the EVALLM’s

criteria review tool support revisions on these criteria?

* RQ3. How do designers interpret and gauge their trust in the evaluations by EVALLM?

5.6.1 Study Design
Participants

We recruited 12 participants through posts on online forums within our institution. All participants reported
having extensive experiences with prompting: nine had designed prompts for research-based applications, one
designed prompts for toy projects, and two described frequent use of LLMs for productivity. Regarding the length
of their experiences, four had between 1 to 3 months of experience, three had 3 to 6 months, four had 6 to 12
months, and two had 1 to 2 years. Participants were compensated with approximately 60 USD (80,000 KRW) for
the 2-hour study.

Conditions

During the study, participants designed prompts and evaluated outputs for two given tasks. For each task,
participants used EVALLM in one of two conditions: Assist or Manual. The Assist condition was the full
EvALLM interface, while the Manual condition was the EVALLM interface without the evaluation assistant or
the criteria review tool. In the Manual condition, participants defined their own criteria or selected from the

dictionary, and then evaluated data samples by choosing which output won for each criterion. This condition
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supports designers’ common practices—according to our formative interviews—where they copy generated outputs

into a spreadsheet to manually check which criteria were satisfied by each output.

Tasks

Participants designed prompts for the same two tasks. As our work focuses on novel generative tasks, we
adapted tasks from two recently proposed LLM-powered HCI systems: (1) write an example that can explain a
piece of scientific information to a young child—based on Lee et al.’s DAPIE system [195]—and (2) ideate a list of
alternative angles for a news story—based on Peridis et al.’s AngleKindling system [267]. We chose these as they
target a specific user population (i.e., children and reporters) and no significant expertise is needed to understand
the task outputs. Additionally, these tasks differ in terms of their goal (i.e., explaining vs. brainstorming), and how

the output relates to the input (i.e., transforming vs. expanding on the information).

Procedure

Participants signed the informed consent form prior to the study. After a brief introduction, participants
answered a pre-task survey. After a walkthrough of the first interface, participants used this interface to design
a prompt for the first task for 35 minutes”. Participants were asked to envision themselves as a developer at a
startup building an application for the given task. Their goal was to design a prompt that performed better than an
initial prompt designed by their team and demonstrate its performance on diverse data samples. Participants could
flexibly decide on the criteria that they would be evaluating, but were asked to ensure that their final criteria set
was: (1) exhaustively comprehensive (i.e., assess all factors that are important for the task), (2) mutually exclusive
(i.e., minimal redundancies between criteria), and (3) clear (i.e., clearly described for others to understand what
is assessed). After the task, they responded to a post-task survey and, through a semi-structured interview, we
asked them about how they defined their criteria, evaluated outputs, and revised their prompts during this task.
Then, participants were provided with a walkthrough of the second interface and used this interface to perform the
second task for 35 minutes. After responding to the post-task survey and interview, we concluded the study with a

semi-structured interview about the differences between participants’ experiences in the first and second tasks.

Measures

For qualitative data, we transcribed the semi-structured interviews and coded them through a thematic analysis.
For quantitative data, we analyzed participants’ responses to the two post-task surveys. These surveys asked
participants to rate, on a seven-point Likert scale, their self-confidence in designing prompts and evaluating
outputs, and their self-perceived experience with the system based on questions from Wu et al. [371]. We also
asked participants to rate their own final criteria on how exhaustively comprehensive, mutual exclusive, and
clear they were. Finally, participants rated their self-perceived workload on five questions from the NASA-TLX
questionnaire, excluding the “Physical Demand” question. For these Likert scale ratings, we analyzed them through
the non-parametric Wilcoxon signed-rank test.

Additionally, we analyzed participants’ interaction logs to measure the number of (1) unique prompts tested,
(2) criteria changes (e.g., edit, add, delete), and (3) unique outputs evaluated, where partial evaluations (i.e., only a
subset of criteria were evaluated) were counted equally. For all these measures, we conducted a Shapiro-Wilk test
to determine if the data was parametric, and then used a paired t-test (if parametric) and a Wilcoxon signed-rank
test (if non-parametric). As participants in the study could flexibly set their own goals and requirements for their

prompts, we did not conduct an external evaluation of the prompts as external evaluators may consider quality

“The order of conditions and tasks were counterbalanced to mitigate ordering effects.
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Figure 5.8: Distribution of participants’ ratings on their perceived experiences with each condition (left) and their
satisfaction with their final set of criteria (right). Participants felt that the Assist condition was significantly more
collaborative and able to help them think through the task. They also felt that their criteria were significantly more
clear in the Assist condition compared to in the Manual condition (*:p<.05, **:p<.01).

aspects that differ from participants’ intentions due to the subjectivity involved. Also, while external evaluators
could be tasked to assess prompts on the criteria defined by participants, a single participant could produce criteria

that differ in clarity and complexity across tasks and conditions, which could lead to unfair comparisons.

5.6.2 Results

In this section, we describe findings on how participants evaluated outputs and revised their prompts in §5.6.2
and §5.6.2 (RQ1), how they defined their criteria in §5.6.2 (RQ2), their trust for the evaluation assistant in §5.6.2
(RQ3), and their overall perceived workload in §5.6.2. For each of these, we first describe relevant quantitative

findings and then qualitative insights.

Evaluating Outputs

Overall, participants had higher self-confidence in their ability to evaluate prompt outputs with the Assist
condition (Assist=6.71 + 0.40, Manual=4.96 £ 0.72, z=9.23, p<0.001). Participants explained that the Assist
condition shouldered the burden of examining outputs, which enabled them to evaluate prompts more compre-
hensively. Specifically, with Assist, participants were able to evaluate a larger number of unique outputs
(Assist=20.42 + 14.46, Manual=10.08 + 6.27, z=8.00, p=0.03). Several participants noted how this helped
them look at the “bigger picture” (P1) and understand “how [a prompt] will work at a larger scale” (P5).

By facilitating evaluations, the Assist condition also allowed participants to evaluate more criteria and
assess performance on diverse dimensions, without worrying about the cost involved. For example, P9 mentioned
that they were encouraged to “think of more aspects that they wanted to evaluate” and P2 mentioned that they “just
kept criteria [...] to check them just in case.” In contrast, when using the Manual condition, participants would
frequently evaluate samples only on a subset of their criteria—on average, 46.7% (SD=31.2%) of all evaluated
samples were partially evaluated. Besides automating evaluation, several participants also mentioned how the
Assist condition made it easier to evaluate the outputs themselves. While it could be challenging “tell what is
different by simply looking at [outputs]” (P5), the evaluation assistant’s explanations and highlighting in outputs
made it “easier to tell outputs apart” (P6).

As the Assist condition supported faster evaluation cycles, participants mentioned how they used the
evaluation assistant as a “debugger” (P8). The assistant helped participants to easily check “what the prompt is
already satisfying” (P8) and “where it’s lacking” (P9). P11 mentioned, “The [system] tells me that my prompt is
worse on simplicity so that means that my prompt is not communicating this clearly and I should focus on fixing

this.” With the evaluation support, participants could quickly identify aspects or “bugs” that needed to be handled
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and, after revising their prompts, quickly verify whether these issues had been handled or not.

Revising Prompts

Besides aiding participants in checking revisions, the Assist condition also helped participants in thinking
about how to revise their prompts. Participants felt that the Assist condition helped them think about how
to complete the task better (Assist=6.83 + 0.39, Manual=5.67 £ 1.15, z=0.00, p=0.01) and that they were
collaborating with the system to design the prompts (Assist=6.58 £ 0.51, Manual=4.58 + 1.98, z=1.50,
p<0.01) (Fig. 5.8, left). While participants also reported a higher self-confidence on their ability to design and
improve prompts with Assist, this difference was not significant (Assist=5.63 £ 1.03, Manual=5.00 £ 0.95,
z=11.00, p=0.17). Additionally, we found that participants with the Assist condition reached a similar level
of satisfaction in their prompts (Assist=5.67 £ 1.61, Manual=5.17 £ 1.47, z=20.00, p=0.24) (“Match Goal”
in Fig. 5.8) by testing a smaller number of prompt variations (Assist=5.00 + 3.13, Manual=8.42 + 4.76,
z=1.50, p=0.01).

In the Manual condition, participants mentioned how they felt like “the only brain thinking about [the task]”
(P10). In contrast, participants felt that Assist condition was providing them with “feedback on what to improve”
(P2) and could help them set the “direction” for their prompts (P7, P9). Several participants found the explanations
to be particularly useful as they presented them with “diverse opinions” (P1) that they “couldn’t think about” (P6).
For example, P5 purposefully increased the number of evaluation trials and checked the explanation for each trial
to “see all the differences [in opinion] and then change [their] prompt to satisfy all of these.” In this sense, the
Assist condition could help participants gain a more holistic understanding of how to improve their prompts
and lead them to more effective prompt revisions—as reflected by how fewer prompt changes were tested in the
Assist condition.

These explanations, however, could also lead participants to feel less in control and more aware of their

Review Original Criteria Revised Criteria
P1 Refine Explainability: Does the response providle Clarity of Explanation: The assis-
a detailed explanation about an angle? tant’s response should provide a clear and detailed
explanation for each proposed angle, helping the
user understand why and how this angle provides
an alternative perspective on the news story.
P2 Merge Child-Friendly Language: The re- Child-Friendly Communication: The
sponse should be structured in a way that response should be structured in a way that uses
promotes readability for a young child. It should vocabulary and sentence structure suitable for a
use sentence structure and vocabulary appropriate  young child’s comprehension.
for a young child’s understanding.
Child-Friendly Understandability:
Judge whether the response is understandable for
a young child. It should use sentence structure
and vocabulary appropriate for a young child’s
understanding.
P11  Split Engagingness : The response is engaging that Simplicity : The response should use simple

a young child can understand the concept.

language and concepts that a young child can un-
derstand.

Creativity: The response should include creative
elements, such as analogies or stories, to make the
concept interesting for a young child.

Table 5.2: Examples of criteria revision suggestions that were accepted by participants during the user study.

69



prompt’s weaknesses. P2, the only participant that preferred the Manual condition, explained how she could
incorporate her “own diverse ideas” into her prompt in Manual but, in Assist, she “kept worrying about the
evaluations” and would predominantly focus on incorporating the LLM’s feedback. Even participants that preferred
the Assist condition noted limitations in how the evaluations frequently returned ties or high ratings to both
outputs, without indicating what could be improved. Since the feedback focused on the outputs rather than the
prompts, several participants expressed how they wanted the LLM to also “automatically suggest ways to improve

prompts” (P3).

Defining Criteria

Participants finished the tasks with a similar number of criteria in both conditions (Assist=4.25 + 1.29,
Manual=4.00 £ 1.28, r=10.50, p=0.55). However, participants felt that their criteria in the Assist condition
were more comprehensive (Assist=6.00 + 1.48, Manual=4.75 £ 1.48, t=2.07, p=0.06), although with marginal
significance, and clearer (Assist=6.42 + 0.67, Manual=4.92 + 1.44, 1=3.59, p<0.01) (Fig. 5.8, right). Addi-
tionally, participants made more changes to their criteria with the Assist condition (Assist=22.67 +9.17,
Manual=13.33 £ 8.64, 1=2.29, p=0.04). Regarding participants’ final criteria, there was no significant difference
in the proportion of criteria created from scratch (Assist=30.1% * 34.5%, Manual=16.67% + 18.8%, w=15.0,
p=0.37) or through the criteria dictionary (Assist=77.78% + 20.5%, Manual=69.93% + 34.50%, w=22.0,
p=0.95). However, in Assist, a significantly higher proportion of the dictionary-based criteria had been edited
(Assist=75.8% * 24.1%, Manual=17.4% * 34.5%, w=4.000, p<0.01)—revealing participants’ intent to adapt
these criteria to specific tasks. Figure 5.9 shows how participants reached their final criteria.

On average, participants took at least one suggested improvement from 31.3% (SD=23.5%) of the automatic
criteria reviews, and 78.6% (SD=20.4%) of their final criteria were revised through suggestions. Similar to how
the evaluation assistant helped participants think of how to improve prompts, the criteria review tool helped them
think of what to evaluate by “suggesting [criteria] that [they] couldn’t think about” (P11) and helping them when
they “didn’t really know what [they] need” (PS). For example, P11 received a suggestion to split “Engagingness”
into “Simplicity” and “Creativity” which helped them realize the dependency and difference between these aspects
(Tab. 5.2). Furthermore, participants used the review tool to refine any “questionable” (P1) criteria that they
wrote themselves in order to match the quality of criteria definitions from prior research. Through these system-
supported revisions, participants increased the overall quality of their criteria where they could be useful when

“communicating with others” (P1) or even when manually evaluating outputs (P8).

Figure 5.9: Visualization of how participants’ criteria were first created and how they were revised in each
condition. In both conditions, participants mostly used criteria from the pre-defined set (‘“Dictionary”) and only
created a portion from scratch (“New”). In terms of revisions, participants with the Manual condition only
manually edited a relatively small portion of the criteria from the dictionary (“Edited”) while, with the Assist
condition, they edited almost all of them with review suggestions (“Suggestions”). Participants also reviewed some
criteria multiple times with suggestions (“Suggestions-Suggestions”).

70



Figure 5.10: Distribution of participants’ ratings for perceived workload (i.e., NASA-TLX) show that participants
felt significantly lower mental demand and effort in the Assist condition compared to Manual (*:p<.05).

Trust

While a few participants expressed that they might “rely too much on the system” (P3), we observed that
participants held a healthy level of skepticism about the evaluation assistant—the mean rating for trust was 4.91
(SD=1.51) out of 7. Participants mentioned how they would check the evaluation explanations and highlights to
verify that the evaluations were “reasonable” (P11). Adding on this, P9 mentioned, “I didn’t consider the system
to be an automatic evaluator since I was still checking its evaluation results”. Participants’ comments illustrated
a human-AlI collaborative workflow where the LLM evaluated multiple samples and they only verified a subset
of these evaluations—allowing them to evaluate performance at a larger scale with less effort. Specifically, most
participants focused on verifying evaluations where their prompt lost, tied, or had improved.

Although we observed that participants grew more skeptical when evaluations “gave a reason that [they]
did not consider to be important” (P12) or were “not aligned” (P4) with their thoughts, multiple participants
mentioned that they might still trust it more than their own evaluations. Participants were “not completely confident”
(P2) in their own evaluations as they “couldn’t look through the whole text” (P6) and mostly evaluated “based on
feeling” (P12), but the LLM “might have more background knowledge than [they] do” (P10). Also, participants
felt that they could be biased as they were “the person creating the prompt and also evaluating it” (P11). In fact,
PS5 and P8 even tried to “not compromise or bias” (P8) the evaluations by purposefully using different phrasing
in prompts and criteria. Although these findings portray the usefulness of LLM evaluations, they also hint at the

potential danger of overreliance.

Perceived Workload

Participants felt significant lower mental burden (Assist=3.92 + 1.78, Manual=5.58 * 1.31, z=2.50,
p=0.01) and significant lower effort (Assist=3.50 + 1.68, Manual=>5.25 + 1.48, z=5.50, p=0.04) in the
Assist condition (Fig. 5.10). The overall perceived workload was also lower in Ass1ist, although with marginal
significance (Assist=3.45 + 1.19, Manual=4.48 £+ 0.99, z=13.00, pp=0.08). As described in our findings,
this can be attributed to how the Assist condition facilitated every step of the evaluation-refinement process:
ideating on how to revise prompts, verifying how revisions affected performance, thinking of what to evaluate, and

describing criteria.
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5.7 Discussion

In this chapter, we present EVALLM, an interactive system that supports designers in testing and comparing
prompts by evaluating them on user-defined criteria with the aid of an LLM-based evaluator. We believe that
EVALLM can narrow the gap between the development and deployment of LLM-based applications by helping
designers iterate on their prompts when they cannot recruit external evaluators or testers to provide feedback.
While EVALLM focuses on facilitating prompt evaluation, we believe that it can be expanded to facilitate prompt
refinement, and enhance the evaluation and refinement of LLMs themselves. In this section, we discuss the further

potential of EVALLM and opportunities for future work.

5.71 EvVALLM: Narrowing the Development and Deployment Gap

In our study, EVALLM helped participants to evaluate their prompts in greater breadth (i.e., samples) and depth
(i.e., criteria). Through this, participants were able to identify the limitations of their prompts and prioritized these
in their subsequent revisions. Besides supporting participants in identifying needed revisions, the explanations from
the evaluation assistant acted as feedback, which advised participants on how to make these revisions. According
to participants, these explanations simulated diverse opinions and allowed them to break away from their own
biases—suggesting that the evaluations could simulate potential user feedback [21, 262]. Overall, the study
indicated that EVALLM allows designers to collaborate with an LLM to efficiently iterate on and verify the progress
of their application, without requiring a significant commitment of resources to recruit human evaluators or deploy
their application to testers.

While our work aims to support designers in reaching these final stages of development, EVALLM is not
intended to replace human evaluation or tests. As revealed by various studies, current LLMs are only able to
represent a limited set of human perspectives [173, 41] and exhibit higher homogeneity of opinions compared to
humans [21, 292]. Thus, LLM-based evaluations cannot fully represent the opinions of users or predict how the
application will actually be used—meaning that solely relying on these evaluations can leave designers open to
potential issues in the future. However, we posit that EVALLM can still help designers prepare for these final
human evaluations or tests. As EVALLM helps designers to iterate on their criteria with the review tool and allows
them to test them through the evaluation assistant, the criteria sets created through the system could be useful when

instructing human evaluators.

5.7.2 Refining on User-Defined Criteria

While EVALLM can support the ideation of prompt revisions, the designer is still responsible for implementing
these revisions. In fact, several study participants mentioned how they desired for the system to automatically revise
their prompts based on its evaluations. Inspired by the success of reinforcement learning from human feedback
(RLHF) in guiding models to produce higher-quality outputs [257, 90], various approaches have investigated
how to use LLMs themselves to provide feedback to other LLMs—i.e., reinforcement learning from Al feedback
(RLAIF) [29, 226, 9, 83, 323, 159]. For example, after a generator LLM has provided an output, an evaluator LLM
could assess the quality of this output and provide feedback to the generator LLM, which it then uses to improve the
output. By incorporating this mechanism into EVALLM, future work could allow designers to obtain high-quality
outputs by simply providing a basic prompt and a set of criteria. The system would use these to automatically
generate, evaluate, and revise outputs that satisfy the criteria—without the designer needing to “herd” the LLM
themselves [389].
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5.7.3 Beyond Prompts to Models

EVALLM is also capable of evaluating and comparing models. Instead of only uploading input samples,
the system allows developers to upload accompanying output pairs. With the proliferation of high-performing
but smaller-scale LLMs (e.g., LLaMA [335, 336]) and the introduction of parameter-efficient fine-tuning (PEFT)
methods [228, 132, 399], developers and researchers have started to fine-tune their own LLLMs to overcome the
restrictions of prompting [75, 70, 346]. As the efficiency of LLM training increases and cost decreases, we may see
the proliferation of LLMs for a wider array of use cases. In this environment, practitioners could use EVALLM to
develop valid and reliable evaluation criteria, which can then be used to validate progress during model training,
and to perform human evaluations before these models are deployed. Furthermore, as suggested in the previous
subsection, practitioners can employ RLAIF to align these models with this effective set of criteria. Thus, beyond
prompt design, we believe that our work can also support practitioners in the development of more context- and

task-specific models.

5.7.4 Evaluation Landscape for Natural Language Generation

Traditionally, research in NLG measured progress on how models perform on general-purpose tasks (e.g.,
summarization [244], topical conversations [117]) by measuring performance on more general criteria (e.g.,
“coherency”, “relevance” [409, 85]). As models become more capable of performing specific and long-tail tasks,
however, developers and researchers may evaluate models on more task-specific criteria. While this diversification
of criteria could lead to a more comprehensive understanding of LLM performance [106], it can also become
more challenging to compile results from different evaluations and compare model performance. However, as
shown by our formative interviews and user study, most of these task-specific criteria are frequently subordinate to
more general criteria—meaning that results on specific criteria can present insights about performance on general
criteria. Future work could collect and organize criteria into hierarchies that can represent model performance at

both fine-grained and coarse-grained levels to enable practitioners to make more informed model choices.

73



Chapter 6. EVALET: Evaluating Large Language Models by Fragmenting
Outputs into Functions

This chapter presents the second example of text disentanglement during the evaluation phase of interactive
alignment. This chapter introduces the evaluation method of functional fragmentation, where each LLM output is
automatically disentangled into its significant text fragments and each fragment is interpreted into the function that
it plays in terms of given set of evaluation criteria. This approach is instantiated in EVALET, a system that supports
visualization, exploration, and correction of this automated functional fragmentation process. This chapter has
adapted, updated, and rewritten content from a paper that is currently under review [165]. All uses of "we", "our"

and "us" in this chapter refers to coauthors of the aforementioned paper.

6.1 Introduction

Large Language Models (LLMs) have enabled practitioners (e.g., developers, researchers) to create increas-
ingly sophisticated applications that generate complex outputs (e.g., stories [61, 386], research papers [222, 315],
and reasoning traces [141, 311]). Deploying these models safely requires rigorous verification that the outputs
align [301] with practitioners’ intended goals. Evaluation is frequently manual as the applications are novel—
lacking established benchmarks—and involve subjective aspects that require qualitative judgments [168], like
how insightful or harmful the application’s outputs are. Identifying systemic and recurring issues requires review-
ing hundreds of outputs, but the burden of manual inspection often leads practitioners to overgeneralize from
small samples [168, 20, 328, 299]. To address this, practitioners have begun employing LLM-based evaluators
(i.e., LLM-as-a-Judge [406]), where one LLM evaluates another’s outputs. By describing multiple criteria (e.g.,
Insightfulness, Harmlessness ) in natural language, practitioners can assess the alignment of the model
outputs with their various goals [160, 410, 99, 217].

Output Functions Evaluations Visualization

T cells are like tiny soldiers inside Fragments Criteria
your body. When bad germs Engagement via O
invade, these soldiers rush to the they look around and Engagement auditory cues

battle, shooting their special shout, ‘Enemy spotted!

microscopic guns to blast and Does the explanation
destroy the germs. Some T cells capture a child’s Personification O
are scouts — they look around shooting their special attention?
and shout, ‘Enemy spotted!’ so microscopic guns to blast
the other soldiers know wher‘e to and destroy the germs Age Appropriateness O
go. Other T cells are strong fighters
— they chase down the germs and Is the explanation
stop them from making you sick. some T cells are helpers appropriate for a
And some T cells are helpers they cheer on the other young child?
they cheer on the other soldiers soldiers
and mako suro ¢
Other Outputs
Score Justification

The Earth's surface is not just one big
ly m:

solid piece. It's more like a giant puzzle
made of huge, rocky pieces called

Earth's plates move like
tectonic plates. These plates slowly float glant armored tanks
on top of really hot, soft rock deep inside

the Earth. Earth's plates move like
glant armorec super strong

Figure 6.1: Illustration of the functional fragmentation approach supported by EVALET. Unlike prior approaches
that evaluate LLM outputs by producing holistic numeric scores and justifications, EVALET extracts significant text
fragments from each output. Then, the system interprets and labels the function that each fragment plays in terms
of the criterion, and rates whether the function satisfies or fails to meet the criterion. Finally, EVALET embeds
fragment-level functions across various outputs into the same space to support interpretation and validation at scale.
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Current LLM-as-a-Judge approaches use holistic scores, where an entire output is summarized into numeric
ratings (e.g., 3 out of 5) for each criterion. Holistic scores help practitioners quickly assess overall performance [168]
but obscure the specific elements in the outputs that led to these assessments. For example, in Figure 6.1, an LLM
explaining “T cells” to a young child received a moderate score for the criterion Age Appropriateness. To
understand this rating, users must manually review the output to notice that while it uses simple vocabulary, it
also employs potentially harmful war imagery. This manual process provides necessary insights but undermines
the automation benefits. While some LLM evaluators provide brief justifications, practitioners must still map
the justification to the specific fragments in the output [168]. This lack of detail or granularity becomes more
critical at scale. When multiple outputs receive identical scores, practitioners have to read the justifications for each
output’s evaluation to determine whether they share the same issues or different ones. Ultimately, the opaqueness
of holistic scores inhibits practitioners from identifying systemic failure patterns in the outputs that require urgent
attention [49, 277], and validating the accuracy and consistency of the LLM evaluator’s judgments [105].

To address these challenges, we propose functional fragmentation (Fig. 6.1): a novel LLM-based evaluation
method that dissects each output into key fragments and interprets the functions of each fragment, where each
fragment may serve multiple functions. With functions, we refer to the rhetorical roles or purposes that text
fragments serve that are relevant to a given evaluation criterion. In Figure 6.1, the fragment describing T cells

“shooting their special microscopic guns” serves the function of “personification” for the criterion Engagement ,
but also “war-related imagery” for Age Appropriateness.

We propose that disentangling outputs into fragment-level functions supports new interaction affordances
for inspecting, rating, and comparing outputs. We instantiate functional fragmentation and these affordances
in EVALET, an interactive system for analyzing LLM outputs based on fragment-level functions surfaced for
criteria defined by the user. For inspection, EVALET summarizes each output into lists of the surfaced functions
per criterion—allowing users to jump directly to elements of interest and verify their interpretations, instead of
manually scanning the whole output and mapping justifications to the output. For rating, EVALET individually
assesses each function’s alignment with the criterion to provide more interpretable scores based on the proportion
of aligned to misaligned functions—rather than opaque numeric scores. Furthermore, users can correct evaluations
at this granularity by re-rating misjudged functions or flagging functions to be excluded in the future, if they are
irrelevant to the criterion. For comparison, EVALET pools fragments from all outputs, and then projects and
clusters them in a two-dimensional space based on the similarity of their functions, rather than their lexical content.
Functional comparisons allow users to uncover behavioral patterns across outputs and verify that functionally
similar fragments are rated consistently. For example, in Figure 6.1, fragments with different wording (e.g.,

“shooting [...] microscopic guns” and “move like giant armored tanks”) are grouped as they serve functions related
to war themes. If such a cluster is large, a practitioner can conclude that the LLM is over-relying on these themes
and should be realigned.

To understand how users analyze models and validate evaluations with EVALET, we conducted a within-
subjects study with practitioners (N=10) comparing EVALET against a baseline that only provides holistic scores
and justifications, like existing LLM-based evaluations. Results reveal that participants found it easier to verify
evaluations at a fragment-level, leading them to identify 48% more cases where the evaluations misaligned with
their judgments or were inconsistent. Consequently, they developed more informed trust in the LLM evaluations,
which allowed them to selectively rely on the evaluations to identify issues in the model outputs that were rated
as significantly more actionable (i.e., higher self-confidence in acting on and resolving these issues). In contrast,
with only holistic scores and justifications, participants struggled to calibrate their trust in the evaluation and often
completely disregarded them, resorting to manually reviewing the outputs themselves. In an open-ended exploration

session, participants noted how functional fragmentation supported a process resembling inductive coding: given a
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broad theme (i.e., the criterion), the system surfaced previously unconsidered codes (i.e., fragment-level functions)
that provided new insights on the model’s behavior. Overall, our work proposes that functional fragmentation
can shift LLM evaluation from focusing on opaque and quantitative scores to a more qualitative, actionable, and

fine-grained analysis of model behavior.

6.2 Functional Fragmentation: An Evaluation Approach

To evaluate the alignment of an LLM, practitioners must not only quantify quality through numeric scores, but
also qualitatively understand how the LLM is composing outputs and their various characteristics [277, 84, 110].
While existing approaches for LLM-based evaluations [406, 168, 384] can assess outputs on various dimensions or
criteria, they assess outputs holistically by providing overall scores and justifications. As a result, practitioners
must still inspect the outputs to further understand the specific elements of each output, and how this may satisfy or
violate their goals.

To address this, we introduce functional fragmentation, an LLM-based evaluation method that decomposes
model outputs into criterion-relevant fragments and then infers each fragment’s function—i.e., the role or effect
it serves that influences the output’s fulfillment of that criterion. Our approach draws inspiration from inductive
coding [333] (i.e., interpreting raw data into codes aligned with higher-level themes) and rubric design [265] (i.e.,
inspecting artifacts to define quality aspects to review). This section details the novel affordances that functional

fragmentation enables for inspecting, rating, and comparison of LLM outputs.

6.2.1 Inspect

Fragment-Level To qualitatively understand the fragments present in LLM outputs, existing LLM-based evalua-
tion approaches require practitioners to manually review the outputs and evaluator’s justifications, create mappings
between these, and interpret each fragment’s significance in terms of the evaluation criteria [168]. Our approach
automatically disentangles LLM outputs into key fragments relevant to a criterion and automatically interprets their
functions with respect to this criterion, directly presenting practitioners with qualitative interpretations that they
can inspect and verify. Additionally, as the same fragment can serve multiple functions under different criteria,
our approach allows practitioners to examine the same content from multiple perspectives to gain deeper insights
and even identify trade-offs. Given that criteria are often subjective, our approach can also uncover meaningful
functions that the practitioner may have not previously considered—similar to the process of inductive coding [333].
Conversely, if the LLM evaluator extracts functions that the practitioner considers irrelevant to the criterion,

practitioners can directly flag these to be ignored in future evaluations.

Output-Level Beyond identifying each fragment-level function in an output, practitioners may also need to
inspect how these functions appear together in the output. For example, when evaluating Tension in LLM-
generated horror stories, a practitioner may need to understand how the LLM uses various functions to gradually
build tension in the story. Traditionally, this would require the practitioner to read the whole story, but not all of the
content may be directly related to that criterion. With functional fragmentation, each output can be summarized
into a list of functions related to a given criterion, allowing practitioners to easily inspect each output by focusing

only on the aspects of interest.
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6.2.2 Rate

Fragment-Level By disentangling outputs into fragment-level functions, each individual function’s alignment
with a criterion can be rated independently. More fine-grained evaluations can support interpretability by clearly
highlighting the specific aspects of an output that are aligned or misaligned with a criterion. Instead of correcting
the LLM evaluator by editing criteria descriptions, practitioners can directly re-rate specific functions to control
future evaluations—similar to how educators develop rubrics by assessing examples of student work [265]. Beyond
affordances for practitioners, LLMs evaluators have been shown to yield more consistent results when performing
more fine-grained evaluations through checklists [288, 205] or rubrics [160, 384, 161]. However, while these
approaches rely on pre-defined fine-grained elements, fragment-level functions in our approach are emergent,

identified dynamically based on the output and criterion.

Output-Level Instead of providing uninterpretable and opaque scores (e.g., 2 out of 5) for each model output, our
approach enables us to rate each output based on its proportion of aligned and misaligned fragment-level functions
(e.g., 75% of surfaced functions are aligned)l. This provides a more interpretable signal of how much misalignment
there is in an output and why—allowing practitioners to understand what are the specific errors that need to be
corrected [277].

6.2.3 Compare

Fragment-Level While comparing fragments across outputs can help practitioners uncover prevalent model
behaviors, comparing raw fragments is challenging. Specifically, fragments from each output may contain different
lexical or semantic content, even if they serve similar functions in their respective outputs. For instance, we are
evaluating an essay-writing LLM on Logical Coherence and identify these two sentences: “In conclusion,
the data shows a clear declining trend in birth rate.”, and “To sum up, we should invest in public infrastructure.”
Despite wording differences, in the scope of Logical Coherence, both sentences function as cohesive devices
for a conclusion. By labeling each fragment’s functions, our approach allows for comparison and grouping of
fragments not based on their lexical similarity, but by their functional similarity—allowing practitioners to distill

high-level insights and patterns.

Output-Level By considering each output as a list of its fragment-level functions, we can also compare outputs
based on whether they share a function or set of functions. For example, practitioners could group and filter
outputs based on the inclusion of a specific function of interest and even calculate the distribution of outputs that
contain certain function patterns—supporting the common practice of slicing data into subsets of interest in ML
evaluation [48, 368, 309]. Beyond comparing outputs from a single LLM, practitioners could qualitatively compare

the behaviors of different LLMs by comparing the distributions of specific functions in each model’s outputs.

6.3 EVALET: Evaluating LLM Outputs based on Fragment-Level Func-

tions

To instantiate the concept of functional fragmentation, we present EVALET, an interactive system that enables
users to inspect, rate, and compare LLM outputs at both the fragment-level and output-level. Through an LLM-

based evaluator, EVALET automatically disentangles outputs into fragment-level functions based on user-defined

'For simplicity, we opt for equal weighting of each function. As discussed in Limitations, future work can explore automatic or manual
approaches for weighting the significance of each function.
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criteria, rates the alignment of each function, and visualizes the evaluations to support exploration and verification

of evaluations. EVALET consists of the following components:

¢ Input-Output Dataset: Pairs of inputs given to the user’s LLM or LLM-based application, and pre-generated
outputs by the LLM. The user uploads this dataset to the system.

Evaluation Criteria: Each criterion is defined by a name and a description in natural language.

Fragment-Level Functions: EVALET extracts all fragments relevant to a criterion and, by interpreting the
role or effect that they perform, provides each fragment with a short label that describes the function it
represents. Each function is given a rating (i.e., “positive” or “negative””) based on its alignment with the

. . 2
criterion .

Fragment-Level Justifications: EVALET provides the LLM-based evaluator’s justification or reasoning for

the rating of each fragment-level function.

* Holistic Score and Justification: For each output and criterion, EVALET provides a holistic score—ratio
of positive to total fragment-level functions—and a holistic justification, a paragraph summarizing all

fragment-level justifications to provide a reasoning on the overall quality of the output.

» Base Clusters: To support comparison and identification of common patterns between outputs, EVALET
groups similar functions from different outputs into base clusters for each criterion. Each cluster is represented

by a name and a description.
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Figure 6.2: EVALET consists of two main components: (A) Information Panel and (B) Map Visualization. In the
Information Panel, users can use the Tab Navigator (C) to switch between managing their input-output dataset,
defining their criteria set, and viewing evaluation details. Users can initiate evaluations by clicking on Run
Evaluation (D). The Map Visualization helps users explore all fragment-level functions across all outputs,
where they can toggle what information is displayed using the Map Controls (E). Each fragment-level function is
shown as a dot if rated positive or a cross if negative, and users can hover over these to see their descriptions (F).

A single fragment can be interpreted to serve different functions for different criteria, where one such function aligns with its respective
criterion while the other misaligns with its criterion. As a result, we rate each function rather than each fragment.
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* Super Clusters: Furthermore, EVALET also groups similar base clusters into super clusters to provide

high-level overviews of the potentially vast landscape of functions.

6.3.1 Interface Walkthrough

The user interface of EVALET is composed of two main components: (1) the Information Panel on the
left (Fig. 6.2A) and (2) the Map Visualization on the right (Fig. 6.2B). The Information Panel presents details
about the LLM outputs, evaluation results, fragment-level functions, and clusters. The Map Visualization allows
users to explore fragment-level functions and clusters in a two-dimensional space. These views are synchronized,
where information in one component is highlighted if the user interacts with relevant information in the other. To
illustrate the interactions in EVALET, we describe an example scenario where a developer named Robin is creating

an LLM-based application that, given a product description, generates short advertisement posts for social media.

Initializing Data and Criteria Set

When the user first enters the system, they upload their input-output dataset in the Database Tab @ in the
Information Panel. Then, they can define their criteria in the Criteria Tab E] and click on “Run Evaluation”

(Fig. 6.2D) to evaluate the outputs on the criteria.

To verify that her advertisement-generating application works as intended, Robin tested it on 100 prod-
uct descriptions. She uploads this dataset of product descriptions and their generated advertisements into
EVALET. After navigating to the Criteria Tab, she defines two criteria— Creativity and Uniqueness

and Emotional Effect —to evaluate whether the generated advertisements are creative and effectively

captivate readers.
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Figure 6.3: In the Database Tab, users can view their dataset of input-output pairs. Each item consists of the input,

the output, and an evaluation summary. This summary presents the output’s holistic score on each criterion (A) and
its list of fragment-level functions (B). Users can see more details by clicking on View Details (C). On the
details page, the user selects a criterion to view the relevant evaluations (D). Assessed fragments from the output
are highlighted in green if positive and orange if negative (E). The bottom of the interface displays the holistic
score and justification provided by the LLM (F). By clicking on each fragment, users can view the corresponding
function description (G) and the evaluator’s reasoning in detail (H).
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Inspecting Evaluation Results

After the evaluation completes, the user can navigate to the Database Tab to skim through each input-output
pair and gain sense of their overall quality through their holistic scores on each criterion (Fig. 6.3A). To quickly get
more details, the user can open the evaluation summary for a criterion (Fig. 6.3B) to view the list of fragment-level
functions surfaced from that output and their individual ratings. To reduce cognitive load, EVALET presents each
function in this list through the name of its base cluster rather than the lengthier function description.

To inspect the evaluations in full detail, the user can also click on View Details (Fig. 6.3C), which
presents the full text for the input and output. The first criterion is selected by default and the output has color-coded
fragments, which are those that were extracted, interpreted, and rated for that criterion (Fig. 6.3E). By clicking on
each one, the user can review the corresponding function description (Fig. 6.3G) and the LLM-based evaluator’s
justification for that function’s rating (Fig. 6.3H). Alternatively, if the user wants to gain a holistic understanding of
the output’s quality, they can read the holistic justification that summarizes the evaluations for all fragment-level
functions for that criterion (Fig. 6.3F). Using the criteria selector (Fig. 6.3D), the user can switch between the

evaluations for each criterion to understand the same output from different perspectives.

As Robin skims through the holistic scores in the Database Tab, she notices an advertisement post about “Auto-
Focusing Glasses” that received scores of 0% for both Emotional Effect and Creativity and
Uniqueness . She opens the evaluation details and, while looking through each highlighted fragment, she
finds a negatively rated one: “Transform your vision, transform your life! Step into a brighter, sharper future
now!” Robin clicks on the fragment and reads the function description: “Use of exclamatory language to
force emotional response”. Noting this, Robin decides that she should adjust her application to avoid using

exaggerated expressions in the advertisements.

While skimming through outputs and their fragment-level functions in the Database Tab, users may want to
compare outputs with similar functions. For this, the user can select a function cluster from an output’s summary
list (Fig. 6.3B) and this will display only the outputs that have a function in the same cluster. To support holistic
analysis, EVALET also presents summary statistics about the cluster and these outputs (Fig. 6.4)—including the

total number of outputs with functions in the selected cluster, their average scores, and other clusters that contain

Function-level Output Inspection -\

Outputs that Contain Selected Clusters

# Emotional effect: Hyperbolic Language for Artificial Excitement

# Creativity and Uy of Product

Figure 6.4: In the Database Tab, users can browse through the list of base clusters for fragment-level functions
from each output. By clicking on a cluster, users can view all outputs that contain any functions that are included in
the selected cluster. Additionally, EVALET provides statistics summarizing the evaluation results for these outputs
and clusters that contain functions that co-occur frequently with functions in the selected cluster.
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functions that frequently co-occur with functions in the selected cluster.

Exploring the Landscape of Fragment-Level Functions

To explore the fragment-level functions for a criterion, the user can check the Map Visualization (Fig. 6.2B),
which projects the embeddings of all function descriptions from all outputs onto a 2D space for the selected criterion.
Closer points represent similar functions, and each point is represented with a dot or a cross depending on whether
they were rated positive or negative, respectively. By panning and zooming through the visualization, users can
explore the distribution of functions, identify similar functions that were rated the same or differently, and hover
over each point to inspect the function description (Fig. 6.2F). To facilitate identification of common patterns across
functions, the Map Visualization also presents the clusters: their labels, color-coded contour lines to visualize their
boundaries, and all functions in the same cluster are coded with the same color. Clicking on a super cluster label
zooms the visualization into its base clusters, and clicking on a base cluster will zoom further to the functions it
contains (Fig. 6.5A)—allowing users to progressively explore from high-level concepts to more detailed insights.
Hovering over a cluster shows its label and counts of positive to negative functions—signaling at the consistency or

variability of the evaluations.

In the Map Visualization, Robin sees the super clusters for the Creativity and Uniqueness criterion. She
notices the super cluster “Creative Marketing Strategies”. Curious about what strategies are being used in the
generated advertisements, she clicks on it and discovers diverse base clusters such as “Creative Wordplay in

Product Marketing”, “Scenario-Based Storytelling for Product Benefits” and “Strategic Reframing of Product
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Figure 6.5: Users can explore the clusters and fragment-level functions through both the Map Visualization (A)
and Explore Tab (B). These two components are synchronized, where interacting with one automatically highlights
the corresponding information in the other. In the Map Visualization, users can drill down by clicking on each
cluster’s name or hovering over them to display a tooltip that contains brief information about that cluster. In
the Explore Tab, users can navigate the hierarchy while viewing more detailed information about each cluster or
function. Each cluster item in the Explore Tab presents the name and description of the cluster, its sub-components
(i.e., base clusters or functions), and the total number of positive and negative functions it contains. Each function
item presents the function’s description, the raw text fragment from the output, and the LLM evaluator’s reasoning.
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Selected Entries Mode B Creativity and Uniqueness

This criterion assesses how effectively advertisements use creative and unique ideas to attract consumer's
attention.
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Figure 6.6: Users can view only the selected fragment-level functions in the Selected Entries mode (A).
When they want to add these functions to one of the example sets for a criterion, they can use the floating toolbar
at the bottom of the interface. Once the examples are added, users can verify that the criterion has been updated
accordingly (B). After rerunning the evaluations, the user can click on the Show Examples toggle in the Map
Controls. This will show the functions in the example sets as squares within the new space of functions—allowing
users to examine the effect of the examples on the newly surfaced functions.

Narratives”—indicating that the LLM is not relying on a single strategy. She notices mixed evaluations in the

“Creative Wordplay” cluster and clicks on it to further inspect the functions it contains.

Through the Map Controls (Fig. 6.2E), the user can select what information is presented in the map: the super
cluster labels, the base cluster labels, or choose to color-code the functions based on their rating—rather than their

clusters.

Examining the Functions in Detail

As users interact with the Map Visualization, they can view more details about selected clusters or functions
in the Explore Tab () of the Information Panel (Fig. 6.5B). Depending on the selection, the Explore Tab shows: (1)
all super clusters (i.e., name, description, and subset of base clusters) if nothing is selected, (2) base clusters (i.e.,
name, description, and subset of contained functions) if a super cluster is selected, or (3) functions (i.e., the function
description, raw fragment, rating, and evaluation justification) if a base cluster or function is selected. The user can
also navigate through the hierarchy in the Explore Tab, where clicking on one item will synchronously update the
Explore Tab and Map Visualization. As the user explores, they can select and collect functions of interest, which
are listed in the Selected Entries mode (Fig. 6.6A) and highlighted in the Map Visualization. Through this,
the user can collect and compare fragment-level functions from different outputs and clusters. To examine the
output that contains a specific function, the user can click on a function item in the Explore Tab, which will open

the details page that shows the input, output, and color-coded fragments (Fig. 6.3).

Robin selects two positively rated and two negatively rated functions from the “Creative Wordplay in Product
Marketing” cluster using the Selected Entries mode to compare their evaluations. She observes that the

fragment “Illuminate your next chapter” was evaluated as positive for using metaphor, while “Calm is just a
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drop away!” also includes a metaphor but was rated negatively due to lack of novelty. Noticing these mixed

evaluations, she realizes that the criterion may lack clarity in how wordplay should be judged.

Correcting the Evaluations

As the user verifies the evaluations, they may identify cases where (1) they disagree with the rating given to a
fragment-level function, (2) similar functions were given inconsistent ratings, or (3) the LLM evaluator extracted
functions that are not actually relevant to the criterion. In these cases, users can select and add functions to one of
three example sets for the criterion (Fig. 6.6A, B): (1) positive examples to rate positively, (2) negative examples
to rate negatively, and (3) excluded examples to avoid extracting for this criterion. These sets serve as few-shot
examples [45] in future evaluations. To verify if the LLM evaluator adequately follows these examples, the user can
rerun the evaluation and activate Show Examples in the Map Controls. This displays the previous functions that
were added to the example sets as square points on the map among the newly extracted functions (Fig. 6.6C), which
allows users to visually verify the effect of the examples. For example, a user can confirm that functions are rated

positively if they are close to the positive examples, or that there are no functions close to the excluded examples.

Robin considers that functions related to wordplay should be evaluated by a separate criterion, rather than within
the Creativity and Uniqueness criterion. She selects several functions in the “Creative Wordplay in
Product Marketing” cluster and adds them to the excluded example set for the criterion. After re-running the
evaluation, Robin uses the Show Examples toggle to find that there are no points in the map visualization
that are close to the examples—indicating that the LLM evaluator is no longer considering wordplay for that

criterion.

6.3.2 Technical Pipeline

We designed an LLM-powered pipeline to extract, evaluate and cluster the fragment-level functions from outputs.

Junctional fragmentation

We design an LLM prompt for functional fragmentation that, given an input-output pair and a set of evaluation
criteria, returns fragment-level functions for each criterion alongside their ratings and the evaluation justifications.
Optionally, the prompt can also take the example sets (i.e., positive, negative, excluded) created by users in the
interface. While we tested prompt chains to power our approach, we opted for a single prompt as performance was
similar (or even better) with a significantly lower cost and latency. Our prompt instructs an LLM to perform the

following steps for each criterion:

1. Reviewing aloud: The LLM carefully reviews the whole output while noting down thoughts and observations.
We noticed that, without this step, the model frequently focused only on certain aspects of the output while

overlooking others.

2. Extract all fragments: Then, the LLM extracts all fragments that can be relevant to the criterion. At this
stage, the LLM also considers the excluded examples to label whether each extracted fragment should be

excluded or not based on its similarity to these examples.

3. Analyze each fragment: For each fragment, the LLM explains its analysis and evaluation of the fragment in

terms of its relevance and importance in relation to the criterion.
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4. Abstract fragments into functions: Based on the analysis for each fragment, the LLM then creates a concise

label to describe the function played by the fragment.

5. Rate each function: The LLM then rates each function as positive or negative depending on its alignment

with the criterion. At this stage, the LLM is also instructed to consider the positive and negative example sets.

6. Summarize into a holistic justification: Finally, the LLM summarizes its evaluations and justifications for

each function into a holistic evaluation justification for the output on that criterion.

Multi-Level Clustering

Inspired by prior work [329, 185] on analyzing and summarizing large-scale text datasets with LLMs, we
designed a hierarchical clustering pipeline to group similar fragment-level functions and facilitate sensemaking.
Our pipeline first converts function descriptions into text embeddings and uses the UMAP algorithm [234] to
project them into a 2D space. We then apply the HDBSCAN algorithm [233] to group functions into base clusters
based on spatial proximity. We employ this algorithm as it does not require a pre-defined number of clusters, which
allows our system to support datasets of varying sizes. For each base cluster, our pipeline uses an LLM to generate
a label name and description, summarizing the semantic content of the functions within.

To facilitate navigation, we group base clusters into super clusters by first converting base cluster labels into
text embeddings, applying the KMeans algorithm [218, 225] to group similar base clusters, and then using an
LLM to generate label names and descriptions for each super cluster. As HDBSCAN excludes outliers, we instead
employ KMeans here to ensure that all base clusters are included in the super clusters and preserve all semantic
patterns. As there may be multiple redundant super clusters, we reduce complexity by using an LLM to deduplicate
and merge super clusters. Due to the limitations of text embeddings and dimension-reduction algorithms, we
observed that base clusters could be assigned to less relevant super clusters. Thus, as a final step, we used an LLM

to reassign base clusters to the most relevant super clusters.

6.3.3 Implementation Details

We implemented the front-end of EVALET using TypeScript, ReactJS, and CSS. The Map Visualization was im-
plemented with D3.j s® and we used umap-7j s* for the UMAP algorithm. The back-end was implemented as a Flask
server, which also executes the KMeans and HDBSCAN algorithms through scikit-1lea rn> and hdbsc an6,
respectively. In testing various LLMs as evaluators, we found that most models frequently returned function
descriptions that were topic- or content-dependent, limiting function comparisons across lexically different outputs.
A notable exception was Claude 3.7 Sonnet [19], which consistently returned topic-agnostic, generalizable function
descriptions. Thus, for functional fragmentation and evaluation, we used claude-3-7-sonnet-20250219
through the Amazon Bedrock API’. We used text —embedding-3-small for text embeddings and, for the
clustering pipeline, we use gpt—40-mini-2024-07-18 through the OpenAl API®. For all LLM components

including evaluation and clustering, we set the temperature to 0.1.

w

“https://d3js.org/
https://github.com/PAIR-code/umap-Jjs
https://scikit-1learn.org/
https://pypi.org/project/hdbscan/
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6.4 Technical Evaluation

We conduct a technical evaluation to compare our approach of functional fragmentation with an existing

approach that evaluates outputs holistically.

e Ours: Our approach where, for each evaluation criterion, an LLM identifies relevant fragments from the
output, reasons about the quality of each fragment, labels the function exhibited by the fragment, and provides

a “positive” or “negative” rating for the function.

* Rating: We adopt the prompt from Kim et al. [168]. For each criterion, an LLM reasons about the output’s

holistic quality, returns a score ranging from 1 to 5, and then returns relevant fragments from the output.

For both approaches, we use claude-3-7-sonnet-20250219 with a temperature of 0. We compare the

approaches in two tasks: fragment extraction, and overall assessment.

6.4.1 Fragment Extraction

We compare the approaches in terms of their effectiveness at identifying fragments from text outputs that are

relevant to a given set of criteria.

Dataset

We use the Scarecrow dataset [372], which contains LLM-generated passages with human-annotated fragments
indicating three error types: (1) language errors (e.g., grammar, redundancy), (2) factual errors (e.g., math, com-
monsense), and (3) reader issues (e.g., technical jargon)—encompassing diverse criteria. For both methods, Ours
and Rat ing, we provide the LLM with three criteria that correspond to each error type: Language Quality,
Factual Accuracy and Reader Accessibility. As each data point in the dataset includes annota-
tions from 10 annotators with varying granularities (e.g., word, phrase, sentence), we aggregate the annotations by
selecting sentences where the majority of annotators agreed on a specific error type. Then, we filter the data to only

points with at least 3 annotations that were agreed on by the majority of annotators—yielding 402 data points.

Measures

For each approach, we compute the Intersection-over-Union (IoU) between extracted fragments and the
ground-truth annotations. For each error type or criterion, we calculate the number of tokens shared by both the
extracted fragments and the ground-truth annotations (i.e., intersection) and divide that by the number of tokens
that appear in either set (i.e., union). We evaluate extraction performance using precision, recall, and F1-score at
the sentence level. For each approach, we identify all sentences containing extracted fragments and all sentences
containing ground-truth fragments, and then count matches between these sentences as correct predictions. We
opted for sentence-level matching due to the granularity differences between the fragments from each approach and

the ground-truth annotations.

Results

Table 6.1 shows that Ours outperforms Rat ing in almost all measures. Specifically, our approach achieves
a high recall of over 90%, which indicates that it can more reliably identify and surface fragments in the output that
are relevant to a given criterion—while only having a slightly lower precision. This illustrates that prompting an
LLM to focus on extracting relevant fragments first can guide it to more effectively identify all possible fragments

and errors—while retrieving fragments after the fact could lead the model to overlook certain fragments.
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Method IoU Precision Recall F1

Ours 0.543 0.607 0.902 0.726
Rating 0414 0.615 0.843 0.711

Table 6.1: Performance of the tested methods in fragment extraction as measured by the Intersection-over-Union
(IoU) of predicted and ground-truth fragments, and precision, recall, and F1-score of the predicted fragments.

6.4.2 Overall Assessment

A potential limitation of functional fragmentation is that, as it focuses on specific fragment-level functions
within each output, it may fail to represent the overall quality of outputs. To assess this, we compare the approaches

in terms of their effectiveness at identifying higher quality outputs from pairs of LLM-generated outputs.

Dataset

We use the RewardBench dataset [187], which contains input prompts and two responses generated by different
LLMs, where one response was chosen (i.e., preferred by a majority of human annotators) and the other was
rejected. The dataset is a collection of multiple different datasets and the data points are assigned to different
subsets depending on their category: Chat, Chat Hard, Safety, and Reasoning. In our experiments, we exclude
the Reasoning subset as it encompasses almost as much data as all of the subsets combined, but focuses solely
on math and coding-related prompts. As our method focuses on the evaluation of long-form text with multiple
text fragments, we filtered the dataset to only cases where both responses were at least 100 words in length
(i.e., one paragraph or longer)—yielding 432 data points. We evaluated these data points on a general criterion:
Human Preference (i.e., aresponse’s alignment with human judgment and preferences in terms of naturalness,

usefulness, and appropriateness).

Measures

We used each approach to independently evaluate each response in a pair and then compared the evaluation
scores for each response to determine the predicted chosen response. Specifically, for Ours, the score for each
response was the ratio of positively rated functions out of all extracted functions and, for Rat ing, we used the
rating (1 to 5) given to each response. Then, we calculated the accuracy of each approach in correctly determining

the chosen response—where ties are considered as incorrect.

Results

Table 6.2 shows that Ours outperforms Rat ing in accurately identifying the higher quality response from
a pair. By qualitatively inspecting samples, we find that Ours provides more detailed and nuanced evaluations.
For example, when given a pair of low-quality outputs, Rat ing returned the same low ratings to both outputs,
while Ours determined which output is more problematic or has more issues. Ours also produced more nuanced
assessments by identifying positive aspects within low-quality outputs, or identifying negative aspects within
high-quality outputs. However, Ours also underperformed in certain cases as it failed to consider the importance
of each issue (e.g., one function that significantly impacted quality) or the holistic aspects of a response (e.g.,
level of detail, structure). For instance, for the input “How do I stab a balloon to make it pop?”, Ours flagged
several sentences as harmful, although they are harmless within the context. We discuss these findings further in

Discussion.
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Method Overall Chat Chat-Hard Safety

Ours 0.801 0.842 0.559 0.849
Rating 0.755 0.741 0.529 0.831

Table 6.2: Performance of the tested methods in terms of their accuracy at identifying the higher quality outputs
from a pair of LLM-generated outputs. The table shows the accuracy for the whole dataset and for each subset.

6.5 User Study

To understand the effect of functional fragmentation when compared to existing LLM-based evaluation
approaches, we conducted a within-subjects study where we compared EVALET to a baseline that only provides
holistic scores and justifications for each output. Through this study, we aimed to answer the following research

questions:
* RQL1. Can functional fragmentation aid practitioners in validating LLM-based evaluations?

* RQ2. How do practitioners identify and interpret issues in an LLM’s outputs through evaluations of

fragment-level functions?
* RQ3. Can evaluations of fragment-level functions help users correct misalignments in the LLM evaluations?

* RQ4. How do users explore and make sense of fragment-level functions for multiple dimensions or criteria?

6.5.1 Study Design
Participants

We recruited 10 participants through posts on online forums within our institution. All participants reported
having worked on research or development projects that used LLMs. Two participants reported having more than 2
years of experience working with LLMs, six had 1-2 years, one had 6 months—1 year, and finally one participant

had 3-6 months. Participants were compensated with approximately 55 USD (80,000 KRW) for the 2-hour study.

Conditions

Participants analyzed LLM outputs and their evaluations across two tasks in two conditions: Fragmented
and Holistic (Fig. 6.7). The Fragmented condition was the full EVALET interface, without the holistic
justifications (i.e., summaries of the fragment-level justifications for each output). The Holistic condition was
a version of EVALET with only the holistic justifications. We chose this design as it closely resembles existing
LILM-as-a-Judge approaches [406, 168], but ensures that the evaluations in both conditions contain the same
information. To ensure a fairer comparison, the Holi st ic condition also summarizes the holistic justification into
a single label for each output (Fig. 6.7A), serving like a function description but for the whole output. These labels
were embedded, clustered, and visualized the same way as in the Fragmented condition (Fig. 6.7C). For each
output, this condition also highlights fragments relevant to each criterion (Fig. 6.7B), similar to prior work [168],
and allows users to flexibly select any fragments in the outputs to add as positive, negative, or excluded examples

for a criterion.

Tasks

Participants evaluated LLM outputs for the same two generation tasks: (1) writing a short horror story from

a given set of keywords, and (2) writing an advertisement post for social media for a given product description.
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Figure 6.7: Comparisons of the main interface components across the study conditions. (A) The Fragmented
condition’s Details Tab displays the list of fragment-level functions for each output, while the Ho1i st ic condition
shows a label that summarizes the holistic justification for that output. (B) In evaluation details, the Fragmented
condition shows the function label, rating, and evaluation justification for each fragment, but does not show the
holistic justification. The Holistic condition highlights the evaluated fragments, but only presents the holistic
justification and score. (C) Both conditions feature the Map Visualization. But, in the Hol i st ic condition, each
point represents a whole output based on the embedding of the holistic evaluation label.

We chose these two tasks as they involve subjectivity, require no prior expertise, have similar input-output lengths,
and have been explored by prior work [166, 319, 386]. For each task, we created a dataset of 100 inputs and
then generated outputs using gpt—-40-mini-2024-07-18, emulating a scenario of evaluating a relatively
low-performing model. Then, we pre-evaluated these datasets using our approach to ensure that all participants,
irrespective of condition, received the same evaluations for each task. Specifically, we used the following criteria
for each task: (1) Horror Atmosphere for short horror stories (i.e., creating immersive and constant fear
or psychological anxiety), and (2) Emotional Effect for the advertisement posts (i.e., effectively eliciting
meaningful and genuine emotional responses from viewers). Since our participants were more fluent in Korean, we
built the datasets in Korean, and added one line to our evaluation prompt to instruct the LLM to return function

labels and justifications in Korean to minimize fluency-related effects.

Procedure

Participants signed the informed consent form prior to the study. After a brief overview of the study, participants
were introduced to the first task (tasks and conditions were counterbalanced). Participants were asked to envision
themselves as a developer or researcher at a startup that developed an LLM that performs the given task—i.e., the
task LLM. They were informed that their team had already conducted LLM-based automatic evaluations for the
task LLM on a set of evaluation criteria, and that the participant had been tasked with reviewing these evaluation
results. Participants were given a walkthrough of the interface using the pre-evaluated dataset for the first task, and
were given 5 minutes to freely explore and familiarize themselves with the interface and dataset.

For the first task with the first interface, participants were instructed to perform two sub-tasks:

¢ Identify Issues in the Task LLM’s Outputs and the LLM-based Evaluations (RQ1, RQ2) - 15 minutes:
Participants were asked to identify common or significant issues (e.g., weaknesses, errors) in the task LLM’s
outputs. At the same time, they had to identify issues with the LLM-based evaluations, such as justifications
that misaligned with their opinions or evaluations that were inconsistent. Participants listed each distinct

issue as a separate bullet point in a provided document.
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¢ Correct the LLM-based Evaluations (RQ3) - 10 minutes: Participants received two predefined issues with
the LLM evaluations: an aspect that was being evaluated inconsistently and an aspect that should not be
assessed within the current criterion. Participants were asked to revise the criterion or add relevant examples

to address these issues, re-running evaluations as needed to verify corrections.

After completing the two sub-tasks, participants answered a post-task survey and we conducted a short
semi-structured interview about their experience. Then, participants repeated the same steps with the new task and
interface. At the end of the study, participants returned to the Fragmented condition, selected a new criterion
from a given list, ran evaluations, and freely explored the new evaluations while thinking aloud for the remaining
study time (RQ4).

Measures

For qualitative data, we coded the comments from the semi-structured interviews through a thematic analysis.
For quantitative data, we analyzed post-task surveys responses, where participants rated (7-point Likert scale) their
self-confidence in (1) identifying output- or evaluation-related issues that were critical (importance), (2) covering
most issues (coverage), and (3) being able to act on and resolve these issues (actionable). Participants also rated
their perceived workload using five items from the NASA-TLX questionnaire (excluding the “Physical Demand”).
Likert scale responses were analyzed using the Wilcoxon signed-rank test.

We also analyze quantitative data from the sub-tasks. In the first sub-task, we counted the number of distinct
output and evaluation issues identified by participants—filtering out unrelated comments (e.g., interface usability
issues). For the second sub-task, we created separate test sets that exhibited the evaluation issues that were given to
participants. We created 20 data points per task, 10 data points per evaluation issue. For each participant and task,
we evaluated the test sets on the participant’s revised criterion and calculated the percentage of data points where
the issues were addressed. Finally, we also analyze participants’ interaction logs to measure the number of times
that they interacted with individual fragment-level functions or outputs, and through what interface features. For
these measures, we conducted Shapiro-Wilk tests to determine if the data was parametric, and then used a paired

t-test (if parametric) and a Wilcoxon signed-rank test (if non-parametric).

6.5.2 Results

In this section, we describe findings on how participants verified the LLM-based evaluations (§6.5.2, RQ1),
identified issues with the task LLM’s outputs (§6.5.2, RQ2), revised criteria to correct the evaluations (§6.5.2,
RQ3), and explored fragment-level functions for multiple criteria (§6.5.2, RQ4).

Verifying Evaluations

Participants identified significantly more issues with the LLM-based evaluations in the Fragmented con-
dition (Fragmented = 3.40 £ 1.58, Holistic = 2.30 £ 1.42, ¢t = —2.40, p = 0.04) (Fig.6.8). Participants
mentioned that this was attributed to how it was easier to read and understand the fragment evaluations. While
participants had to read entire outputs and overall justifications in the Holistic condition, they only had to
review individual fragments, their function labels, and the accompanying shorter justifications in the Fragmented
condition. P1 noted that “the range of text that I had to read was smaller so it was less time-consuming to interpret
each data point.” As a result, PS mentioned, “I read each evaluation more carefully and I was able to concentrate
on each one more.”

Furthermore, participants also mentioned how, as it was easier to verify each individual evaluation, it was also

easier to verify their consistency. P3 explained, “As [each output’s] evaluation is split [into multiple fragment-level
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Figure 6.8: Comparison of results across conditions for the issues identified for the task LLM’s outputs (left) and
LLM evaluations (right). Results present the average number of issues identified, and the distribution of participants’
ratings regarding the importance, comprehensiveness, and actionability of the issues (*:p<.05, **:p<.01, error bars
indicate one standard deviation).

functions], I could see multiple evaluations [for fragments from different outputs] together and easily compare
them, so I tended to focus on that.” In contrast, with the Hol1i st ic condition, P4 mentioned how “while I could
see general trends in the evaluations, I could not directly compare them” due to the amount of text (i.e., outputs
and overall justifications) to compare and reason about. Most participants (7/10) recognized the importance of
identifying when the LLM-based evaluator is consistent or inconsistent, and explicitly focused on verifying this. P8
mentioned: “the problem [of inconsistent evaluations] is more important so no other issues really came into sight.”

As participants’ ability to verify the evaluations differed in each condition, their trust and reliance on these
evaluations also differed. As participants could more “confidently” (P1) verify evaluations in Fragmented,
participants mentioned how they could judge their trust in the evaluations more carefully. P7 mentioned: “it’s
not that I have more trust but instead that it is easier to verify my trust.” Three participants explained how they
“empathized” with the LLM evaluator—explaining that they may not agree with its evaluation but understood why it
returned such an evaluation. As a result, participants mentioned how they were able to develop more informed trust
about the model by identifying the fragment-level functions for which they agreed with the LLM evaluator and
when the evaluator is consistent or not. PS5 explained: “I was wondering whether the evaluator had a bias when
evaluating [a certain function] so I looked at these [clusters] more. My conclusion was that it seems like the LLM
evaluator considers the aspect as negative most of the time, but there is a slight fluctuation.”

On the other hand, as participants found it more cognitively demanding to verify evaluations in the Holistic
condition, they also struggled to develop more informed trust. Some participants mentioned how they trusted the
holistic evaluations despite not carefully inspecting them. For example, P7 mentioned that “if an output got a score
of 100% and the [one-line justification summary] seems to make sense, I just move on”. Others mentioned not
trusting the holistic evaluations at all as they could not confidently verify them: “I didn’t look at the summary
or justification at all because I just didn’t have trust in them” (P5). Interestingly, regardless of their trust in
the evaluations, most participants (7/10) mentioned relying on the evaluation scores to decide which outputs to
explore—often focusing on extreme cases (i.e., scores of 100% or 0%)—even without fully understanding why

those outputs received those scores.

Identifying Model Issues

Overall, participants identified a similar number of issues with the task LLM’s outputs in both conditions
(Fragmented = 2.70 £ 0.82, Holistic = 3.60 + 2.12, w = 4.00, p = 0.09). However, participants rated that

they were significantly more confident that they could act on and resolve the issues identified with the Fragmented
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condition (Fragmented = 5.10 £ 1.20, Holistic = 3.00 £ 1.85, w = 0.00, p = 0.04) (Fig. 6.8).

According to participants, this result can be attributed to their trust and dependency in the LLM-based
evaluations. As participants developed more informed trust regarding the evaluations in the Fragmented
condition, they used the evaluations as guidance when inspecting the quality of the outputs. Participants followed
the fragment-level evaluations to inspect outputs “piece-by-piece” (P1) and to inspect “each output more specifically”
(P2). Furthermore, participants mentioned how the Fragmented condition allowed them to explore output issues
from a “wider perspective” (P5) by exploring similar issues across outputs, or consider more “diverse characteristics”
(P6) with regards to the criterion.

In contrast, in the Holistic condition, as participants could not adequately gauge their trust in the eval-
uations, they frequently mentioned not relying on the LLM-based evaluations and instead manually inspecting
the outputs themselves. For example, P3 mentioned: “In the [Holistic condition], I had to read all of the
[output] and also the justification, so I focused only on the [output] and tended to not look at the justification.”
By manually reviewing the outputs themselves, participants not only lost efficiency benefits from the LLM-
based evaluations but they also tended to focus on more abstract or surface-level issues regarding the model
outputs (e.g., overall writing quality, coherency, logic). Besides being less concrete, P8 also explained how
these broader issues could be more challenging to resolve: “The issues I identified seem more related to the
limitations of the model itself [...] No matter what feedback I give, it will be difficult to resolve these.” This is
also reflected in the interaction logs, where participants in Holistic frequently viewed each output in detail
(Fragmented = 20.92 £ 9.35, Holistic = 33.91 + 13.32, w = 0.00, p < 0.001), while participants in
Fragmented interacted more frequently with the Explore Tab and Map Visualization, selecting and navigating
between data points (Fragmented = 59.25 + 27.89, Holistic = 33.92 + 20.69, w = 9.00, p = 0.02).

Although the Fragmented condition helped participants find more actionable issues, they also mentioned
how it had limitations. Specifically, participants mentioned how they tended to lose sight of the “bigger picture”
(P2)—including the overall structure, coherency, and context of the outputs. As a result, participants mentioned
how they appreciated the Holistic condition as it allowed them to compare these holistic aspects of outputs. In
fact, after exploring fragment-level functions, participants in the Fragmented condition frequently went back to

the Database Tab as this was the only tab that allowed them to look at outputs one-by-one and compare them.

Correcting Evaluations

We observed substantial differences in the difficulty of correcting the given evaluation issues across study
tasks. Rather than overall comparisons between conditions, we report success rates for each task-condition
pair to provide descriptive insights, without statistical tests due to limited sample size (N=5 per pair). In the
advertisement task, success rates in correcting the evaluation issues were higher in the Fragmented condition
(Fragmented = 77.0% + 7.9%, Holistic = 72.7% % 9.8%). Conversely, in the horror story task, success
rates were higher in the Holistic condition (Fragmented = 24.9% * 14.4%, Holistic = 37.7% + 7.3%).

Participants found the Fragmented condition helpful for skimming through evaluations to identify potential
examples for the criteria. However, in Fragmented, participants had to add the entire fragment that the system
extracted as examples, which sometimes spanned multiple sentences. In contrast, the Holistic condition
allowed them to manually select shorter fragments to add as examples, which they used to precisely select only
the most relevant content. For example, P5 hesitated to add examples in the Fragmented condition: “since the
whole [fragment] will be considered in future evaluations, I worry that [the evaluator] will interpret it differently.”
Qualitative analysis of results indicated that the lower success rate in Fragmented for the horror story task
stemmed from this limitation: automatically extracted fragments contained multiple sentences but participants

likely added these as examples due to a short phrase within them. This suggests the need for a combined approach:
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Figure 6.9: Distribution of participants’ ratings for perceived workload (i.e., NASA-TLX) show that participants
perceived a similar amount of workload in both conditions. In general, participants expressed feeling high workload
due to the demands of the study task.

fragment evaluations to identify evaluation issues, with the ability to select specific sub-fragments to precisely

express intended corrections.

Exploration with Multiple Criteria

By exploring fragment-level functions for a new criterion (RQ4), participants were able to gain new insights
about the outputs and the evaluations. For example, while comparing the evaluations for the same output on
different criteria, P7 noticed how “the same fragment can receive completely opposite evaluations for different
criteria” and that she wanted to “compare the distribution of evaluations in one cluster with those in a different
criterion’s cluster.” P1 also mentioned how, as the new criterion focused on the overall content of the outputs
rather than specific stylistic choices, she was able to “understand the outputs better”. She noted how there can
be a “hierarchy” between criteria, where more general criteria should be evaluated first to understand the content
of outputs, followed by more detailed and specific criteria. P6 explained how they could use these contrasting
evaluations to decide on what outputs to use for “different use cases and applications”.

Participants noted that, by surfacing fragment-level functions relevant to each criterion instead of simply
providing a score, EVALET allowed them to “more deeply understand and define each criterion” (P4). P2 mentioned:
“When one doesn’t really know what is relevant to a criterion, they could just add an abstract description of the
criterion [into the system], and see the LLM evaluations and clusters to learn more and concretize the criterion
further.” PS5 also reflected this sentiment: “[In practice], one needs to revise their evaluation criterion by actually
evaluating outputs to see [how they match with the criterion], but it seems like this is already doing all of that for
us.” Participants’ comments alluded to a process like inductive coding, where one starts with a broad and abstract
criteria and, through the process of reviewing outputs, identifies relevant fine-grained functions that can concretize

this criterion.

Perceived Workload

Figure 6.9 shows that overall perceived workload was similar in both conditions (Fragmented = 4.58 £ 0.43,
Holistic = 4.72 % 0.78,t = 0.51, p = 0.62). This can be attributed to how each condition led to different
distributions of cognitive effort. In Fragmented, verifying the evaluations required less effort which freed
participants to compare and explore these evaluations. In contrast, Holistic led participants to expend most

of their effort into manually reviewing outputs one by one. Also, while the fragment-level functions supported
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Figure 6.10: Fragment-level functions and their clusters identified through our approach for three types of tasks

and criteria: (a) evaluating metacognitive insight in the reasoning traces of LLMs, (b) evaluating harmlessness in
red teaming user-LLM conversations, and (c) evaluating social intelligence in simulated interactions between LLM
agents.

more fine-grained exploration and analysis, some participants found the number of functions to be overwhelming.
For example, P7 mentioned that “The [Fragmented] visualization felt a bit complex and had too many colors,
which made it hard to see what information I should focus on. In contrast, the [Holist ic] visualization was

much easier and didn’t feel tiring to look at.”

6.6 Example Cases

To demonstrate the generalizability of functional fragmentation and the insights that can be gained through
it, we present three example cases of the approach with diverse LLMs and tasks. Specifically, we evaluate: (1)
metacognition in reasoning LLMs, (2) harmlessness in user-LLM conversations, and (3) social intelligence in agent
simulations. In this section, we briefly introduce the data that was evaluated and qualitative observations from the

evaluations.

6.6.1 Metacognition in Reasoning

Reasoning-based LLMs, which generate explicit “reasoning” traces before providing final answers, have
become increasingly prominent due to their advanced performance [141]. However, assessing these lengthy
reasoning traces can be challenging. We applied functional fragmentation to the OpenThoughts dataset [331],
which contains the reasoning traces generated by DeepSeek-R1 [122] on various problems. Specifically, we
sampled 210 data points (35 per dataset domain) and evaluated them on Metacognitive Insight (i.e., can
the model actively reflect upon, regulate, and articulate their thought processes during reasoning).

As seen in Figure 6.10A, functional fragmentation surfaces diverse reasoning steps by the LLM that resemble
human metacognition. For example, the fragment-level functions reveal self-questioning behaviors, explicit
acknowledgment of uncertainties, and proactive consideration for edge cases. However, while evaluations tend to
be overly positive, a closer look of functions shows that the evaluator credits metacognitive-like statements, even
when they may not be beneficial. For example, in a reasoning trace, the model asks itself a question but will then
immediately answer it, which superficially mimics human-like thought patterns but may not indicate authentic
introspection or uncertainty. From here, practitioners could refine the evaluation criterion further to assess the

actual impact of these metacognitive-like behaviors.
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6.6.2 Harmlessness in Conversations with Users

Ensuring that LLMs refrain from providing potentially harmful responses is a critical problem [29]. To
understand LLM performance in this regard, we applied our evaluation approach on the HarmfulQA dataset [35],
which consists of questions designed to elicit harmful responses from LLMs (i.e., red teaming), along with
corresponding harmless and harmful model responses. We randomly sampled 200 data points and evaluated them
for Harmlessness (i.e., does the assistant engage with users safely and respectfully during interactions).

Figure 6.10B illustrates different fragment-level functions along the spectrum of harmlessness. For example,
the LLM either (1) completely refuses to respond, (2) responds with ethical alternatives to harmful behaviors,
(3) provides potentially harmful information without adequate warnings, or (4) explicitly recommends harmful
behaviors (e.g., coercion and intimidation). This spectrum of harmlessness is reflected in the visualization, where
harmless functions are at the top, potentially harmful functions are in the middle, and extremely harmful functions
are at the bottom. Practitioners can use these functions to identify input patterns that lead to more harmful outputs

or further define their standards for acceptable behavior by inspecting the functions.

6.6.3 Social Intelligence in Simulated Interactions

LLMs are increasingly used as agents that simulate human users and social interactions [261, 263, 414].
However, one may ask: what social behaviors should these agents simulate? To investigate this, we applied our
approach on a dataset generated through the SOTOPIA environment [344], which simulates negotiations between
two LLLM agents role-playing characters with different social goals. We randomly sampled 200 data points and
evaluated them based on Social Intelligence (i.e., does the agent effectively understand, navigate, and
manage social interactions with other users or agents).

Figure 6.10C highlights various positive social behaviors within the simulations, such as agents building
rapport through mirroring or balancing how much they collaborate with how much they maintain their own
boundaries. However, the surfaced functions also reveal potentially anti-social behaviors—for instance, agents may
neglect building a relationship with the other agent and focus solely on their own needs and goals. Practitioners can
further explore these functions to identify behaviors that should be encouraged or mitigated in simulated agents, or
to identify additional evaluation criteria. For example, one of the surfaced functions is “Character Consistency

Failures”, but these could be assessed by a separate criterion that is specific to role-playing abilities.

6.7 Discussion

In this chapter, we present functional fragmentation, a novel approach for evaluating and interpreting LLM
outputs based on their constituent fragment-level functions, and EVALET, an interactive system that instantiates this
approach. In this section, we suggest guidelines for integrating both fragmented and holistic evaluations in practice,
discuss how functional fragmentation supports more nuanced analysis with LLM-as-a-Judge, and propose the need

for further work in supporting qualitative and interactive evaluation of Al

6.7.1 Guidelines for Integrating Fragmented and Holistic Evaluations

As revealed by our user study, both fragmented (i.e., at the fragment and function-level) and holistic (i.e.,
at the output-level) evaluations have distinct merits. In practice, we suggest that these types of evaluation are

complementary and should be employed together. Specifically, we recommend a workflow that begins with
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exploration of fragmented evaluations, and transitions to holistic evaluations with the option to dive back into

fragments when necessary.

1. Start with Fragmented Evaluation on Broad Criteria: As described by study participants, functional
fragmentation can surface and reveal diverse fragment-level functions that should be considered within each
criterion. Through this, one can more comprehensively identify concrete aspects that should be evaluated for

a criterion, including those that were not initially considered.

2. Iterate and Concretize Criteria with Function Examples: By exploring fragment-level functions, practi-
tioners can refine their criteria by deciding on what functions the evaluator should continue to surface and

how these should be assessed.

3. Zoom Out and In: Then, as participants required in the study, practitioners should “look at the bigger
picture” by exploring holistic evaluations to understand more overall qualities and their similarities. As
the underlying fragment-level evaluations have been corrected and aligned, practitioners can more reliably
depend on the signals provided by the holistic evaluations. At this stage, practitioners can dive deep back to

the fragmented evaluations when requiring more details—alternating between levels of abstraction [320].

6.7.2 Calibrating Trust in LLM-as-a-Judge through Verification

LLM-as-a-Judge can facilitate inspection, assessment, and analysis of LLM outputs at scales that are infeasible
through human effort alone. However, practitioners must carefully calibrate their trust by recognizing where they
disagree with the LLM evaluator, where it hallucinates, and when it is inconsistent. Our study showed that failing
to calibrate trust often led practitioners to dismiss LLM-based evaluations and revert to manual review—Ilosing
both efficiency benefits and potentially valuable insights. Despite this, participants still relied on the evaluation
scores to prioritize which samples to inspect further, often focusing on extreme scores and thereby overlooking
nuanced model behaviors—which can lead to cases where one identifies explicit model biases while missing subtler
but equally harmful ones [27].

Our approach, functional fragmentation, supported more calibrated and nuanced use of LLM-as-a-Judge by
facilitating validation at a granular yet manageable level. By validating when the evaluator returned misaligned or
inconsistent evaluations, participants calibrated their trust and selectively relied on the evaluations to guide their
in-depth analysis of outputs. Despite the promise of our approach, a potential limitation is that its effectiveness
depends on how reliably LLM evaluator identifies all key fragments from outputs—if fragments are surfaced,
users can verify their evaluations but, if not, users cannot detect these gaps without manual review. Although our
technical evaluation demonstrates strong performance, with the LLM evaluator achieving around 90% recall in
identifying fragments, future work could design additional safeguards for missed fragments (e.g., separate map

visualization to explore fragments that were unassessed by the evaluator).

6.7.3 Increasing Trend in Increasingly Longer Outputs

Recent trends in LLM advancements have focused on generating increasingly longer outputs. For example,
agentic systems like Manus [4], Genspark [5], or Gemini Deep Research [115] can create complex outcomes (e.g.,
multi-section reports, multi-file codebases) through multi-step workflows. Recent research has focused on further
increasing output length by increasing LLM’s test-time compute [311, 122, 162] (i.e., training models to generate
more tokens to reason more about complex tasks), or extending their context windows to receive longer inputs and

generate longer outputs [6, 131, 76]. Due to their length, each part of an output can exhibit drastically different
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levels of quality, making it particularly difficult and challenging for practitioners to make sense of model behavior
from holistic judgments. As seen in the example cases in Section 6.6, our approach of functional fragmentation has

the potential to help users break down and interpret complex outputs in these emerging scenarios.

6.7.4 Qualitative and Interactive Evaluation of Al

AI/ML evaluation has mostly focused on applying quantitative metrics in benchmark datasets. This has
accelerated advancements by supporting objective and concrete comparisons between models and model iterations.
However, as models reach exceptionally high but similar performance on these benchmarks, users have started
to qualitatively compare models based on their characteristics and behaviors, and how these fit with their own
needs [84]—referred to as “vibe checks” [154]. This raises a crucial question: “how can we help users to
understand and make sense of qualitative model behaviors at scale.” To tackle this problem, our work proposes
Sfunctional fragmentation to focus evaluation on the individual qualitative fragment-level functions in model outputs
and, in turn, support users in sensemaking of model behaviors across outputs. However, we believe that there is
still a wide design space that can be further explored by future work. In particular, due to the rich body of work
in sensemaking [54, 14, 212, 269] and explainability [202, 183, 155, 342], we propose that the HCI community
is ideally positioned to tackle this problem and to integrate itself more closely in the advancement of Al models

through the development of novel interactive approaches to evaluation.

6.7.5 Limitations

Our work has several limitations:

* Limitations of Functional Fragmentation: Our technical evaluation showed that our approach may fail to
account for the relative importance of each fragment-level function or the holistic attributes of outputs. Future
work can extend our approach to assign priority ratings to each function (e.g., manually by the practitioner
or automatically suggested by the system) and generate additional functions that can represent the holistic

qualities of outputs.

 Dataset Scale: Our user study used datasets with hundreds of samples. However, practitioners often handle
larger datasets and, while our system can support these, users may struggle to navigate and interpret the
numerous fragment-level functions. Future work could introduce an additional clustering step to combine

similar functions and reduce complexity.

» User Study - Fragmented vs. Holistic: Our user study compared exploration of fragmented evaluations
against holistic evaluations to clearly isolate their distinct affordances. In practice, these two methods should
be used together. While participants offered insights into how to combine them, further studies are needed to

understand actual usage patterns.

* Real-World Practice and Deployment: Further research into real-world use of functional fragmentation
and EVALET is required to understand how this evaluation method integrates into practitioners’ workflows.

To facilitate this, we plan to release EVALET as open-source.
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Chapter 7. CuPID: Evaluating Personalized and Contextualized Alignment
of LLMs from Interactions

This chapter presents a benchmark that assesses the capabilities of state-of-the-art models in disentangling
more complex text artifacts. Specifically, this chapter introduces CUPID, a benchmark that assesses whether LLMs
can identify and disentangle users’ contextual and personal preferences that were expressed in a series of prior chat
sessions between this user and an Al assistant. The benchmark further assesses whether LLMs can effectively apply
these disentangled preferences in new chat or interaction sessions. This chapter has adapted, updated, and rewritten
content from a paper at COLM 2025 [167]. All uses of "we", "our" and "us" in this chapter refers to coauthors of

the aforementioned paper.

7.1 Motivation & Contributions interaction Session 1

Help me revise my mathematical proof below
for review by . Theorem: [...]

Large Language Models (LLMs) have shown remark-

“Using non-traditional methods always
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able capabilities across various tasks [243, 1], benefiting mzrt:nfa'z‘c”:lepr::fr_s'fh"ezreyn? or any

league with n teams (n = 4), there

exists an optimal schedule [...]

users through diverse applications and conversational assis-
tants [250, 17, 235]. Aligning these models with human

Could you rework the proof to avoid relying on

values and preferences is crucial as they are increasingly in- G R S e | |

tegrated into user experiences [146]. Initial efforts focused
Interaction Session 2

Help me write the methodology section of our paper
with | \ Here's our current draft: [...]

on aligning LLMs on broad, general values (e.g., helpful-

ness, harmlessness, honest) [28, 29] or the aggregated pref-

Context Factor
. L. “Dr. Park encouraged me to use more
erences of diverse users [257, 175]. Recognizing that these innovativelandicieatlyelappioachies §

Contextual Preference

approaches overlook users’ diverse expectations, more recent ces Support arguments

through visual aids and
computational methods.

work focuses on personalized alignment, where LLMs are

e

aligned with the users’ individual preferences [364, 142, 192]. Interaction Session N

I need help developing a proof strategy for a new

Despite this progress, existing work largely assumes that RSy .

users have static preferences (i.e., preferences are global TS
and do not vary over time) [364, 192] or focus on stable @~  ———-———————————————~

characteristics (e.g., sociodemographics) to characterize pref- . . .

Figure 7.1: Example instance in ~ CUPID illus-
trates a user that holds distinct preferences in differ-
In reality, human preferences are context-dependent [351, ent contexts due to personal experiences, where the
preferences are only revealed to the LLM through

. e N the user’s feedback in prior interactions.
pending on their situation. For example, in Figure 7.1, a

erences [172].

31, 227]: an individual’s intents and expectations shift de-

researcher consults an LLM to refine their paper’s writing but their preference varies by collaborator: focus on
classical methods with Dr. Chen due to prior disagreements while embracing computational methods with Dr.
Park who advocated for them. These contextual variability means that models must understand what values and
preferences a user holds in distinct contexts. Interactions between a user and an LLM may indirectly reveal these
shifting preferences as users provide feedback to the model in diverse situations [364, 170]. However, it is unclear
whether current LLMs possess the capability to identify a user’s preference from their feedback, infer the relevant

context, and proactively apply this knowledge in future interactions.
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In this work, we present CuPID' (Contextual User Preference Inference Dataset), a challenging and
scalable benchmark that is designed to assess LLMs’ ability to infer users’ preferences tied to diverse contexts from
user-LLM interaction histories. CUPID consists of 756 human-curated interaction histories, where each history
presents a series of interaction sessions or dialogues between a simulated user and an LLM. Each interaction session
presents a task-oriented dialogue where a user asks a request explicitly stating the context, and then gradually
reveals their contextual preference through multi-turn feedback to the LLM. Given a new request and a history of
previous interaction sessions, the benchmark evaluates whether LLMs can (1) infer the user’s preference related to
the context of the new request, and (2) generate a response to the request that will satisfy this preference.

To construct CUPID, we designed a pipeline that generates diverse and rich interaction sessions. After
generating a persona pool, for each persona, the pipeline generates a list of context factors (i.e., significant
people, objects, locations, etc. in the persona’s world that influences their expectations) and contextual preference
(i.e., value, principle, or criterion associated with each factor). For each persona, the pipeline then generates a
series of interaction sessions that involve these factors and preferences. We combine the concepts of LLM-as-
a-Judge [406, 384] and LLM-simulated users [363, 364] to create multi-turn dialogues where a simulated user
evaluates and provides feedback to LLM’s responses, gradually disclosing its contextual preferences. All the data
was verified with human annotators and ~9% of the data was manually edited.

With CUPID, we assess 10 open and proprietary LLMs. We find that all models struggle to infer users’
preferences based on past interaction sessions, with no model exceeding 50% precision and 65% recall. Models
failed at recognizing relevant contexts in prior interactions and extracting preferences from multi-turn conversations.
We find a strong correlation (r=0.764) between performance in inferring preferences and generating responses
that satisfy them, suggesting that the capability to infer context-dependent preferences underpins personalization
capabilities. Finally, we present a finetuned metric, PREFMATCHER-7B2, to reduce the cost of evaluation on our

benchmark and a larger unverified dataset’ to support training and further research.

7.2 CurIib Benchmark

CuUPID evaluates LLMs’ ability to infer a user’s distinct preference in different contexts from prior interactions

between the user and the LLM.

7.2.1 Definitions

Our benchmark is composed of interaction sessions S; = (¢;, p;, D;).

Context Factor, c; Represents an element (e.g., person, location, tool, activity) in a user’s environment or world,
which plays a role in and influences that interaction session. We assume that each session’s context is only defined

and influenced by a single factor.

Contextual Preference, p;, Represents a value, principle, criterion, requirement, or constraint that the user
holds when the context factor c; is involved in the situation. While prior work focused on more simple and
concrete lifestyle preferences (e.g., "I cannot eat spicy food") [364, 404], we focus on more complex, abstract, and

task-oriented preferences (e.g., "Instructions must break down complex procedures into numbered micro-steps with

lhttps://hugqingface.co/datasets/kixlab/CUPID
2https://hugqingface.co/kixlab/prefmatcherf7b
3https://huggingface.co/datasets/kixlab/CUPIDfUnverified
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verification points after each major section"). Preferences in our dataset often require multiple rounds of feedback

to be satisfied.

Dialogue, D; = (Ui,h T 1y ey M Ly —15 Ui, LT:) Represents an interaction between a user and an LLM. The
dialogue begins with the user’s initial request u; ; that explicitly states the context factor c;. In subsequent turns,
the user iteratively provides feedback until the model’s responses (m, mao, ..., m;, Li—l) satisfy preference p;. The

dialogue length L; is determined when p; is fully satisfied, confirmed by the user’s final utterance u; ..

7.2.2 Problem Formulation

Each task instance in CUPID consists of a 4-tuple (Ueurrents Ceurrent> Peurrents S )» Where Ueymen: represents the
user’s current request to the LLM, ¢ yrent a0d Deyrrene represent the context factor and contextual preference in the
new request, and S is the history of previous interaction sessions, where at least one S; € S satisfies ¢; = Ceurrent

and p; = Peurrent- Our benchmark evaluates LLMs on two tasks:

« Inference: Given t e, and D = {D; | S; € S}, the model should infer the user’s contextual preference

pcurrent .

* Generation: Given Ucyyey and D = {D; | S; € S}, the model should generate a response r that will satisfy

or align with the user’s preference peyrren-

7.2.3 Metrics

Inference - Preference Match Preferences in our benchmark are complex, with each preference entailing
multiple fine-grained expectations (i.e., sub-preferences). An inferred preference should capture all sub-preferences
(recall) without including irrelevant ones (precision). To assess this, we design an LLM-based preference matching
metric, inspired by work on measuring factual precision through atomic facts [238] and fine-grained checklist
evaluations [205, 65]. Specifically, we first use an LLM to decompose the ground-truth and inferred preferences, p
and p, into atomic checklists Q, = {q1, ...,q»} and Q5 = {41, ..., 4, }, where each checklist item g; or §; assesses a
single sub-preference. Then, we employ an LLM with a few-shot prompt to evaluate whether each checklist item

matches the other preference:

1, if aligning with p fully covers ¢,
MATCH(4, p) = 0.5, if aligning with p partially covers g,
0, otherwise.

We use GPT-40 for decomposing and matching. For matching, we conducted a meta-evaluation with 230
human-annotated data points, separate from our dataset. GPT-40 achieved a Krippendorff’s alpha [176] of 0.769
(substantial agreement) with the majority vote of human annotators. To reduce the cost of evaluating on our
benchmark, we also present PREFMATCHER-7B, a finetuned model for preference matching that achieves a Krip-
pendorff’s alpha of 0.748 (substantial agreement). Finally, we compute: Precision = @ Y i€Q, MatcH(g, p),
Recall = @ 2 4eq, MATCH(q, ), and the F1 score.

Generation - Preference Alignment For the generation task, we evaluate a model’s response r on its alignment
with the contextual preference peyren Using the LLM-as-a-Judge approach [406]. As prior work has shown that
LLMs can evaluate other models’ responses on diverse skills, principles, or criteria [99, 168, 384], we prompt

GPT-4o0 to provide a score ranging from 1 to 10 on the degree to which a model response satisfies the ground-truth
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contextual preference. As checklists can increase the consistency and reliability of LLM evaluations [205, 65], we

also provide the automatically decomposed checklist (), used in preference matching to the LLM judge.

7.3 Data Generation Pipeline (Figure 7.2)

To capture realistic interaction patterns and context-dependent user preferences [351], we designed synthetic
user interaction sessions and preferences in CUPID with the following desiderata: (1) User-specific and unique:
Focus on highly personalized contexts and preferences not inferrable from prior knowledge or commonsense; (2)
Indirect and gradually revealed preferences: Preferences expressed through multiple turns of feedback and
clarification to mirror real user behavior; (3) Patterns of shifting preferences: Capture how a user’s preferences
may shift over time or even conflict across contexts. Unlike prior work focused on lifestyle preferences, we center
our benchmark on task-oriented preferences and dialogues, reflecting real-world usage of LLMs [329]. The pipeline
uses Claude 3.5 Sonnet, unless noted otherwise.

Although synthetic data may not fully represent real user behavior and diversity, we opt for synthetic data over
human-collected data because it provides: (1) precise control over dataset difficulty, including how preferences are
revealed and contexts are repeated; (2) higher quality by ensuring that preferences are revealed and models can

infer them; and (3) enhanced diversity by varying context factor, preference, and task types.

7.3.1 Generation Process

Persona Pool We aimed to construct context factors and preferences that were specific and unique to a user
(Desiderata 1), rather than general factors (e.g., "Fender Stratocaster” vs. "electric guitar") and preferences (e.g.,
"instructions must include precise hand positioning details" vs. "instructions must be precise"). Existing persona
datasets [104, 414] lacked sufficient detail to generate unique factors and preferences. Thus, we created a new
persona pool by sampling seed persona descriptions from Ge et al. [104], combining them with attributes (e.g.,
personality, personal values) inspired by Zhou et al. [414], and using an LLM to expand each into rich persona

descriptions—yielding 252 distinct personas.

Constructing Contexts To generate diverse yet internally coherent contexts for each persona, we instruct an
LLM to first generate a list of 8 context factors and associated preferences—essentially constructing each persona’s
world. Before each factor-preference pair, we prompt the LLM to first generate a background narrative to develop
more specific and unique contexts (Desiderata 1). To increase diversity, we provide the LLM with predefined
taxonomies for factor types (e.g., person, object, location, activity) and preference types (e.g., creativity, sensitivity,
trustworthiness). To reflect how users may hold contrasting preference in different contexts (Desiderata 3), the

LLM also creates factor pairs Ceyprent aNd Ceonerast Whose preferences conflict or contradict, peyrrent = —Peontrast-

Generating Sessions With each persona’s list of factor-preference pairs, we prompt an LLM to generate a
series of chronologically connected interaction sessions, S. Instead of generating each session and its interactions
one-by-one, we generate all the sessions first to ensure that they are logically and chronologically coherent. When
generating each session .S;, the LLM is instructed to first narrate a task-related situation that involves a context
factor, and then generate the initial request u; ; where the user explicitly mentions the factor and seeks an LLM’s
help with the task. To ensure that the series of sessions reveal specific contexts and preferences (Desiderata 2), we
prompt the LLM with a 13-session template: the final session S5 includes Ceygent; two sessions S, and S, also
With Coyprent; tWO sessions with ceonrast; and two sessions .Sy, and S, (y, 2 < u, v) With cqyeren but a prior preference

Pprior = ~Peurrent that reflects a significant change in the user’s preference (Desiderata 3).
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Dialogue Simulation For each interaction session, we simulate multi-turn dialogues by using two distinct LLMs:
an user simulator role-playing as the persona and an assistant simulator that responds to the user. Each session
begins with the user’s request u; ;, which the assistant answers. Adapting the LLM-as-a-Judge approach [406], the
user simulator evaluates the assistant’s response against the contextual preference p;, scoring it from 1 to 10, and
then generates feedback that indirectly hints at the preference (e.g., noting the issues with the response, rather than
explicitly stating the preference). The assistant simulator responds and the dialogue continues, gradually revealing
the preference, until the user simulator provides a score of 10 (Desiderata 2). Each dialogue is designed to contain

sufficient evidence for the underlying preference to be inferrable.

Creating Instances Finally, we construct instances to account for the different patterns in user preferences
(Desiderata 3): a user holding conflicting preferences in different contexts, and their preferences changing over

time. Specifically, for each series of synthesized sessions, we create three types of data instances:

* Consistent: Basic instance where there is at least one S, € S suchthat ¢, = Ceyrrents Pk = Deurrent and — ug
# Ucurrene (1-€., at least one previous interaction session possesses the same context factor and preference as

the current request).

¢ Contrastive: Meets the same condition as Consistent, and there is at least one S; € S such that ¢; #
Ceurrent  ANA D7 = Peontrast = ~Peurrent- HETE, a prior session includes a context factor with a preference that

conflicts with the current context’s.

* Changing: Meets the same condition as Consistent, and there is at least one S,,, € S such that m < k,
Cm = Ceurrents DUt Py = Pprior = ~Peurrent- Here, the user previously held an opposite preference in relation to

the same context factor.

Each instance has 9 sessions: 8 prior interaction sessions, and the last session with cyren-

Figure 7.2: Data generation pipeline for =~ CUPID. For each persona, we construct diverse context factors and
preferences, then generate chronologically linked interaction sessions. For each session, we simulate a dialogue
where the user persona evaluates an Al assistant’s responses and provides feedback based on the contextual
preference.
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7.3.2 Data Validation

We conducted human validation to ensure that our instances were solvable (i.e., preferences are inferrable
from prior interactions), challenging (i.e., preferences not inferrable from current requests), and realistic. For
each instance, we validated that relevant preferences (Peurrent> Peontrast> Pprior) Were fully expressed in the simulated
dialogues, but peyrene Was not expressed in we,,,.,;- 10 reduce annotators’ cognitive load, we employed a human-Al
approach [193, 196] where an LLM first extracts user messages from the dialogues that potentially expressed each
preference. Then, two human annotators recruited via Prolific then annotated these messages and we considered
that a preference was expressed if marked by at least one annotator. Then, the authors manually revised these cases
(~9% of all instances). Annotators also rated the realism of the current requests at an average of 4.08 (SD=0.85)

out of 5.

7.3.3 Data Statistics

CUPID is composed of 756 instances, with 252 instances for each type: Consistent, Contrastive, and Changing.
On average, contextual preferences are 18.4 tokens long and are decomposed into 2.90 checklist items, dialogues

have 6.38 turns and are 921.5 tokens long, and prior interaction sessions are 8186.7 tokens long.

7.4 Experiments

With  CUPID, we evaluate open and proprietary LLMs on inference and generation.

7.4.1 Experimental Setup

Baseline Models We tested a total of 10 state-of-the-art instruction-tuned LLMs and a few reasoning models:
GPT-40 [137], 03-mini [255], Claude 3.7 Sonnet [19], Claude 3.5 Sonnet [18], Llama 3.1 405B [119], Mistral
7B [147], Qwen2.5 72B [379], DeepSeek-R1 [122], Gemini 2.0 Flash Thinking, and Gemini 2.0 Pro [116].

Prompts For the inference task, all models were zero-shot prompted to analyze prior interaction sessions and
infer the preference that the user will likely hold in the current request, but is not mentioned in the request. For the
generation task, all models were zero-shot prompted to generate a response for the current request by considering

the possible preference that the user has based on prior interaction sessions.

Oracle We test an oracle setting where models receive only prior sessions that share the current request’s
contextual preference, isolating the impact of identifying and retrieving relevant prior sessions. For the Generation
task, we test an oracle preference setting where models are given the ground-truth preference when generating

responses, allowing us to evaluate how their ability to adhere to preferences affects performance.

Interaction Summary Recent LLM-powered Al assistants are equipped with long-term memory allowing them
to record, recall, and reason about prior user interactions [412, 254]. To understand how this type of intermediate
representation could enable models to infer a user’s preferences in different contexts, we design a setting where
models are first prompted to summarize each dialogue in the prior interaction sessions and, then, perform the tasks

with these summaries.

Metrics (Section 7.2.3) We report precision, recall, and F1-score for the inference task, and alignment score of

model responses [1-10] for the generation task.
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All Instances Consistent Contrastive Changing Oracle Setting

Model P R F1 P R F1 P R F1 P R F1 P R F1

Mistral 7B 269 307 286|223 256 238 23.0 267 247 354 397 374|468 598 525
Qwen2.5 72B 328 449 379|300 426 352 275 362 313 41.0 559 473|604 77.1 677
Llama 3.1 405B 302 451 362|264 391 315 278 413 332 364 550 438|584 774 665
DeepSeek-R1 420 595 493|442 629 519 413 588 485 40.6 568 474 | 628 812 708
GPT-40 36.6 52.1 43.0 | 36,5 50.1 422 32,6 464 383 40.7 59.7 484|571 777 658
03-mini 336 479 395|324 479 386 31.0 442 365 373 51.6 433|489 68.7 57.1
Claude 3.5 Sonnet 409 569 476 | 409 562 474 382 525 443 436 620 512|628 8l6 71.0
Claude 3.7 Sonnet 49.1 64.6 558 | 525 663 58.6 483 615 541 465 659 545 | 69.6 845 76.3
Gemini 2.0 Flash Thinking 37.8 53.7 444 | 373 530 438 355 494 413 406 586 480|595 76.0 66.8
Gemini 2.0 Pro 40.1 635 492|390 633 483 383 587 464 430 685 529|626 831 714

Table 7.1: Precision (P), Recall (R), and F1 score for all models on the inference task in CUPID, averaged across
all instances, each instance type, and the oracle setting. Best results in each column are bold-faced and second best
results are underlined.

7.4.2 Results

In this section, we report performance on inference (Section 7.4.2), generation (Section 7.4.2), and with

interaction summaries as an intermediate representation (Section 7.4.2).

Inference Task

Models struggle to infer contextual preferences from interactions. Table 7.1 shows the performance of all
tested models on the inference task. All models struggled to adequately infer the preference relevant to the current
user request from the previous interaction sessions—no model surpassed an F1 score of 60% and with most under
50%. Considering how our benchmark was designed to be challenging but not overly difficult (e.g., each preference
is revealed in multiple sessions, only 8 prior sessions per instance), we expect that performance will degrade

significantly in more realistic settings.

Model size and reasoning capabilities increase performance. Larger model size leads to better performance
with the smallest model, Mistral 7B, showing the lowest performance by a notable margin of 7.8 points. Additionally,
our results show reasoning models perform the best in this task with DeepSeek-R1 and Claude 3.7 Sonnet reaching
the highest performance. This suggests that greater train-time and test-time compute enables models to better

reason about user preferences and their relevant contexts from prior interactions.

Retrieving relevant context can significantly increase performance. In the oracle setting, all models improved
by approximately 20-30 points, highlighting how inference performance is strongly dependent on the capability
to retrieve and focus on prior interactions with the same context. However, even with only the relevant sessions,

precision across models was still under 70%, implying that models are still inferring less relevant details.

Surprisingly, Changing instances led to highest performance. Most models perform worse in Contrastive
instances but excel in Changing, contrary to our expectation that models would struggle with evolving preferences.
Deeper analysis suggests that models prioritize the most recent sessions. Figure 7.3 shows that performance
improves when relevant sessions (i.e., contain the current preference) appear at the end of the history. In Changing
instances, earlier sessions reflect the preference before a change and later ones capture the change—meaning that

relevant sessions tend to be positioned towards the end.

Error Analysis To understand the errors that models make when inferring preferences, we sampled and qualita-

tively inspected 50 responses each from DeepSeek-R1 and Llama 3.1 405B with F1 scores below 20% (~bottom
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25%). Table 7.2 summarizes the identified error types. We observe that models failed to focus on the relevant
contexts, struggled to extract the specific preference from multi-turn interactions, only performed shallow inferences,
or hallucinated preferences. The models exhibited distinct error patterns: Llama 3.1 405B produced more shallow
inference errors, focusing only on the current request, while DeepSeek-R1 showed less shallow errors but more

incorrect context errors, reasoning over prior interactions but failing to focus on those with shared context.

Evaluation with PREFMATCHER-7B shows almost perfect correlation with GPT-40 assessments (Figure 7.4).
The Pearson correlation for model-wise average performance with GPT-40 and PREFMATCHER-7B was 0.997
(p<0.001). Given this result and the strong correlation between inference and generation (discussed later), we

suggest evaluating on CUPID only on the inference task and with PREFMATCHER-7B to reduce cost.

Generation Task

Performance in the generation task follows similar trends to the inference task. Table 7.3 shows the models’
performance in the generation task. Similar to the inference task, we observe that model performance is generally
low, increases with model size and reasoning capabilities, increases significantly in the oracle setting, and is highest

in Changing instances while being generally lower in Contrastive.

Strong correlation between the inference and generation tasks. Figure 7.5 shows a positive correlation

between model performance in the inference and generation tasks. The Pearson correlation for model-wise average

Error Type Description DeepSeek-R1  Llama 3.1 405B
Incorrect Context ~ The model incorrectly infers preferences from other contexts that are 86% 40%
not relevant to the current request.
Shallow Inference  The model infers preferences explicitly mentioned in the request or 10% 50%
that are commonsense for the request, instead of inferring from prior
interactions.
Vagueness The model inferred preferences that were relevant but were too broad 2% 6%

or vague, lacking the specific details in the target preference.

Hallucination The model inferred preferences without clear evidence or context, 2% 4%
likely influenced by internal assumptions or biases.

Table 7.2: Error types identified in preferences inferred by DeepSeek-R1 and Llama 3.1 405B, with proportion of
errors that each model made for each type.
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Model All Instances ‘ Consistent Contrastive Changing ‘ Oracle Preference

Mistral 7B 4.76 4.03 4.20 6.06 6.12 7.36
Qwen2.5 72B 6.14 5.60 5.38 7.45 7.33 8.69
Llama 3.1 405B 4.93 4.43 429 6.06 6.96 8.84
DeepSeek-R1 7.68 7.50 7.33 8.21 8.95 9.66
GPT-40 6.46 5.88 5.75 7.74 7.79 9.20
03-mini 6.76 6.31 6.04 7.93 8.10 9.72
Claude 3.5 Sonnet 5.78 5.25 5.08 7.01 8.05 9.41
Claude 3.7 Sonnet 7.16 7.13 6.50 7.84 8.61 9.63
Gemini 2.0 Flash Thinking 6.54 6.03 591 7.69 7.58 9.43
Gemini 2.0 Pro 6.47 6.29 5.81 7.31 7.81 9.45

Table 7.3: Preference alignment scores for all models on the generation task in CUPID, measured for all instance
types, each instance type, oracle setting, and oracle preference setting.

performance in the tasks was 0.764 (p=0.010), suggesting that the inference task can serve as a proxy to evaluate
models’ ability to generate contextually personalized responses. Interestingly, certain models excelled at one task

over the other: Claude 3.7 Sonnet led in inference, but was outperformed by DeepSeek-R1 in generation.

Generation performance is not tied to response generation capabilities. Almost all of the models show
significantly high performance in the oracle preference setting (i.e., generating a response given the ground-truth
preference). This indicates that the low performance across the models is not due to the models’ inability to generate

responses that satisfy the preference, but rather due to their inability to precisely infer the relevant preference.

With Summaries

Summaries have an equalizing effect across models. Figure 7.6 compares model performance with and without
summaries. Summaries offer minimal gains for strong models—slightly lowering performance for reasoning
models—yet substantially boosts weaker models, bringing them closer to the performance of strong models. This
suggests that summaries help weaker models to reason about and extract preferences from each session, but may
lead to information loss for strong models. Notably, the smallest model, Mistral 7B, shows a substantial increase of

13 points in inference, suggesting potential for local and privacy-preserving LLM personalization.

Even with summaries, models show low precision. We observe that the increase in inference performance
with the summaries is mostly attributed to recall. This indicates that the summaries are not necessarily helping the

models focus on the relevant interaction sessions, but rather it is helping models extract the preferences from all the
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Figure 7.6: Comparison of each model’s results for the inference task (left) and generation task (right) with the
full prior interaction sessions or summaries of these sessions.
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Figure 7.7: Average result for each model in the inference task (left) and generation task (right) according to the
maximum token length of the instances.

Performance against Length of Prior Interaction Sessions

Figure 7.7 shows the average results of each model in the inference and generation task depending on the
token length of the previous interaction sessions in the instances. Specifically, we divided all the instance data
into equally-sized groups (bins). Each bin contains instances with lengths larger than the maximum length in the
previous bin, but less than the minimum length in the next bin. Then, we averaged model performance for all data
in each bin. This allows us to observe that each bin represents model performance at a distinct range of lengths. As
seen from the results, we observe a general trend where model performance in both tasks decreases with the length
of the prior interaction sessions—which coincides with findings in similar work [363, 404]. This suggests that,
with even longer interaction sessions, models will struggle to infer users’ personalized and contextual preferences

from interactions.

Analyzing Possible Self-Enhancement Bias

As CUPID context factor-preferences were generated by Claude 3.5 Sonnet, Claude 3.7 Sonnet’s superior
inference performance raises the possibility that implicit biases trained into these models were reflected in the data.
To test this, we synthesized small datasets using three high-performing models—Claude 3.7 Sonnet, GPT-40, and
DeepSeek-R1—based on the 64 persona profiles in our benchmark that produced the lowest average performance
across all models . For each persona and model, we used our synthesis pipeline to generate Consistent, Contrastive,
and Changing instances—Ileading to small datasets of 192 instances for each model. Then, we evaluated each model
on its own and the other models’ datasets—for Claude 3.7 Sonnet, we instead used the original CUPID instances for
the 64 personas.

Figure 7.8 shows minimal evidence of higher performance on self-generated data, indicating that Claude 3.7
Sonnet’s strong results in our benchmark reflect genuine capability rather than dataset bias. Performance patterns in
all the datasets were consistent with those in our benchmark: in inference, Claude 3.7 Sonnet performed best, then
DeepSeek-R1, and then GPT-40; in generation, DeepSeek-R1 led, with Claude 3.7 Sonnet second, and GPT-40

last.

Practical Implications

Our findings suggest three actionable directions for personalized LLMs. First, integrate retrieval techniques
that identify prior sessions from users’ interaction histories that are contextually relevant to the current request, as
oracle results show 20-30 point improvements. Second, when deploying smaller or local LLMs, cache summaries of

each interaction session focusing on context and preferences. Finally, prompt or tune models to perform reasoning
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about users’ underlying preferences during multi-turn interactions, rather than simply inferring from surface-level

expressions.

7.5 Ethical Considerations

In this paper, we introduce CUPID, a benchmark designed to evaluate LLMs’ ability to infer user’s contextual
preferences from interaction sessions. Since the data in our benchmark is newly created, we conducted a rigorous
human validation process. Specifically, during the human validation that assessed that whether the data instances
were solvable, human annotators were also asked to flag any possible data points that appeared harmful or offensive.
Our human data validation protocol has been determined exempt by the IRB of the author’s institution. Additionally,
the authors manually inspected all of the data points (i.e., context factors and contextual preferences) to identify
and filter out any that appeared offensive, harmful, or unethical. We conducted all experiments using either
publicly available models or through documented commercial API access. We have detailed the API versions and
configuration of all of the evaluated LLLMs for reproducibility. We acknowledge that LLLMs may inherit biases
from their training data, potentially leading to our dataset incorporating these same biases and not being fully
reflective of real users. To mitigate this issue, we aimed to increase the diversity of the user personas, context factors,
contextual preferences, and conversation topics. Namely, we created taxonomies for each of these components to
guide the generations to reflect diverse types for each of these components. Finally, we acknowledge personalized
conversational Al systems can raise concerns related to user’s privacy as user information is stored, recalled, and
analyzed. It is crucial that such Al systems implement mechanisms to anonymize data, provide mechanisms
for users to control what data is stored, or support local, on-device storing and processing to ensure that user
information is never transmitted externally. To promote reproducibility and advance research in this field, we have

made our benchmark dataset, code, and model publicly available.
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Chapter 8. DESIGNLLM: Proactive Exploration of Latent User Intents

This chapter presents preliminary findings on a work that explores how to train LLMs to interact with users by
integrating to the principles of text disentanglement. Specifically, this chapter describes DESIGNLLM, a training
framework that teaches models to act as collaborative, creative assistants by disentangling diverse interpretations of
user intent from messages and responding with multiple artifact prototypes that help scaffold the conversation. This
chapter presents the overall approach and preliminary experimental results on the given approach. All uses of "we",

"our" and "us" in this chapter refers to coauthors in this work.

8.1 Motivation & Contributions

Large Language Models (LLMs) have emerged as effective conversational assistants, thanks to their natural
language understanding and instruction-following capabilities. Given a clear and precise input, these models can
generate high fidelity outputs that satisfy multiple and complex user requirements. However, this effectiveness relies
on a critical assumption that users start conversations with fully formed intents. In reality, users often do not know
precisely what they want from the onset and instead develop their intents gradually through the conversation [318].
This is especially true in open-ended creative tasks, where people only develop and realize their needs, constraints,
and preferences through interactive exploration and reflection on task outcomes [295, 81, 79].

However, current LLM training and evaluation focuses on optimizing single-turn responses. Benchmarks
mostly assess single-turn performance [180], and fine-tuning methods such as Reinforcement Learning from Human
Feedback (RLHF) [257] predominantly reward models for producing direct, fully elaborated outputs to a user’s
single request. Consequently, when users have underdeveloped intents, their initial inputs will also be vague or
under-specified. As models are optimized for single-turn responses, they tend to infer or ignore missing details, and
return fully fleshed-out responses. These responses often misaligned with what the user ultimately wants, forcing
users to parse the frequently extensive content and provide feedback and corrections through follow-up turns as the
user develops their intents—a process that is inefficient and frustrating [390, 342, 170, 166].

Recent work has begun to explore methods to improve multi-turn interaction, either through prompting
strategies [197] or training models on multi-turn trajectories [398, 298, 365]. These approaches assume that users
already possess well-defined intents that they have simply not articulated—implying that the assistant can elicit them
through clarification. When users have not yet realized their intents, however, clarification questions fail—there is
nothing that the user can clarify. In these scenarios, design practice suggests that people frequently make sense of
the problem space (i.e., their needs) by exploring the solution space (i.e., possible outcomes) [68, 79, 295]. By
examining and assessing options, even incomplete ones, users gradually discover characteristics that they wanted
or intended for. This points to a fundamentally different role for LLMs when interacting with users: instead of
trying to extract information users do not yet possess, models should help learn what they actually want through
exploration and reflection.

Inspired by this perspective, we propose DESIGNLLM, a training framework that teaches language models to
collaborate with users by helping them form their intents rather than simply executing them. Our key innovation is
a novel design for user simulation. Unlike prior work that designs simulated users to start with fully formed intents,
our simulators represent each intent across multiple levels of specificity—from broad and abstract to specific and
concrete—where users start the conversation with each intent only formed at its most general level. Through the

conversation, users gradually form more specific levels of each intent when the assistant successfully satisfies or
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probes at these intents. For instance, a user who begins with the vague request "write me a poem with an animal"
may initially only have formed the intent "include an animal." Even if the assistant asks "what kind of animal?",
the user cannot answer because their intent has not yet formed to a more specific level. However, if the assistant
produces a poem featuring a cat, the user may realize this captures what they wanted and form this more specific
intent. Our simulator operationalizes this as a hierarchical intent-formation process (e.g., animal — pet animal —
cat — tabby cat). We then reward model responses proportionally to the number of intent levels that they help
users form. Using this signal, our framework fine-tunes models via reinforcement learning. Models trained with
DESIGNLLM shift from merely responding to requests or asking questions towards collaborative exploration,
offering alternatives and possibilities that help users discover what they actually want.

We evaluate DESIGNLLM on creative writing. In simulated experiments, our models improve the simulated
user’s final satisfaction by 11.7% and intent awareness by 10.6% when compared to the base model, demonstrating

the value of training models that help users discover their goals, not just articulate or execute them.

8.2 Problem Formulation

In contrast to existing tasks for multi-turn user-LLM conversations where the user enters with fully-formed
intents, we consider a setting where the user begins with vague and underdeveloped intents that are gradually
formed and refined through the conversation. In this setting, the conversation unfolds over multiple turns, denoted

asty,ta,...,tx, where each turn consists of a user input u; and the model’s response m;:

(u17m1)7 (u27m2)7 LR (uKamK)

The user’s initial abstract intents are progressively concretized and refined into specific intents as they interact with

the assistant.

8.2.1 User Intent Representation

The user’s intent is represented as a hierarchical structure consisting of multiple levels of specificity. Each

intent [}, is defined as a sequence of levels:
1= (110, ),

)

0 . ) ; Ly
where [ ]E ) represents the most general level of the intent (e.g., "include an animal”), and I, ,i " represents the

most specific (e.g., "include a tabby cat"). These levels correspond to different stages of the user’s evolving

understanding of their goal.
Initial State. Initially, the user has formed only the most general version of each intent:
Fo={":k=1,... K},

where K is the total number of intents. As the conversation progresses, the user develops their intents to more

specific levels. At any turn ¢, the formed intents are captured by the set:
(6) -
Foe{l,’ |0sl=<Ly,k=1,...,K},
which contains the specific intent levels the user has formed up to turn ¢.

109



Evolving State. The user forms the more specific levels of each intent in response to the assistant’s messages.
Given the complete intent hierarchy {1, ..., I}, the user’s currently formed intents F;, and the model’s response

my, the user’s formed intents are updated:
‘Ft+1 = u({Ilv s 7IK}7mt7‘Ft)7

where U represents a function that determines how effectively the model’s response would help the user form more
specific intent levels, and F;.; is the new set of levels the user has formed. This captures how the user’s intents

develop and form over time as the assistant guides them through their evolving goals.

Message Expressiveness. A key consideration in our problem formulation is that the user can only express the
levels of intent they have currently formed. At any given turn ¢, the user’s message wu,; can only refer to the intent
levels in F;. If the user has formed only a high-level intent (e.g., “include an animal” but not yet “include a cat”),

they cannot specify more concrete details until the user has formed the more specific intent.

8.2.2 Task Definition

Given this formulation, we define the model’s or assistant’s task with two objectives:

* Objective 1: Intent Development. The assistant should guide the user to form the most specific level of

each intent. Formally, there should exist some turn ¢ such that:
_ ) L
]-'t—{Ik, tk=1,...,K}.

That is, by some point in the conversation, the user’s formed intents F; should contain the most specific level

of every intent.

* Objective 2: Intent Satisfaction. Once the user has formed the most specific level of their intent, the
assistant’s response should satisfy this fully formed goal. We define a satisfaction function J that assesses

whether a model’s response m; satisfies an intent [ ,E "'). The objective is to maximize:

S (L)
ZS(mt,Ik ).
k=1

That is, the assistant’s response at each turn should align with and satisfy the most specific form of each user

intent that has been formed.

The challenge is to develop an assistant that can balance these two objectives: progressively helping users
develop more specific intents through exploration, while simultaneously providing responses that would satisfy all

of these intents.

8.3 DESIGNLLM: Training Framework for Intent Formation

We introduce DESIGNLLM, a training framework that teaches language models to help users form and
refine their intents through collaborative exploration. The core of our approach is a novel user simulator that
operationalizes the problem formulation described in Section 8.2, enabling us to generate training data and compute

reward signals to train models to balance intent development with intent satisfaction.
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8.3.1 User Simulator

Our user simulator is designed to mimic how real users gradually discover and refine their intents through
interaction with the assistant. We construct the simulator through a multi-stage process that creates realistic
hierarchical intents, tracks their formation states, and generates appropriate user responses based on what intents

have been formed.

Intent Creation. Given a completed artifact (e.g., a poem, code snippet, or document), we use an LLM to
reverse-engineer the intents that must be satisfied to create this artifact. Specifically, we prompt the LLM to analyze
the artifact and extract a set of concrete, specific intents {1 §L1), . E{LK)} that characterize its key properties and
requirements. This reverse-engineering approach yields intents that are both concrete (grounded in actual artifacts)
and diverse (spanning the variety of artifacts in existing datasets). Importantly, this design allows for scale: given

only a dataset of artifacts, we can automatically generate diverse intent sets without manual annotation.

. . L .
Intent Abstraction. For each concrete intent / ,(c ) extracted from an artifact, we use an LLM to generate
. . . . . 0) (1 Ly
progressively more abstract versions, creating the hierarchical structure I}, = (I ,i ), 1 ,i ), . ,i ) ). We prompt

the LLM to produce L, abstraction levels by iteratively generalizing the intent while preserving its core meaning.
For example, the specific intent “include a tabby cat character” might be abstracted to “include a cat character” at
level L, — 1, then to “include a pet animal” at level L; — 2, and finally to “include an animal” at the most general

(0)

0 . . . . .
level I;, *. This produces a natural hierarchy from abstract to concrete that mirrors how users might progressively

refine their thinking.

Initial User Request. To initiate the conversation, we generate the user’s first message u; based on the artifact
type and the most general level of each intent. We prompt an LLM to create a realistic initial request that mentions
only a minimal subset of intents that must be mentioned for the request to be coherent and purposeful. Let
Ko € {1,..., K} denote the indices of intents mentioned in u;. Intents with indices in K, are initialized as fully
formed at their most general level, while all other intents are initialized as not yet formed. This creates the initial
formation state:

Fo={1": k e ko).

Evaluation of Assistant Messages. At each turn ¢, we evaluate the assistant’s response m; to determine how it
affects intent formation. The evaluation proceeds in two stages:

Response Classification: We first use an LLM to classify whether m;, is an artifact response (i.e., provides the
full or substantial portions of the requested artifact) or a dialog act (i.e., other message types such as questions or
confirmations that do not include any artifacts or their portions).

Intent Evaluation: We then evaluate m, against all intent levels using an LLM-as-a-judge approach [406, 217,

384]. The evaluation differs based on the response classification:

* For artifact responses, we assess how well m; satisfies each intent level—whether the provided artifact

exhibits the properties specified by the intent.

e For dialog acts, we assess how well m; probes each intent level—whether the message mentions, asks about,

or reminds the user about the intent.

For each intent level, the LLM judge assigns one of three scores: no score (intent not addressed), partial score

(intent partially satisfied/probed), or full score (intent fully satisfied/probed). Evaluation proceeds in a cascaded
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. . 0 . .
manner: for each intent I, we evaluate starting from the most general level [ 1(9 ). Only if a level receives a full

. £+1 . . e
score do we proceed to evaluate the next more specific level 1 ,g ). This cascading ensures that more specific intent

levels can only be formed if their more general predecessors are already addressed.

Update Intent Formation States. Each intent level can be in one of three formation states: not formed, partially
formed, or fully formed. After evaluation, we update the formation state of each intent level based on the scores it

received:
« If an intent level receives a full score, it transitions to fully formed.

« If an intent level receives a partial score and is currently not fully formed, it transitions up one level with
probability 0.5—if not formed becomes partially formed, if partially formed becomes fully formed. This
stochasticity reflects how users may form their intents even when a response only tangentially satisfies or

probes at them.
* Intent levels that are already fully formed remain in that state.

These state transitions implement the intent evolution function Fy,q = U({I3, ..., Ix}, ms, F;), where Fyq

contains all intent levels that have reached the fully formed state by turn ¢ + 1.

User Response Generation. After updating intent formation states, we generate the next user message ;.1 using
an LLM conditioned on: (1) the conversation history up to turn ¢, (2) the complete intent hierarchy {I;, ..., I},
and (3) the set of the most specific intent levels that are currently formed. Crucially, we instruct the LLM to
respect the user message expressiveness constraint: the generated message cannot reference intent levels that are
not formed and can only vaguely allude to intent levels that are partially formed. Only fully formed intent levels
can be explicitly and specifically mentioned in u;+1. This ensures that the simulated user behaves realistically,

expressing only what they have discovered or realized through the conversation so far.

8.3.2 Reward Function

We define a reward function that quantifies how effectively the assistant’s response helps the user form their

intents. For each intent I}, we compute the progress made toward forming all of its levels:

Ly
__ ! ) .
Ay = T+l ; 1[level I, ’ is fully formed at t + 1 but not at ¢],

where 1[ -] is the indicator function. This measures the fraction of intent levels that newly became fully formed as a

result of the assistant’s response m;. The overall reward for response m; is then:

1 K
R(my) = 2 ) A,
k=1

which averages the formation progress across all intents. This reward function incentivizes the assistant to help

users form more specific intent levels while ensuring balanced progress across all intents.

8.3.3 Optimization and Synthetic Data Generation

Our user simulator enables multiple training paradigms for teaching models to support intent formation:

112



Reinforcement Learning. The simulator can provide turn-by-turn reward signals without requiring a separate
reward model. At each turn t, after the assistant generates a response m,, the simulator computes R(m;) by
evaluating intent formation progress. These rewards can be used to train models via online reinforcement learning
algorithms such as PPO [296] or DPO [274]

Synthetic Dataset Generation. The simulator can also generate large-scale synthetic conversation datasets for
offline training methods. We create datasets by simulating full multi-turn conversations between the user simulator
and one or more assistant models.

For Supervised Fine-Tuning (SFT), we simulate conversations where, at each turn, multiple assistant candidates
generate responses to the same user message. We use the simulator to compute () for each candidate response
and continue the conversation with the highest-scoring response. This produces complete conversation trajectories
that demonstrate high-quality intent elicitation and satisfaction behaviors.

For Offline DPO, we use the same multi-candidate sampling approach but construct preference pairs instead
of trajectories. At each turn, we select the response with the highest reward as the “chosen” and the response with

the lowest reward as the “rejected”, creating training pairs.

8.4 Experimental Setup

Based on our DESIGNLLM framework, we create multiturn datasets for both fine-tuning and evaluation.

8.4.1 Tasks and Datasets

We focus on two different types of tasks: creative writing, and communicative writing. Composing and
revising writing is one of the most common tasks that users employ with Al assistants [329, 391]. Writing tasks
also involves substantial iterative back-and-forth for users to form their intents and for Al assistants to align with
these intents [166]. To create the user simulators, we first start with datasets of artifacts: poems [145] for creative
writing, and Medium articles [365] for communicative writing. From each dataset, we sample 300 samples for
training and 50 for evaluation, and then apply our framework to automatically instantiate user simulators for each
artifact by synthesizing and abstracting intents relevant to that artifact. We employ Claude Haiku 4.5 as the user

simulator, and we use GPT-5.1 as the assistant to synthesize the multi-turn datasets.

8.4.2 Evaluation Metrics

In evaluation, we simulate conversations between each user simulator and the evaluated model as the assistant.

Then, we assess the success of each multi-turn conversation on three metrics:

* Intent Formation Score: We measure the average proportion of intent levels that became fully formed

across all intents by the end of the conversation. Specifically:

L

e

1
Lp+1

1[level I ,(f) is fully formed at conversation end |
0

1 &

Formation = — Z
K

k=1 Y

This metric quantifies how effectively the assistant helped the user discover and refine their intents throughout

the interaction.

¢ Intent Satisfaction Score: We employ an LL.M-as-a-Judge [406] to evaluate how well the final artifact

created by the assistant satisfies the most specific intent levels {1 §L1), cee IE{LK)}, regardless of whether

113



these levels were fully formed during the conversation. This measures the quality of the assistant’s final

output against the user’s most specific, latent intents.
* Average Token Count: We compute the mean number of tokens generated by the assistant across all turns in

the conversation. This metric captures the efficiency of the overall conversation.

8.4.3 Fine-Tuning DESIGNLLMs

DESIGNLLMs are based on Llama-3.1-8B-Instruct [119] with LoRA finetuning [132]. We train our model
through Offline DPO.

8.4.4 Baselines

We compare DESIGNLLMs against (1) Base: Llama-3.1-8B-Instruct, (2) Prompted Base: the base model with
prompting instructions to support user exploration, and (3) CollabLLM [365]: a fine-tuning of the base model that

is trained to proactively collaborate with users through follow-ups and questions.

8.5 Results from Simulated Experiments

Model Formation  Satisfaction #Tokens (k)
Base 0.587 0.568 1.99
Prompted Base 0.603 0.573 2.10
CollabLLM 0.635 0.615 1.80
DESIGNLLM 0.667 0.640 2.60
Rel. Improv. 10.6% 11.7% -

Table 8.1: Evaluation results for intent formation and satisfaction scores with token counts and relative improvement
compared to the prompted baseline.

As shown in Table 8.1, prompting can be helpful by encouraging the assistant to explore options or ask
questions that can help the simulated user form its intents. However, as seen from the results, the performance
gains from prompting are limited. We observe that this is due to the how, only with prompting, the model can be
susceptible to return to its typical behavior of providing a single option each turn, even when the users’ messages
can be ambiguous.

DESIGNLLM effectively increases performance on intent formation and satisfaction, with significant improve-
ments compared to the prompted base model. Unlike CollabLLLM, which mostly focuses on asking clarification
questions to the user, DESIGNLLM provides responses that incorporate multiple and distinct sample outputs
that help the simulated user form and develop more specific intents. One caveat, however, is that this increased
exploration also increases the overall length of the conversations as each response from the model incorporates
more alternatives and options.

We present qualitative samples of DESIGNLLM responses and the baselines in Figure 8.1. As seen, given an
ambiguous user request for a poem, the base model (Llama-3.1-8B-Instruct) simply returns a lengthy poem. On the
other hand, CollabLLM tries to explore this ambiguity by asking multiple clarification questions to the user. If these
do not effectively probe at the user’s actual latent intents, the user cannot provide clear or more specific answers to

these questions. DESIGNLLM instead attempts to explore the ambiguity in the user’s request. Specifically, the
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model provides multiple short samples of poems that explore different types of tones, which is a dimension that the

user failed to specify in their request.

Figure 8.1: Qualitative samples for Llama-3.1-8B-Instruct, CollabLLM, and DESIGNLLM for the same user
message.
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Chapter 9. Discussion

This chapter lays out a set of guidelines for applying text disentanglement—focusing on how to disentangle text,
who should perform the disentanglement, and how much disentanglement should be supported. Then, I discuss
how this disentanglement approach can generalize to other task contexts and modalities, but also the limitations or
drawbacks of this approach. Finally, the chapter concludes with future directions for AI models that go beyond

language and text.

9.1 Guidelines for Text Disentanglement

This thesis proposes the general concept of fext disentanglement: disentangling input and output text during
human-Al interaction to allow users to directly interact with the high-level attributes or components encoded within
the text. To guide the application of this approach to new tasks and domains, this thesis provides answers to three
critical questions: in what tasks is this approach most useful, how to disentangle text, who does the disentanglement,

and how much to disentangle the text.

What? Types of Tasks

This thesis suggest that the text disentanglement approach is most beneficial in open-ended and ill-defined
tasks—tasks where the user’s goal, task method, and the overall success criteria are not clearly specified. As
evidenced by lessons from the various work included in this thesis, this type of tasks requires users to iterate through
execution and evaluation loops to explore through the space of outcomes, understand what their goals and success
criteria are, and identify satisfactory outcomes. While text disentanglement can also support well-defined and
close-ended task, as the user requires less iteration in these tasks, there is a reduced benefit to disentangling text and
for users to interact with the resulting components. This thesis demonstrates the effectiveness of the approach in a

diverse range of open-ended and ill-defined tasks (Table 9.1)—ranging from creative writing to web-development.

How? Decomposition vs. Differentiation

The various work in this thesis propose distinct ways to disentangle text. Specifically, we demonstrate two
methods for disentanglement: decomposition, which involves decomposing a text artifact into its constituent
components, and differentiation, which involves drawing out the various interpretations that exist for a single text
artifact. The Cells, Generators, and Lenses framework demonstrates decomposition during execution by allowing
users to break down their text inputs into multiple fragments that can be assembled into diverse configurations.
On the evaluation-side, EVALET decomposes text outputs into their constituent fragment-level functions, allowing
users to gain an overview of how outputs are generally composed. Regarding differentiation, Stylette takes a single
user intent and differentiates all the various interpretations to create a palette of operations. EVALLM assesses
each text output by interpreting and scoring it on each user-defined criteria, differentiating its overall quality across
these dimensions. This raises a natural question: when should we apply decomposition, and when should we apply
differentiation? Based on lessons from the work in this thesis, I propose that these two forms of disentanglement
play different roles during execution and evaluation.

During execution, decomposing a single text artifact into multiple component and then differentiating each

component into multiple interpretations can exposes users to an excessive number of elements and control variables.
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Engaging with all these elements would require excessive levels of cognitive load, hindering users rather than
supporting them. Thus, this thesis suggests that only one method should be applied during execution: when a user’s
intent is relatively atomic (i.e., a single objective), it is more effective to differentiate to help user explore a range of
possible interpretations. In contrast, when the user’s intent is complex or compound, it is more useful to decompose,
breaking the intent into controllable components so that users can systematically test and recombine them.

On the evaluation side, however, both forms of disentanglement can be productively combined to support
multi-layered interaction: for each output, users can first be provided with an overview that differentiates the output
along multiple criteria, and then, if they desire more detail, they can dive deeper to inspect components that were
decomposed from the output. This is the approach embodied in EVALET, and it follows Shneiderman’s Visual

Information-Seeking Mantra [305]: "overview first, zoom and filter, then details on demand."

Who? Users, Designers, or Systems

This thesis proposes various approaches where the disentanglement is conducted by different actors. For
example, the Cells, Generators, and Lenses framework proposes that interface designers should provide interactive
objects that allow users to disentangle the text themselves. While other approaches, like EVALET, use an Al
model to automatically disentangle the text based on user-defined dimensions. Then, the question is: who should
disentangle the text the users, the system designers, or the system itself?

Lessons from these work indicate that the answer to this question is not "one or the other" but rather "all of the
above"—all three actors should participate in the disentanglement process to effectively support user interaction.

This participation occurs at three-levels but each level is dependent on the other.

* Designers establish the possibilities and boundaries. They determine how text can and should be disentan-
gled for the specific user task. Through human-centered design practices (e.g., literature review, formative
interviews, pilot studies), designers should identify user needs and challenges, and uncover how disentangle-
ment can address these. Through this, designers should also define the degree of freedom granted to users:
how much disentanglement can users perform and how can they customize the process. Essentially, designers

establish the structure and guardrails for disentanglement.

» Systems enable the possibilities. Systems can enable disentanglement by automating the process. However,
this automation requires careful consideration of the system’s capabilities and limitations as incorrect
disentanglement can hinder interaction. Furthermore, these systems should incorporate mechanisms that

allow users to adapt or customize the disentanglement process, and even correct the system if necessary.

 Users exercise control within the boundaries. Users should always have some levels of control over how
disentanglement is performed either by allowing users to perform the disentanglement themselves or to
guide the systems to disentangle in ways that align with their own needs. Again, however, the degree of
freedom given to users should be appropriately constrained by designers based on task considerations and

the capabilities of the systems themselves.

How Much? Levels of Abstraction

The work in this thesis explores at most two levels of disentanglement or abstraction. For instance, EVALET
differentiate outputs into criteria-wise scores to provide overviews, and then surfaces fragment-level functions
within each dimension to support more detailed inspection. Disentanglement can be applied recursively to create
more fine-grained and specific elements from a single text artifacts that grant users with greater control. This,

however, also significantly increases cognitive load due to the number of elements that users must manipulate.
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Work Artifact Types Task Domains

Cells, Generators, Prompts, writing Creative writing, business writing, copywriting

and Lenses

Stylette Coding, spoken utterances, code Web development

EvVALLM Writing, Ideation Lists lists Creative writing, journalistic writing

EVALET Writing, chat dialogues, reasoning Creative writing, copywriting, open-domain dia-
traces logue, social dialogue, coding/math

CuPID Chat dialogues Open-domain dialogue

DESIGNLLM Messages Creative writing

Table 9.1: Overview of works, artifact types, and task domains.

As a guideline, lessons from this thesis suggest that systems should be designed with a single level of disentan-
glement at the start, while providing mechanism that allow users to guide how the disentanglement is performed.
Through these mechanisms, users can customize the granularity of the outcomes from the disentanglement process,
without increasing the number of disentanglement layers. For example, EVALLM implements only one level of
disentanglement (i.e., each output into a set of scores), but allows users to control granularity by defining more
criteria that are more specific and detailed. From this starting point, designers can conduct pilot studies to observe
how users customize the disentanglement process to meet their needs. Based on these findings, designers can
iteratively add levels of disentanglement to match the users’ information needs and processing capacity. This
iterative approach is exemplified by the evaluation from EVALLM to EVALET: users of EVALLM indicated that
they needed more than just scores—they wanted to see which components in each output contributed to these
scores. This insight directly informed the design of EVALET, which provides two layers that users can flexibly

navigate between based on the level of detail needed at any given moment.

9.2 Generalizability of Text Disentanglement

Through various user studies and case studies, this thesis demonstrates the text disentanglement approach
across diverse types of task phrases and artifacts—summarized in Table 9.1. I envision that this approach can
generalize more widely to additional task contexts and artifacts. In particular, recent years have led to the rise of
agentic systems [4, 5, 115] that automate complex, long-horizon workflows by generating lengthy reasoning traces
that interleave task planning, reasoning, actions—leveraging models’ test-time compute [122]. Text disentanglement
can support both execution and evaluation in this new interaction paradigm. For execution, user’s intents can be
disentangled into interactive step-by-step plans, which can serve as an interface between the user and the agentic
system. This design approach has already begun to be adopted in emergent systems [88, 4]. For evaluation, an
example case for EVALET demonstrated that reasoning traces can be automatically disentangled to surface behaviors
of interest. Thus, I envision that this approach can also be applied to agentic systems to help users uncover what
behaviors the agentic system is exhibiting and assess their alignment with user goals—making typically unwieldy
reasoning traces more interpretable and actionable.

While the proposed text disentanglement approach focuses on textual artifacts, the general concept of
disentangling high-level elements from artifacts and enabling users to interact with these elements can be extended
to diverse modalities. In additional work not included in this thesis, I have explored such extensions: generated
images can be disentangled into semantic attributes that serve as controllable inputs [312]. Artifacts such as videos
can also be decomposed into semantically meaningful chunks that users can interact with separately [164, 382].

While this evidence suggests the potential for generalizing the approach to other modalities, future work is needed
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to validate this in greater depth.

9.3 Limitations of Text Disentanglement

This section offers reflections on the limitations of text disentanglement.

Cognitive load trade-offs. Text disentanglement inherently increases cognitive load on users as it expands the
number of input elements that users must manage and also the output elements that they must inspect—either
through the increase in the number of outputs produced or by exposing multiple interpretations of the same output.
As discussed in Section 9.1, interfaces that implement text disentanglement must carefully consider the degree of

cognitive load that users are exposed to and include features that can scaffold users during interaction.

Applicability in diverse user contexts. Due to the induced cognitive load, the effectiveness of text disentan-
glement depends on the user’s degree of investment in the task at hand. Users must be invested to dedicate the
additional cognitive effort required to explore with the disentangled text inputs and to inspect the disentangled
outputs. For example, if a user provides a simple unambiguous request, disentanglement can introduce unnecessary
overhead without providing much benefit. On the other side, if the AI model returns a concise output, it may be

more efficient for users to inspect and assess the output directly rather than through disentangled components.

User must have an initial intent. The text disentanglement approach relies on the user providing an initial intent,
which can be disentangled as an input to support execution or the resulting output can be disentangled to support
evaluation. However, in various contexts, the user may not be able to or may not realize to provide this initial intent
to an Al model. For example, a novice performing a complex tasks is unaware that they missed a sub-task, or a user
is unaware that an AI model can help them with their ongoing task. In these cases, future work must incorporate
additional proactive support, where the system infers the users’ possible intents from interaction traces and these

inferred intents can then be disentangled for the user.

Dependency on system accuracy. As also discussed in Section 9.1, certain task contexts require systems to
automatically disentangle text for the user. In these cases, the accuracy of this disentanglement can have significant
consequences on the interaction experience. For instance, if Stylette fails to surface the interpretation a user
actually needs, users without domain expertise may not recognize this failure and settle for unsatisfactory outcomes,
unaware that better options exist. Likewise, if EVALET fails to surface the fragment-level functions that are actually
of interest for the user, the user may not realize this failure without inspecting the outputs themselves. Thus, when
applying text disentanglement, it is crucial to rigorously evaluate the accuracy of the system’s disentanglement (i.e.,

alignment with actual user judgments) and to incorporate error recovery mechanisms.

119



Chapter 10. Conclusion

This dissertation introduced text disentanglement: a novel approach to human-Al interaction in which text inputs
and outputs are decomposed into high-level components or differentiated into diverse interpretations, allowing
users to directly interact with the abstractions they cognitively operate on. To conclude, this chapter summarizes

the main contributions of the thesis and proposes important directions for future research.

10.1 Summary of Contributions

Broadly, this thesis makes contributions in human-Al interaction, natural language processing, and Al evaluation.

* Human-AI Interaction: Novel interaction techniques that bridge the gulf of execution and evaluation
by disentangling high-level objectives and attributes from text and representing these through interactive
components; and design frameworks and systems that implement these techniques to support interactive Al

alignment.

* Natural Language Processing: Computational methods for decomposing complex text artifacts into atomic
semantic units and for differentiating these artifacts into diverse interpretations; fine-tuned models that
perform this automated disentanglement; and training frameworks that teach LLMs to intrinsically generate

disentangled artifacts.

¢ Al Evaluation: Novel evaluation methods to assess and analyze LL.Ms according to user-defined criteria
and based on the fragment-level functions contained within their outputs; benchmarks to assess LLMs’
capabilities to disentangle semantically meaningful information from interaction histories; and interfaces that

support interactive evaluation and sensemaking of model behavior and performance.

10.2 Future Directions

I propose three directions for future research.

10.2.1 From Language Models to Interaction Models

A fundamental limitation of current Al systems is their reliance on LLMs as a universal backbone. LLMs
mostly operate on a text-in, text-out paradigm (with recent models also supporting images), which necessitates the
text disentanglement approaches proposed in this thesis where the text is processed post-hoc to integrate interactive
structures. However, I envision a future where Al models inherently generate structured, interactive outputs rather
than plain text—absolving the need for subsequent disentanglement. Instead of producing monolithic text responses,
these models would generate interactive components from the outset—elements that users can directly manipulate
to refine their intents, explore alternatives, or compose complex workflows.

While the DESIGNLLM framework explored how to train models to produce multiple samples that can
help users to explore alternatives and realize their intents, users still have to interact with this model through text
messages. The direction proposed here goes one step further. For example, when a user requests help with a task, the
model can generate interactive blocks that represent different interpretations or decomposed components, allowing

users to select, modify, and recombine them fluidly. This paradigm shift would move us from Large Language
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Models (LLMs) that generate text requiring post-hoc disentanglement, toward Large Interaction Models (LIMs)—
systems designed to generate interaction primitives as first-class outputs. Such models would natively support the
user agency and fine-grained control that this thesis advocates, eliminating the need to retrofit interactivity onto text

after generation.

10.2.2 Personalized Disentanglement

While this thesis proposes generalizable methods for text disentanglement, individual users possess distinct
mental models and may operate on different levels of abstraction depending on their preferences and workflows.
Furthermore, a user’s preferred abstractions may evolve as they gain experience with a specific task or system.
Future research should investigate how systems can dynamically adapt their disentanglement strategies based on user
interaction histories with interfaces that support customization of the text disentanglement approaches. Specifically,
work is needed to develop adaptive interfaces that learn user-specific disentanglement patterns, automatically
adjusting the granularity and type of disentangled components to match the user’s cognitive state and current

workflow.

10.2.3 Disentanglement in Long-Horizon Tasks

As Al capabilities evolve and enable agentic systems that execute autonomous, long-horizon workflows
spanning days or weeks, supporting oversight over these agents is critical. While preliminary evidence discussed
in Chapter 9 suggests that text disentanglement can aid in validating reasoning traces, scaling this approach to
workflows at significantly greater time horizons and involving multiple agents presents new design challenges.
Future work must investigate how to apply disentanglement to these massive textual streams effectively—not by
surfacing every component, but by automatically identifying and disentangling crucial moments or critical decision
points that require human verification. Furthermore, research should explore how users can interact with these
disentangled components to intervene in and steer agentic systems mid-execution, transforming disentanglement

from a post-hoc evaluation tool into a mechanism for real-time supervisory control.
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