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초 록

사람들은 절차적 비디오를 활용해 물리적 기술 습득부터 소프트웨어 조작에 이르기까지 다양한 복잡한 작

업을 배우고 수행한다. 그러나 비디오는 절차의 전 흐름을 담고 있음에도, 선형적 형식 때문에 효율적인

학습에 필요한 구조가 부족하다. 중요한 정보들은 흐름 곳곳에 흩어져 있거나 묻혀 있어, 학습자가 필요한

구간을찾거나내용을효율적으로소화하기어렵다. 비선형적이고계속변하는워크플로를가진학습자들은

결국 핵심 정보를 추출하고, 맥락 속에서 해석하며, 이를 자신의 작업 환경에 대응시키는 데 상당한 노력을

들여야 한다. 이를 해결하기 위해 본 연구에서는 절차적 비디오에 절차의 무엇을, 어떻게, 왜 수행하는지를

정의하는 의미적 구조인 맥락 단위를 결합한다. 본 연구는 학습 과정을 이해 단계와 적용 단계로 나누고, 각

단계에 맞는 맥락 단위를 제안한다. 이해 단계에서는 학습자의 이해를 돕기 위해 영상 지식을 구조화하는

프레임워크를 제시하며, 흩어진 튜토리얼을 통합해 전체적 개요를 제공하거나 비선형 탐색을 지원하는 정보

유형 분류 체계 등을 소개한다. 적용 단계에서는 사용자 상호작용 데이터와 사용자 행동 및 의도 모델링이

소프트웨어 작업 중 실시간 피드백과 상황에 적절한 도움을 제공할 수 있음을 보여준다. 본 연구는 절차적

비디오가 세밀한 맥락 단위로 보강될 때, 초기 정보 탐색 단계부터 복잡한 작업 수행 단계까지 전 과정을

효과적으로 지원할 수 있음을 보여준다.

핵 심 낱 말 절차적비디오,태스크학습,상황인지시스템,인간-인공지능협업,지능형사용자인터페이스

Abstract

People rely on procedural videos to learn and carry out complex tasks, from developing physical skills

to operating software. Although videos capture the full flow of a procedure, their linear format lacks

the structure needed for effective learning. Important details are scattered or buried within the stream,

making it difficult to locate relevant segments or process information efficiently. Learners, whose workflows

are non-linear and constantly shifting, must therefore invest substantial effort in extracting key details,

interpreting them in context, and mapping them onto their own environments. To address this, I develop

systems that augment procedural videos with contextual units—semantic structures that define the what,

how, and why of a procedure. I propose contextual units aligned with each phase of the task-learning cycle

across both the understanding and applying stages. In the understanding stage, I present frameworks

for structuring video knowledge to enhance comprehension, including systems that consolidate scattered

tutorials into holistic overviews and taxonomies that support non-linear navigation. In the applying stage,

I show how user interaction data, along with user behavior and intent modeling, can provide real-time

feedback and context-aware assistance during software tasks. My work shows that when procedural videos

are augmented with granular contextual units, they can effectively support users from the initial stage of

information gathering to the final stage of complex task execution.

Keywords Procedural Videos, Task Learning, Context-Aware Systems, Human-AI Collaboration, Intelli-

gent User Interfaces
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Chapter 1. Introduction

1.1 Procedural Videos

Procedural videos have become a dominant medium for knowledge acquisition. From mastering

cooking skills to operating complex software, millions of learners turn to platforms like YouTube to

acquire new skills. The appeal of video lies in its ability to capture the dynamic flow and rich visual

details—showing not just what to do, but how to do it, including subtle visual cues, timing, and technique

that static text often fails to convey.

However, despite the richness of this medium, the format of video remains inherently linear and

unstructured. Unlike text, which is indexed and organized into paragraphs and headers, video is a

continuous temporal stream, which allows access to only one point at a time. Critical information is often

fragmented across the video stream, or buried within rapid and visually dense demonstrations.

In contrast, the learner’s workflow is inherently non-linear. Rather than consuming information

sequentially, users engage in dynamic behaviors—jumping, repeating, and pausing—as their focus shifts

from broad exploration to targeted troubleshooting. This discrepancy is most pronounced when users

attempt to transfer video instructions to their own environments, a task that requires an iterative,

back-and-forth process.

Consequently, learners face substantial difficulties. They struggle to skim content for relevant

segments, to synthesize information across scattered tutorials, and to adapt demonstrations to their own

constraints or goals. As a result, much of the cognitive burden falls on learners as they extract relevant

details, interpret them within context, and translate them into actions.

1.2 Contextual Units in Videos

To bridge the gap between the linear nature of video and the dynamic needs of the learner, this thesis

introduces the concept of Contextual Units — semantic structures that capture the distinct aspects

of a procedure, including the “what,” “how,” and “why”. Traditionally, approaches have attempted to

mitigate the continuous nature of video through temporal segmentation, where the “step” serves as the

fundamental unit of organization [56, 33]. This method divides the timeline into chronological chapters,

enabling users to navigate by step. Other systems have expanded this by utilizing “objects” (e.g., tools

or ingredients in a recipe video) as primary units of interaction [24].

While these traditional units effectively define the “what” of a procedure and support basic navigation,

they remain limited in scope. They are primarily designed for passive watching or sequential following,

failing to accommodate the dynamic, evolving workflow of learners. The definition of a meaningful unit

must evolve depending on the learner’s current stage. Consequently, supporting users beyond simple

navigation requires identifying new types of contextual units that address the complex needs arising

across different stages of task learning.
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Figure 1.1: Overview of the Task Learning Cycle. The process is divided into two primary stages: (1)

Understanding, which comprises the Exploration and Comprehension phases for gathering and

processing information, and (2) Applying, which involves the Following and Autonomous phases for

transferring knowledge to the target environment.

1.3 Task Learning Cycle

To introduce appropriate contextual units for each stage of task learning, we begin by outlining the

Task Learning Cycle. Learning from procedural videos is not a linear act of consuming content but a

dynamic, iterative process that evolves as learners move from initial curiosity to proficient execution.

This dissertation conceptualizes this process as the Task Learning Cycle, which consists of two primary

stages: Understanding, where knowledge is acquired and synthesized, and Applying, where that knowledge

is transferred into active practice. Each stage is further composed of distinct sub-phases, each characterized

by unique user behaviors and information needs.

1.3.1 Understanding: Knowledge Acquisition and Synthesis

The first stage focuses on the learner’s interaction with the video content itself. Before a task can be

performed, the learner must navigate a vast landscape of available resources to construct a mental model

of the procedure.

• Exploration Phase: The cycle begins with a broad search. Learners often start with a high-level

goal (e.g., “how to build a desk” or “how to edit a portrait image”), but are confronted with

hundreds of potential tutorials. In this phase, users are not yet committed to a single instructional

path. Instead, they scan multiple videos to survey the landscape of possibilities, comparing different

outcomes (e.g., rustic vs. modern designs) and assessing various approaches (e.g., beginner tools vs.

professional equipment). The primary challenge here is synthesizing scattered information to select

the workflow that best matches their constraints.

• Comprehension Phase: Once a specific resource is selected, the learner shifts to deep processing.

The goal transitions from filtering content to internalizing instructions. However, comprehending

a procedural video involves more than passive watching; users actively seek specific types of
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information—such as the rationale behind a step, the tools required, or warnings about potential

pitfalls. They must deconstruct the continuous video stream to locate these granular details, often

navigating non-linearly to re-watch complex segments or skip known information.

1.3.2 Applying: Knowledge Transfer and Execution

The second stage marks the shift from the video player to the user’s work environment. Here, the

video serves as a reference utility while the user engages in the physical or digital execution of the task.

• Following Phase: In this phase, learners attempt to replicate the demonstrated steps in their

own environment (e.g., software application). This process is mentally demanding, as users must

constantly switch contexts between the instructional video and their workspace. The challenge lies in

synchronization: users struggle to match the video’s pacing with their own speed, frequently pausing

to interpret actions or rewinding to recover from missed details. They must map the demonstration

to their specific context, often dealing with differences in software versions or available assets.

• Autonomous Phase: As users gain proficiency or encounter open-ended problems, the guidance of

a tutorial becomes insufficient. They move beyond simple replication into independent exploration,

where they inevitably face errors or uncertainties. Systems must recognize the user’s evolving intent

(e.g., “why isn’t this layer blending?”) and behavioral state (e.g., frustration or confusion) to provide

context-aware support that complements their autonomous workflow.

1.4 Contextual Units for Each Learning Phase

1.4.1 Understanding: Structuring Video Knowledge

The first thread of my thesis focuses on the Understanding phase, where the primary challenge is the

lack of structure in raw video data. Learners often need to synthesize information from multiple sources

or navigate non-linearly within a single video to grasp the “big picture” of a task. To support this, I

propose frameworks that organize video content into meaningful informational units.

(1) Exploration: Aggregating Multiple How-To Videos for Task-Oriented Learning

When learners start a new task, they often need to watch multiple videos to understand the landscape

of possible outcomes and methods. Navigating these scattered resources is time-consuming. VideoMix [190]

is a system that aggregates information from multiple how-to videos to provide a holistic understanding

of a task. By organizing content into contextual units of Outcomes, Approaches, and Methods, VideoMix

allows users to compare different workflows (e.g., “Standard” vs. “Simple”) and methods to achieve a

step, enabling them to form a mental model of the task before committing to a specific tutorial.

(2) Comprehension: A Taxonomy of Information Types in How-to Videos

Once a learner selects a video, they face a vast amount of information—not just instructions, but

also rationale, tips, and warnings. I present a comprehensive taxonomy of information types in how-to

videos [188]. Through an analysis of 120 videos, we identified 21 distinct informational units (e.g.,

Justification, Status, Tip). We demonstrate that exposing these units allows learners to navigate directly

3



Task

How to Build a Desk?

Outcomes

Videos are clustered into different sets Video segments are clustered into different sets

...

Rustic and 
Wooden Designs

Modern and 

Sleek Designs

Standing and 
Adjustable Desks

Functional and 
Multi-purpose 

Designs

Simple Approach

Standard Approach

...

Complex Approach

ApproachesApproaches Steps

Type #1
Prepare Wooden Parts
Step #1

Assemble Desk Frame
Step #2

Set Up Desk
Step #nType #nType #3

Type #2

VideoMix

......

Methods

Using Table Saw
Method #1

Using Jig Saw
Method #2

Using Miter Box
Method #n

...

...

Details

Double-check...
Tip #1

Use a cut list to...
Tip #2

Adjust divider...
Tip #n

Figure 1.2: VideoMix organizes multiple how-to videos into a structured hierarchy. It first clusters videos

by Outcome, then determines diverse Approaches for each result. Finally, it aligns video segments to

specific Steps, extracting distinct Methods, tips, and notes.

Figure 1.3: Taxonomy of information types in how-to videos.

to the knowledge they need, supporting non-linear consumption that goes beyond simple step-by-step

playback.

1.4.2 Applying: Supporting Context-Aware Assistance

The second thread focuses on the Applying phase, where the challenge shifts to the friction between

watching a video and executing the task in the user’s environment. Here, I show how user interaction

logs and user demonstration videos can reveal meaningful contextual units that enable real-time feedback

and context-aware assistance.

(3) Following: Improving the Learning Experience of Software Tutorial Videos with Collec-

tive Interaction Data

When users transfer instructions from a video to their own software, such as Photoshop, they often

struggle to map the demonstration to their specific context. SoftVideo [191] is a system that improves the

learning experience by utilizing collective interaction data. By analyzing how previous learners interacted

with both the video and the software, the system computes contextual units of Difficulty and Relevancy

for each step. This allows the system to provide real-time feedback, such as detecting moments of struggle,

warning users about commonly missed steps, or suggesting relevant video segments when they become

stuck.
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Figure 1.4: (a) The SoftVideo timeline visualizes step-wise difficulty using data-driven icons. (b) Users

can inspect these icons to understand specific challenges. (c) The system provides real-time feedback on

execution progress, alerting users if a step is skipped.

(4) Autonomous: Understanding and Assisting Users in Open-Ended GUI Tasks

Finally, users move beyond following instructions to engaging in open-ended, self-directed tasks.

In this setting, the user’s own demonstration video becomes the target video, and an intelligent agent

must “watch” the continuous stream of screen activity to infer the user’s needs. GUIDE introduces a

benchmark for evaluating multimodal AI systems on their ability to perceive high-level contextual units

from this visual stream, such as user behavior state and intent. For AI agents to serve as truly effective

collaborators, they must be able to infer these human-centric units and provide context-aware assistance.

Which behavior state 

is the user going through?

→ Exploration and Decision-Making

→ Find the appropriate icon color

→ Yes, suggest a complementary 
color for the background.

What is the user trying to 
achieve now?

Does the user need help now?

If so, what help do they need with?

Behavior State Detection

Intent Prediction

Help Prediction

GUIDE

“Which color should I use...”

“What’s the opposite of yellow?”

Figure 1.5: An example of the GUIDE benchmark, which jointly models three tasks: Behavior State

Detection, Intent Prediction, and Help Prediction, to interpret what the user is doing, aiming to achieve,

and whether and what they may need assistance with during open-ended software tasks.

1.4.3 Summary

In summary, effectively supporting human task learning from procedural videos requires more than

generic video segmentation. As learners’ goals shift—from high-level scanning in the Exploration phase

to precise troubleshooting in the Autonomous phase—the contextual units needed to structure and

interpret the video must evolve accordingly. This dissertation demonstrates that by identifying the specific

Contextual Unit tailored to each learning phase, we can transform the linear video stream into an
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adaptive interface that scaffolds the user’s journey from initial understanding to proficient execution. The

specific contextual units identified for each phase are summarized as follows:

1. Understanding: The initial stage of knowledge acquisition where learners gather and synthesize

information.

• Exploration Phase: Users scan multiple videos to survey the landscape of a task. Here, the

relevant units are macro-level structures like Outcomes, Approaches, and Methods(Chapter 3).

• Comprehension Phase: Users dive deep into a single video. Here, the relevant units are

granular Information Types, such as justifications and tips (Chapter 4).

2. Applying: The active stage of task execution where learners transfer knowledge to their own

environment.

• Following Phase: Users perform the task in their software. Here, the relevant units are

data-driven metrics of Difficulty and Step Relevancy (Chapter 5).

• Autonomous Phase: Users work independently in their own environment. In this stage, user

demonstration videos require higher-level contextual units, such as Behavior States and Intent,

to support effective assistance (Chapter 6).

1.5 Contributions

This thesis makes two primary technical contributions:

1. Frameworks and pipelines for decomposing unstructured, linear video streams into semantic contex-

tual units to enhance learner comprehension and navigation.

2. Data-driven methods and evaluation benchmarks that leverage these units to scaffold active task

execution, providing real-time feedback and enabling context-aware human-AI collaboration.

These contributions are instantiated through a series of systems, taxonomies, and benchmarks

designed to support the full Task Learning Cycle. The structural frameworks (VideoMix, Beyond

Instructions) aggregate and categorize scattered video content to support the Understanding phase, while

the data-driven systems and benchmarks (SoftVideo, GUIDE) utilize collective interaction data and user

intent modeling to support the Applying phase. Together, these approaches demonstrate that moving

beyond the raw video stream to a structured representation of contextual units allows for intelligent

systems that adapt to the learner’s evolving needs—from initial exploration to complex problem-solving.

The contributions are enabled by uniquely combining and extending the following methodological

foundations: Human-Computer Interaction, which informs the design of user-centered methods that

support the comprehension and application of procedural knowledge; and Video Understanding and

AI, which enable the automatic extraction of semantic structures and the inference of user states from

visual data.

Thesis statement: Augmenting procedural videos with granular contextual units can effectively

support the full lifecycle of human task learning.
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1.6 Thesis Overview

• Chapter 2 reviews prior work across four areas foundational to this thesis: (1) learning from

procedural videos, (2) structuring instructional video content, (3) intelligent user assistance, and (4)

computer vision approaches to video understanding.

• Chapter 3 presents VideoMix, a system that supports the exploration phase of learning by

aggregating multiple how-to videos into a holistic overview. It introduces a pipeline to extract

contextual units of outcomes, approaches, and methods, allowing users to compare workflows before

diving into specific instructions.

• Chapter 4 introduces Beyond Instructions, a comprehensive taxonomy that structures the informa-

tion types in how-to videos. By analyzing 120 videos, this work identifies 21 granular information

types (such as justifications and tips) that allow systems to support non-linear video navigation

beyond step-by-step playback.

• Chapter 5 describes SoftVideo, a system designed to scaffold the execution phase where users

transfer video knowledge to their own software environment. It demonstrates how collective

interaction data can serve as a contextual unit for estimating step difficulty and providing real-time,

context-aware feedback.

• Chapter 6 presents GUIDE, a benchmark for the assistance phase that evaluates multimodal AI

models on their ability to collaborate with users. It introduces high-level user context—specifically

behavior states and intent—as essential units for shifting AI agents from blind automation to

user-aware collaboration.

• Chapter 7 discusses the broader implications of transforming linear video streams into structured

contextual units, synthesizing findings across the four systems to propose design guidelines for

future intelligent learning systems.
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Chapter 2. Related Work

This thesis builds upon four key areas of prior research: (1) learning from procedural videos,

which examines how learners navigate and extract meaningful information from videos; (2) structuring

instructional content, which investigates semantic units and interaction signals that reveal how

procedural knowledge is organized within videos; (3) intelligent user assistance, which explores

systems that adapt to users’ context and behavior to provide timely support during task execution; and

(4) computer vision approaches to video understanding, which enable the modeling of actions

and workflows in procedural videos.

2.1 Learning from Procedural Videos

2.1.1 Video Navigation and Skimming Techniques

How-to videos provide rich explanations of how to complete a task. However, the linear nature of the

video makes it difficult for users to navigate or skim through the content [141, 54, 34]. For example, it is

hard to locate a specific point of interest in videos without navigating over a time scale. Researchers have

proposed several approaches to overcome such limitations. One of the popular approaches is to segment a

video into meaningful sections [192, 167, 175, 56, 84, 149, 127, 141, 34, 56, 84, 149]. It helps users navigate

the video based on semantics and locate a section of interest. Truong et al. have introduced two-level

hierarchical makeup videos, where they organize a set of actions into spatial locations [167]. Similarly,

VideoWhiz organized steps in recipe videos by reflecting the dependencies between the steps [127].

Another approach is to identify conceptual objects introduced in videos, which allows users to

navigate a video based on objects or concepts of interest [24, 107, 122]. Specifically, RubySlippers [24]

focused on a setting where users’ hands are occupied with physical activities, which it supports with

keyword-based voice commands for navigating videos. A data-driven approach has been introduced as

well to improve video navigation. Researchers found that interaction traces of other users help identify

points of importance or confusion [82]. Finally, transcript-based navigation approaches have allowed users

to efficiently search the content [139, 82], give feedback on videos [140], or edit videos [45, 70, 166, 16].

To better convey this information within the video interface, several systems present it in a mixed-

media format, displaying screenshots alongside corresponding descriptions such as step labels [141, 139,

34, 167]. This presentation format helps users digest the content more efficiently, making it easier to skim

and navigate through the material.

In summary, existing methods for video navigation are based on the script, conceptual objects,

section, or interaction traces. While the script and conceptual objects allow users to navigate in a

finer-grained way, it lacks in supporting navigation in a holistic view. On the other hand, while section

and interaction traces allow users to see the overall flow of videos, it does not support detailed navigation.

Beyond Instructions [188] presents a novel unit for video navigation, information types, which allows

users to see the overall composition of videos as well as navigate at a shorter segment level. It shows how

information types enable efficient navigation through a research probe.
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2.1.2 Learning from Multiple Videos and Workflows

Learning from multiple resources can foster a deeper understanding of a subject [116, 106]. Fol-

lowUs [92] demonstrated the effectiveness of offering multiple demonstrations of a software tutorial

performed by different users, providing various insights and allowing learners to pick up on pieces from

different tutorials. To facilitate this, researchers have developed systems that enable the comparison

of hundreds of cooking recipes [23] or software workflows [88], as well as computational pipelines that

capture the diversity of these demonstrations [25, 170]. A similar approach has been explored in the

context of multi-document analysis, where systems were proposed to effectively collect and organize

information from multiple relevant documents [55, 64].

In video-specific research, several systems have been proposed to facilitate multi-video analysis. For

example, Surch [81] enables structured search and comparison of surgical videos, while Video Lens [114]

offers interactive search and exploration of baseball videos. Work in this space has explored techniques for

comparing instructional steps across videos, including detecting differences between two demonstrations

of the same step [124] and navigating to alternative videos that illustrate different ways of performing

that step [8]. These approaches expand multi-video navigation by helping learners understand procedural

variations across demonstrations.

When presenting information from multiple videos, it is important to organize the content in a

structured manner to avoid overwhelming users. Prior work has explored improving the browsing of

multiple video snippets by organizing frames along meaningful dimensions for video editing [101], or

content exploration [114, 200]. However, these approaches typically focus on visual frames, sorting them

in latent space, or rely on metadata for a specific application. In instructional how-to videos, however,

verbal content also carries critical information [188, 189], as these videos often contain a richer depth of

knowledge, delivered through both visual and verbal channels. Building on these ideas, VideoMix [190]

enhances multi-video skimming of how-to videos, helping users process and synthesize complex, detailed

information from multiple sources.

2.2 Structuring Instructional Video

2.2.1 Semantic Units and Information Types

Instructional videos contain rich semantic cues that help convey how a procedure unfolds, but these

cues are often implicit and embedded within an unstructured visual stream. Prior work has examined

various ways to surface these units to support learning. In how-to videos, researchers have identified

meaningful components such as subgoals, tools, and intermediate outcomes to structure the procedural

flow and support navigation [175, 167, 84, 127]. These units highlight what the user is trying to achieve

and what resources are needed, providing coarse structure for understanding the task.

Beyond structural cues, several studies have explored the semantic content within instructional

videos. For instance, analyses of narrated how-to videos have classified transcript sentences by their visual

relevance to surface which parts of narration are directly grounded in the demonstration [65, 119]. Other

systems have leveraged scene- or concept-level markers to support video authoring and editing, enabling

users to annotate or organize content based on the nature of each segment [35]. These efforts show that

identifying semantic units can support multiple tasks such as segmentation, editing, and browsing.

While these approaches advance the understanding of instructional content, they focus primarily

on isolated unit types such as subgoals, scene markers, or visual anchors. Beyond Instructions [188]
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investigates the broader landscape of information types present in how-to videos, providing a more

comprehensive view of the semantic elements that shape procedural understanding.

2.2.2 Interaction Data for Understanding Instructional Content

A stream of research has analyzed interaction data of educational videos to gain insights into learners’

understanding of the video. A number of work analyzed interaction sequences to relate with learners’

engagement and performance [18, 157, 97, 86, 89, 18, 63]. Another stream of research has analyzed video

interaction data to reveal meaningful insights of the videos such as perceived difficulty [98] or important

moments of the video [82, 39]. Kim et al. [83] have analyzed dropouts and peaks of interactions in

different types of videos and suggested design implications for better video learning experiences. Li et

al. [97] have analyzed in-video interactions together with a survey about perceived video difficulty to

find relevant video interactions that indicate a student has experienced difficulty. However, it is still

challenging to fully estimate a users’ state with only video interaction data, especially in procedural tasks.

Even if a user watches an entire tutorial, it remains unclear whether they were actually able to follow the

steps or complete the task successfully. SoftVideo [191] addresses this limitation by analyzing synchronized

interaction data from both the tutorial video and the target software, enabling the identification of

meaningful signals such as in-step difficulties and relevant step relationships.

2.3 Intelligent User Assistance

2.3.1 Modeling User Behavior from Software Usage Logs

Software usage logs have been used to uncover patterns in how people perform tasks, providing a

foundation for intelligent assistance. Prior work has analyzed application logs to identify frequent tasks

or recommend workflows by comparing usage patterns across users [46, ?, 125, 170]. Other research has

classified sequences of commands to offer high-level overviews of user workflows and support semantic

navigation through complex task histories [44, 110, 27].

Researchers have also incorporated usage-log analysis into user interfaces to surface helpful cues.

For example, Patina [113] visualizes collective usage patterns of UI elements to help users work more

efficiently. Such approaches demonstrate how behavioral traces can reveal user goals, task structures, and

moments of difficulty—signals that are essential for building assistance systems that adapt to user needs.

SoftVideo [191] extends this direction by analyzing synchronized video and software logs to identify step

difficulty and relevancy, enabling more responsive and context-aware support during task execution.

2.3.2 Context-Aware Assistance for Following Tutorials

A line of work has explored how systems can assist users as they follow tutorial videos, particularly

in software environments where learners often encounter context mismatches, such as interface differences

between the video and their application [186, 145]. To mitigate these issues, systems like ReMap [57]

and Replay [58] surface contextually relevant video segments based on the user’s current software state,

reducing navigation burden and helping users locate the most applicable instructions. Other approaches

track a learner’s progress across both the tutorial video and the target application, automatically adjusting

playback or synchronizing the two contexts to support smoother task execution [148, 148, 129].
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For physical how-to tasks, where users’ hands are often occupied (e.g., using tools while watching

video), researchers have investigated voice-based video control as an alternative interaction modality [26,

203, 102]. These systems highlight challenges in conversational video interaction, such as uncertainty from

unseen content. RubySlippers [24] addresses some of these issues by enabling keyword-based navigation

that lets learners quickly jump to relevant segments while staying engaged in their task.

Beyond video-specific assistance, related work has examined real-time suggestion mechanisms that

guide users as they perform complex tasks. ViZig [180] and LectureScape [82] help learners locate

important regions in educational videos by surfacing anchor points derived from collective interaction

patterns. In broader interfaces, systems such as Adaptive Hypermedia [20], Ephemeral Adaptation [53],

and Patina [113] personalize or adapt UI elements in response to user behavior. These methods collectively

demonstrate how timely, context-aware assistance can reduce cognitive effort, anticipate user needs, and

support learners as they navigate complex workflows.

2.3.3 Collaborative and Proactive AI Agents

Graphical User Interface (GUI) agents show strong potential for supporting users in complex workflows

by automating tasks toward a given goal [61, 104, 201]. However, agents that fully automate interface

operations can conflict with the needs of users in creative or analytical settings, where retaining control,

exploring alternatives, and iterating on ideas are essential parts of the workflow. To address this, recent

research has shifted toward assistive GUI agents that collaborate with users by understanding context

and offering timely support. Several works have explored inferring user goals and intent in both web [142]

and software environments [14, 60, 204] to better align assistance with user needs. For example, Zhao et

al. [204] introduce ProactiveVA, a visual analytics agent that monitors user interactions and leverages

LLMs to detect when users may be stuck, providing context-sensitive suggestions or guidance.

Recent works explore this shift toward collaboration and contextual support. CowPilot [71] proposes

a mixed-initiative framework that enables users to share control with an autonomous web navigation

agent, improving efficiency while preserving agency. In programming settings, proactive assistants like

Codellaborator [151] and NeedHelp [28] demonstrate how real-time intervention can aid users when

well-timed. Studies on software applications [78] show users prefer AI agents that guide them rather than

take over entirely, reinforcing the need for transparency and shared control. ProMemAssist [152] further

highlights the benefits of modeling user cognition (e.g., working memory) to deliver timely, non-intrusive

support. These findings echo broader discussions on autonomy levels [51] and the importance of aligning

agent behavior with human preferences [99, 79]. GUIDE builds on these insights, evaluating how well

current multimodal models can perceive a user’s state and intentions in GUI workflow recordings and

decide if and how to assist, aiming to push GUI agents toward true user-aware collaboration.

2.4 Computer Vision Approaches to Video Understanding

2.4.1 Action Understanding in Procedural Videos

Instructional videos provide step-by-step guidance toward achieving task goals, containing hierarchical

and procedural knowledge. To facilitate procedural video understanding, various datasets have been

introduced [205, 171, 208, 161, 158, 196, 169, 120, 90]. These datasets are annotated with temporal segment

boundaries and the actions performed within each segment, enabling a range of video understanding
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tasks such as video or moment retrieval [179, 120, 94, 12], video captioning [182, 3, 154, 103, 90, 168],

and action recognition or localization [22, 15, 165, 91, 77, 138, 132, 30].

While these datasets have advanced video understanding, they primarily capture what actions occur,

leaving open the challenge of modeling how those actions are performed. This distinction is central to

procedural learning, where skill hinges on subtle variations in pace, technique, and control [160, 156, 178].

Emerging work in fine-grained action understanding begins to address this challenge by modeling

verb–adverb relationships that differentiate manners of execution, such as “slice slowly” versus “slice

quickly” [47, 121, 48]. These developments point toward richer representations that capture the nuance

necessary for supporting procedural understanding.

2.4.2 GUI and Software Workflow Video Understanding

Several benchmarks evaluate video understanding in the context of GUI and software workflows.

Early work by Li et al. [95] collected Photoshop tutorial videos to understand screencast videos. More

recent datasets span multiple applications and tasks. For example, AssistGUI [61] focuses on automating

GUI tasks using an actor-critic agent, serving as a benchmark for task-oriented GUI automation.

VideoWebArena [74] evaluates long-horizon multimodal agents on web browsing tasks, emphasizing

extended video context and web UI interactions. VideoGUI [104] compiles high-quality instructional

screen recordings and introduces a hierarchical model for mapping visual observations to GUI actions.

UI-Vision [128] provides a fine-grained desktop UI video benchmark with dense annotations for perception

and interaction. Lastly, WorldGUI [201] increases task diversity by allowing arbitrary initial interface

states for each task, challenging agents to handle varied starting conditions. These prior benchmarks

primarily focus on close-ended tasks with predetermined goals, aiming to replicating expert demonstrations.

In contrast, GUIDE targets open-ended GUI workflows with novice users, emphasizing understanding of

user intent and context rather than step-by-step replication of actions. This shift toward user-centric

evaluation fills a gap not covered by existing GUI video datasets that evaluate task completion or action

prediction.

2.4.3 Video Question Answering

To enhance the comprehension of videos through question answering, a range of computational

approaches has been explored. Some methods focus specifically on screencast tutorials, such as Tutori-

alVQA [40] and PsTuts-VQA [202], which aim to support deeper understanding of software instruction

videos. Broader-scale efforts leverage the extensive HowTo100M dataset to build large QA corpora, as

seen in HowToVQA69M [181], iVQA [181], and How2QA [96]. However, many of these datasets rely on

automatically generated questions, which may differ from the kinds of questions real users ask when

learning from tutorials. To address this, some work has collected questions manually—either through

crowdworkers generating questions from answer segments [40, 96, 181] or through domain experts crafting

QA pairs [202]. Other efforts, such as YTCommentQA [189], have drawn questions from naturally

occurring YouTube comments to better reflect authentic user information needs. Together, these datasets

highlight diverse approaches to modeling the types of questions learners may have when engaging with

instructional videos.

12



Chapter 3. VideoMix: Aggregating How-To Videos for

Task-Oriented Learning

This chapter focuses on the first phase, the Exploration phase, where users learn from multiple

tutorial videos. In this stage, the most useful contextual units are macro-level structures such as outcomes,

approaches, and methods. This chapter has adapted and revised content from a paper at IUI 2025 [190].

All uses of “we”, “our”, and “us” in this chapter refer to the coauthors of the aforementioned paper.

3.1 Motivation and Contributions

How-to videos are a popular resource for people looking to learn new tasks (e.g., cooking a pasta

dish or knitting a mitten) due to their abundance and the detailed, step-by-step instructions [188, 34].

When learning a task, people typically start with understanding the procedure and then applying it in

their specific context [37, 5, 185]. This process involves gathering and processing information to construct

an understanding of the task, followed by active engagement through execution and iterative learning via

trial and error.

In the initial phase of learning, people often develop their understanding by watching or skimming

through multiple videos. Watching multiple videos on the same topic can significantly enhance under-

standing of the task, by offering diverse perspectives and insights [92, 81]. This exposure allows users

to learn about different methods, tips, or prerequisites, and select the approach that best fits their

context. Additionally, learners can reference different videos to clarify any unclear points or to confirm

the reliability of a specific method.

While this diversity provides such benefits, making sense of the loads of information in multiple videos

is challenging. These videos are not curated, leaving the job of organizing and tailoring the information

for the personal needs on the user. Navigating through numerous videos can be time-consuming, as most

platforms are designed for viewing one video at a time, making related content fragmented and scattered.

Moreover, since videos are not easy to skim, users must watch them sequentially, which can be inefficient.

As a result, learners may end up watching only a few, potentially missing out on valuable information

and knowledge. While systems like Surch [81] and RecipeScape [23] aggregate multiple procedures for a

common task, they are specialized for specific domains (e.g., surgery) or primarily designed for analytical

purposes, which often require domain expertise. Further exploration is needed to support learners in

building a well-rounded understanding of tasks across a variety of domains.

To better understand why users watch multiple videos and what specific information they seek

to gain from this process, we conducted a formative study in which we asked twelve participants to

learn a task of their choice using how-to videos. We found that learners primarily look for four key

aspects in the videos: 1) Outcomes, to understand the possible results of the task and decide which

outcome they prefer; 2) Requirements, to identify the necessary tools or materials, and check whether

certain tools are commonly used across videos; 3) Approaches and Methods, to explore alternative

approaches presented by various instructors and find the method that best suits their needs; 4) Details,

to gather additional insights, such as tips or know-how shared by different instructors. While participants

recognized the value of watching multiple videos to gather this information, they noted the difficulty of

tracking and organizing the information and the inefficiency of navigating between multiple videos.
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Based on these findings, we developed VideoMix, a system that aggregates and organizes information

from multiple how-to videos on a single task, helping users gain a holistic understanding of the task.

VideoMix focuses on physical tasks with tangible outcomes, organizing videos into meaningful axes;

outcomes, approaches, steps, methods, and details (Figure 5.3). Once the user inputs a task they want to

learn, VideoMix identifies different outcome types (Figure 3.1B), and for each outcome type, VideoMix

provides three different approaches to achieve the outcome: the standard (most commonly followed), the

simplest (with the fewest steps), and the most complex (with additional steps) approaches (Figure 3.1C).

Each approach is presented with the specific steps that make up the process, accompanied by a list of

materials and tools used across the videos (Figure 3.1D, E). Once the user selects an approach they are

interested in, they can explore different methods to achieve each step (Figure 3.2B). VideoMix provides

video snippets demonstrating each method, along with useful tips or important details drawn from the

videos (Figure 3.1C, E). To present potentially heterogeneous information from multiple videos in a

coherent and digestable way, we integrate concise textual summaries with relevant video clips, enabling

users to quickly digest and navigate the content.

To extract and generate this information, we designed a technical pipeline powered by a Vision-

Language Model (VLM). Our pipeline processes a collection of videos to automatically extract key

information such as outcome types, requirements, and step information along with relevant details from

both the visual and verbal content of videos. A key component of our pipeline is the Dynamic Approach

Identification (DAI) module, which captures different possible sequences of steps to achieve an intended

outcome from a set of videos.

To evaluate VideoMix, we conducted a within-subjects study (N=12), where participants were asked

to learn tasks that they had not done before, with our system and a conventional YouTube-like system.

The results revealed that VideoMix helped participants gain an overall understanding of the task more

efficiently, allowing them to tailor their learning experience by exploring approaches that matched their

interests and suited their needs. Overall, VideoMix demonstrates the potential of task-based learning for

videos, where videos are organized around a common task or goal, offering a concise yet comprehensive

resource.

This paper presents the following contributions:

• A formative study that uncovers how users learn from multiple videos.

• VideoMix, a system that aggregates and presents information from multiple how-to videos on a

task.

• An evaluation study that demonstrates the effectiveness of our system in task learning.

3.2 Formative Study

We conducted a formative study to gain insights into how users learn new tasks through multiple

how-to videos and to understand the specific information they seek across these videos. In this section,

we describe the methodology used and key findings identified from the study.

3.2.1 Method

We recruited 12 participants (6 male, 6 female, mean age=27.7, median=27) through online commu-

nities of academic institutions, who regularly watch how-to videos and often watch multiple videos to
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gain a comprehensive understanding of a task. All participants reported that they watch how-to videos

of various domains such as cooking, painting, gardening, and assembly, at least 1-2 times per month.

To begin, we asked participants a few questions about their current practices on learning from how-to

videos. We asked about the types of how-to videos they usually watch and asked them to describe their

typical workflow, from watching the videos to following through with the task.

Next, participants were asked to select a topic or task they wanted to learn, ensuring it was a

subject they had not previously learned or explored. Once the task was chosen, we conducted a think-

aloud observation study. Participants were instructed to open YouTube, share their screen, and learn

about the selected task as they would normally do. To simulate a realistic learning scenario, we asked

them to imagine a setting where they had to learn about the task so that they could execute the task

later. During the session, we observed how participants searched for videos, the specific information

they sought, when and why they chose to look for another video and switch between them, and what

information they gathered from each video. Participants were encouraged to think aloud about their

thought process throughout the learning phase. We repeated the observation study with at least two

tasks of the participant’s choice, within a 45-minute timeframe.

Following the observation study, we conducted a semi-structured interview. We asked participants to

describe the overall approach they used to learn the task, the types of information they found useful from

different videos, the challenges they encountered, and the kind of support they would find helpful when

navigating through multiple videos. The study was conducted online, and participants were compensated

with a $30 USD Amazon gift card for the 1-hour session.

3.2.2 Findings

Current Workflows

All participants mentioned that when learning a task, they typically start by watching videos to

understand the materials, processes, and techniques involved, forming a mental map before following

the task. To watch videos, all participants began their video search with broad, general queries (e.g.,

‘how to make gnocchi’ ), believing that these general queries would provide a better overview of the task

and increase the chances of finding higher-quality videos, as a larger video pool is more likely to contain

quality content. In contrast, they believed that more specific queries with personal contexts or constraints

(e.g., ‘how to make gnocchi without potato’ ) might limit the search results. Additionally, since participants

did not yet have an understanding of the task, they were often unsure about what specific details would

be relevant to include in the search.

These broad queries yielded a large number of videos. All participants watched multiple videos when

learning the task, and demonstrated two common behaviors for navigating through them. In the first

behavior, demonstrated by five participants, they quickly scanned a list of videos and opened several

videos in separate tabs, selecting those that aligned with their interests based on factors such as an

appealing outcome, a title that matched their expectations (e.g., ‘simple recipe’), or visual cues suggesting

the video was of high quality. In the second behavior, observed in seven participants, they selected one

video to watch at a time. Through watching that video, participants developed a better understanding of

which personal constraints were relevant (e.g., not having a tool they needed), what specific outcome

they wanted, or any knowledge gaps they needed to be clarified. They then accordingly refined their

search queries for subsequent videos to become more specific and tailored to those needs.
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Information Users Expect to See from Multiple Videos

Watching multiple videos allowed participants to get a broader understanding of the task and see

various approaches and details that might not be covered in a single video. Below are the key pieces of

information participants sought from multiple sources:

Outcomes: Participants quickly scanned video thumbnails and titles to grasp the specific outcomes

of the task. For example, in learning how to ”make gnocchi,” they encountered variations like ”cream

gnocchi,” ”basil gnocchi,” or ”gnocchi soups.” This allowed them to compare different end results and

decide which version they wanted to pursue. Understanding these possible outcomes helped participants

shape their goals and choose the appropriate approach.

Requirements: Participants also looked for the tools, materials, or ingredients used in the videos.

By observing the requirements across multiple videos, they could identify commonly used items and

ensure they had everything necessary to complete the task. This also allowed them to compare any unique

items suggested by different instructors, helping them decide which tools or materials were essential.

Approaches and Methods: Participants explored various workflows presented in the videos,

helping them identify both standard and alternative approaches. This comparison allowed them to

understand the complexity of different methods and select one that best matched their skill level or

specific context. Additionally, learning about different alternative methods provided flexibility and

adaptability in their learning process.

Details: Participants appreciated the additional details that different videos provided, such as tips,

tricks, or know-how. These insights added value to the learning experience, giving them more in-depth or

practical knowledge that could enhance their understanding of the task.

Challenges

While participants found that watching multiple videos to be very beneficial to their learning, they

also noted that the current process for using multiple videos is time-consuming and mentally demanding.

They encountered the following challenges while trying to select, watch and organize information from

multiple videos:

Search Results Lack Organization: The search queries always returned a large number of

videos that weren’t organized in a way participants could understand. As a result, participants found

it difficult to select which video or videos to watch from the large set. For example, all participants

primarily selected videos based on the outcome, which they determined from the search result titles

and thumbnails. However, the search results were not organized by outcome; videos sharing a common

outcome were scattered throughout the result list and participants had to exhaustively examine the list

to comprehend all the possible outcomes for the task. Moreover, it was difficult for participants to gauge

how videos sharing a common outcome differed. Better organization of the task videos based on the

expected information types (Section 3.2.2) could help to reduce users’ mental load.

Information Extraction Requires Watching Videos: Participants found it difficult to skim

videos and spent a significant amount of time watching each video end-to-end in order to extract the

information they wanted. For example, unless the original creators manually annotated the video or

specified in the description box, participants often had no quick way to determine all the steps or

ingredients used without watching the video through and risked missing important information while

skimming. In contrast to video-only interfaces, past research has shown that mixed-media tutorials,

which incorporate text, images and video together, are easier to skim and more effective at giving users a

16



high-level overview of the task [34, 167].

No Easy Way to Compare and Consolidate Information Across Videos: As participants

watch multiples video, they don’t just want to gather information about each video independently. Instead,

they were trying to form broader task insights which span multiple videos such as what the common

approach is, which steps are not strictly necessary, or different methods to execute a single step. However,

current video interfaces only support single video contexts; in order to watch multiple videos, participants

had to open each video in a new tab and the videos were not aligned to each other in any way. This

interface design made it difficult for participants to compare multiple videos and, as a result, participants

spent considerable mental effort synthesizing and tracking these task insights. Additionally, participants

also wanted to aggregate information across videos (e.g., all the tips and details from different instructors

about a single step), but had no way of doing so in the current video browsing interface. Multiple

participants expressed a desire for a system that could help them connect and consolidate the information

from multiple videos more effectively.

3.2.3 Design Goals

From the formative study, we observed that watching multiple videos offered participants a more

comprehensive understanding of a task, enriched with diverse instructions and insights. However, there

was a need for a more efficient way to access and organize this information. Based on the study insights,

we derive the following design goals for a multi-video system that is designed around a common task goal:

• DG1: Enable users to gain a comprehensive overview of possible outcomes and requirements for the

task.

• DG2: Help users compare and navigate different approaches and methods to achieve the task.

• DG3: Provide easy access to detailed information, including relevant video snippets and key details

shared across multiple videos.

3.3 VideoMix

Based on our design goals, we present VideoMix, a system that helps users gain a holistic understanding

of a how-to task, by aggregating and organizing information extracted from multiple videos on the task.

3.3.1 System Interface

The system consists of an (1) Overview page (Figure 3.1) and (2) Details page (Figure 3.2). The

overview page gives an overview of the task by organizing possible outcomes of the task, required materials

and tools, and several approaches to achieve the task. Once the user selects an approach they are

interested in, they see the steps that the approach involves. Once they click on a step, the system

takes the user to the Details page, where users can see details for the step including multiple alternative

methods and important tips, along with the corresponding video snippets.

Overview page

Once the user specifies the task they want to learn, VideoMix presents an overview of that task.

First, it offers several possible outcomes (Figure 3.1B) for the task (e.g., for the task ”Build a Desk,” it
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shows options like ”Rustic Wooden Design,” ”Modern Sleek Design,” ”Functional Multi-purpose Desk,”

or ”Standing Adjustable Desk”).

After the user selects a preferred outcome, VideoMix provides three different approaches (Figure 3.1C)

to achieve it: the standard approach (the most commonly used across videos), the simplest approach

(involving the fewest steps), and the most complex approach (involving the most steps). These approaches

inform users of multiple ways to accomplish the task, varying in both commonness and complexity, while

also providing flexible options tailored to their experience level and the amount of effort they wish to

invest.

Once the user selects an approach, the system provides an overview of information gathered from

multiple videos corresponding to that approach. First, a list of materials and tools used in the videos that

follow the approach is provided (Figure 3.1D). Since not all items are used in every video, they are sorted

by frequency of use—items appearing more often are highlighted with darker colors, making it easy for

users to identify the most commonly used ones. Below the item list, the system displays step-by-step

information for the approach, with each step labeled and briefly described (Figure 3.1E).

Details Page

Once the user selects a step in an approach, they are presented with more in-depth information on the

Details page(Figure 3.2). In this detailed view, VideoMix displays the step-by-step instructions previously

shown in the Overview page, in a vertical format (Figure 3.2A). Here, each step can be expanded to

reveal multiple variations or methods for accomplishing that step (Figure 3.2B). For example, for the

step ”Cook meat and vegetables,” the user can choose between methods such as ”Using an Instant Pot,”

”Using a Rice Cooker,” or ”Using a Cast Iron Pot.”

Once the user selects a method, VideoMix presents video snippets corresponding to the chosen

method (Figure 3.2C). These videos automatically play from the relevant start time and stop at the end

of the segment, but users have the option to explore the video further by watching earlier or later parts to

understand its context. On the right side of the video player, users can navigate between different video

snippets, each accompanied by a brief summary (Figure 3.2D). This allows users to quickly understand the

content of each snippet before selecting one to view, helping them explore different videos demonstrating

the method. Below the video player, VideoMix provides useful tips and key information extracted from

the video snippets to highlight important points or considerations for the selected method (Figure 3.2E).

As such, VideoMix enables users to gain a comprehensive understanding of the task by presenting

information in a structured and hierarchical manner. This approach allows users to progressively learn

about the task, revealing details as they delve into each outcome, approach, and step in depth.

3.3.2 Technical Pipeline

To provide the aggregated information from multiple how-to videos, we developed a pipeline that

processes and extracts content in videos. Figure 5.3 illustrates the overall process. It begins by clustering

videos into different sets based on their outcome and approach type. Each video set is then analyzed

to extract more detailed information, such as steps and methods used. For the video dataset, we used

HowTo100M [120], a large-scale collection of narrated how-to videos from YouTube. We downloaded

the corresponding YouTube videos using youtube-dl [195], a command-line program for downloading

videos from YouTube. We then obtained the video transcripts open-sourced by Han et al. [65], which

were generated with sentence-level timestamps using WhisperX [11]. Each video is labeled with its task
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Figure 3.1: VideoMix interface on the Overview page for the task “Build a Desk’’. (A) Users begin

by selecting the task they want to learn. (B) VideoMix then presents video search results categorized

by outcome types. (C) For each outcome type, users can choose from standard, simple, or complex

approaches. (D) Based on the chosen approach, VideoMix displays the necessary requirements, such as

materials, ingredients, and tools. Finally, (E) users can see a list of steps and a brief description of each

step that makes up the chosen approach.2

name (e.g., ‘make gnocchi’), along with a broader category it belongs (e.g., ‘Food and Entertaining’).

Outcomes

To determine the different outcome types for a task, our pipeline operates in two phases: first,

it extracts descriptions of each video’s outcome and then it clusters these outcome descriptions into

meaningful categories. In the first phase, we utilize both the visual content and transcripts. While

transcripts provide verbal descriptions of the outcome [188], visuals can offer additional descriptive

information that may not be explicitly mentioned. To estimate which video frames show the outcome,

we provide GPT-4o with the full transcript and prompt it to extract only the segments that describe

the outcome. We pick the video frames that correspond to these transcript segments as outcome frames,

selecting one frame per second. We then input these outcome frames and the entire transcript into

GPT-4o and prompt it to generate an outcome description. This phase yields an outcome description for

each video in the task set.

2Screenshots of the outcome search results are from: youtu.be/CbJtZFXwxKY, youtu.be/Fnl1OwAAvEo,

youtu.be/Z7x Rvb yjc, youtu.be/ v0fXgwcrpY (Creative Commons licensed).
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Figure 3.2: VideoMix interface on the Details page for the task “Build a Desk’’. (A) The interface

displays the list of steps for the chosen approach. (B) For each step, users can explore different methods,

such as tools or techniques, to complete the step. (C) When a method is selected, VideoMix presents

video snippets relevant to that method. (D) Users can easily switch between different videos for the

selected method, with the corresponding time frame playing automatically. (E) Additionally, users can

view tips and notes extracted from the videos.4

In the second phase, we cluster similar outcome descriptions together by outcome types. To extract

the outcome type, we first prompt GPT-4o to identify two to four of the most salient themes from the

list of video outcome descriptions. Each theme becomes an outcome type. We then cluster the videos

around these outcome types by prompting GPT-4o to assign each video to exactly one outcome type

using the video’s outcome description. To provide representative images for each outcome type (Figure

3.1B), we randomly select two videos assigned to that type. We retrieve the outcome frame segments

(identified in phase one) for each video and choose the middle frame of the last segment.

Steps and Approaches

To aggregate information from multiple videos sharing the same outcome, it is essential to understand

possible sequences of steps that may vary across different videos [81]. We introduce a Dynamic Approach

Identification (DAI) module, which iteratively identifies key steps across a set of videos, accounting for

variations in the procedure. Instead of relying on a fixed taxonomy of steps for a task, our module adapts

to a specific video pool (in our case, based on the outcome types of the task), and captures procedural

differences within the set, ensuring comprehensive coverage of the task.

The DAI module, which is illustrated in Figure 3.3, begins by extracting steps directly from a video

transcript and grounding each step in the corresponding transcript sentence indices using GPT-4o. Note

that prior work [29] has demonstrated the feasibility and accuracy of using LLMs for step extraction with

4Source video: youtu.be/fv5bqBehcBc (Creative Commons licensed)
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Figure 3.3: Illustration of our Dynamic Approach Identification (DAI) module, which captures a variety

of approaches to accomplish a task. (a) The process begins by extracting step information from the first

video using GPT-4o. This initial step taxonomy is then applied to the next video, where additional steps

are identified, refining the taxonomy. This iterative process continues for all videos, progressively refining

the step taxonomy with each comparison. (b) Once the final step taxonomy is established, it is reapplied

to each video to detect relevant steps and align segments accordingly. Note that not all steps may be

present in each video. (c) After extracting step information from each video using the common taxonomy,

the system identifies standard, simple, and complex approaches based on the number of videos that follow

each approach and the number of steps within each approach.

timestamps. The extracted step information is then applied to the next video to identify any previously

unrecognized steps, adding those new steps to the set. This process is repeated iteratively, refining

the step set until the entire video collection is covered. Once the final set of steps (i.e., the final step

taxonomy) is derived, the system applies it to each video, selecting the steps present in the video with

timestamp information for when each step occurs. This method allows us to capture each video’s unique

sequence of steps, which may or may not overlap with others.

Once the step information for each video is identified, our pipeline uses the information to determine

three approaches: Standard, Simple, and Complex. The Standard approach refers to the typical

sequence of steps most commonly followed across videos. The Simple approach refers to the sequence that

involves the fewest steps, while the Complex approach consists of the largest number of steps. While there

could be other ways to measure the complexity of an approach, we followed Merrill’s suggestion [117] and

used the number of steps as a measure, since it provides a quantifiable way to assess the effort required to

complete the task. We execute the process of identifying steps and approaches for each outcome cluster,

and the requirements are extracted per each approach. The standard approach is always captured, while

the simplest and most complex approaches may not be, particularly if they overlap with the standard

approach or if the number of videos following the simplest or most complex approaches is too low. In

Section 3.4, we demonstrate how the DAI module effectively captures diverse and accurate approaches

compared to existing baselines.
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Object Requirements

Our pipeline also extracts the required objects (i.e., the materials, ingredients, and tools used) across

all the videos belonging to the same approach. TutoAI [29] demonstrated that using LLMs to extract

objects from transcripts is the most effective method for identifying items used in tutorial videos. To

create a comprehensive list, we also capture visual frames at 5-second intervals from the entire video, and

together with the entire transcript, prompt GPT-4o to extract the materials, ingredients, and tools used.

After gathering this information for each video, we aggregate the results and calculate the frequency

of each item across all the videos. To streamline the merging process, we instruct GPT-4o to exclude

specific quantities or descriptors (e.g., stripping “pinch of salt” to be just “salt”).

Methods and Details

Finally, our pipeline detects variations in the methods used for each step of an approach. For each

step, we get the corresponding transcript segments from all the videos containing that step. We then

prompt GPT-4o to identify the different variations in the methods described by transcript segments.

To identify which of these method variations a video uses, we prompt GPT-4o with the video’s step

transcript and the method variations and ask it to pick which variation the step transcript describes.

Finally, for each method, we prompt GPT-4o to extract useful tips or key information by providing a

collection of transcript sentences specific to that method.

3.3.3 Implementation

The interface for VideoMix was developed using TypeScript, ReactJS, and CSS. The backend was

implemented with Python scripts for video preprocessing. OpenAI’s API was used for VLM components,

specifically the GPT-4o-2024-05-13 model [135] with a temperature setting of 0 for all components. To

generate structured outputs, we employed Function Calling [134] in OpenAI’s API. Note that we used

GPT-4o to process video frames and transcripts for a robust and scalable solution for handling long-form

videos. We did not use video foundation models due to their limited context windows, which make

processing lengthy videos challenging without losing details. Future improvements in video foundation

models, such as larger context windows and lower costs, could make long-form video processing more

efficient and practical for our pipeline.

3.4 Technical Evaluation

We evaluated the Dynamic Approach Identification (DAI) module primarily, as it is the core

component of our pipeline for identifying diverse approaches and methods across multiple videos. We

aimed to test two hypotheses: 1) Our pipeline-generated step taxonomy will provide as accurate step

information as predefined taxonomies; 2) Our pipeline-generated step taxonomy will better capture the

diversity and variation within a task compared to predefined taxonomies.

3.4.1 Task Selection

To evaluate our hypotheses, we selected six tasks from the HowTo100M dataset, with two from the

‘Hobbies and Crafts’ category and four from the ‘Food and Entertaining’ category. The chosen tasks are:

Build a Desk (95 videos), Build a Bookshelf (58 videos), Make Chicken Cacciatore (92 videos), Make
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Accuracy (1-7)
Coverage (0-10)

Relevancy Logical Flow Completeness

Baseline 5.88 ± 1.19 5.58 ± 1.56 4.50 ± 1.67 5.80 ± 2.24

VideoMix 5.42 ± 1.36 5.52 ± 1.38 4.42 ± 1.53
(1) 7.05 ± 2.13 (*)

(2) 7.96 ± 1.83 (**)

Table 3.1: Results of the technical evaluation of our DAI module. Our pipeline maintained step accuracy

across Relevancy, Logical Flow, and Completeness (with no statistically significant differences), while

capturing a significantly more diverse range of possible approaches, both (1) when considering only the

approaches and (2) across all outcome types (*: p¡0.05, **: p¡0.01).

Jambalaya (66 videos), Make Shrimp Cocktail (86 videos), and Make Bannock (90 videos). The tasks

were selected based on the following criteria: 1) We focused on physical tasks with tangible outcomes,

rather than fixing or using products [188]. This was to ensure diversity in information, such as outcome

types and requirements. 2) The task must have a predefined step taxonomy available in existing datasets

(e.g., HT-Step [2], CrossTask [208]) to allow for comparison. 3) The task must include at least 50 videos

to ensure diversity. For comparison, we used HT-Step and CrossTask as baseline datasets, since both are

also based on HowTo100M. The step taxonomies in these datasets are human-annotated, grounded in

WikiHow [176], a popular website for how-to instructional articles.

3.4.2 Method

We recruited external evaluators through Prolific [150], who are familiar with the selected tasks. In

total, 24 evaluators were recruited, with 4 evaluators assigned to evaluate each of the 6 tasks. To ensure

expertise, we required evaluators to self-report having performed the task at least once and to know at

least two approaches to completing it. Evaluators were asked to rate the step information derived from

both the baseline predefined step taxonomies and our pipeline-generated steps for the same video tasks,

where the order of the condition was counterbalanced.

The evaluation focused on two main criteria following our hypotheses: accuracy and coverage. For

accuracy, evaluators rated the step information based on the following criteria using a 7-point Likert

scale:

• Relevancy: How relevant is each step to achieving the overall task goal?

• Logical Flow: How logical and coherent is the progression of steps in the sequence?

• Completeness: How complete is the sequence in covering all necessary steps to achieve the task?

For the baseline, evaluators were presented with the predefined step taxonomies, but we summarized

each step into a concise step name to ensure consistency with the format of our pipeline-generated steps.

For our pipeline-generated taxonomies, evaluators were provided with the ‘standard’ approach for each

outcome type. For coverage, evaluators answered the following question on a scale of 0 to 10 where 0

indicates no coverage and 10 means a full, 100% coverage:

• To what extent does this sequence represent or cover all the possible ways to achieve the task?
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In this case, evaluators were provided not only with the standard approach but also with simple and

complex approaches for each cluster, if available, in the pipeline-generated taxonomies. Evaluators were

compensated $5 USD for each task they evaluated, which took approximately 15 minutes.

3.4.3 Results

Overall, our pipeline maintained step accuracy while capturing a more diverse range (80%) of

possible approaches compared to the baseline (58%). For accuracy, when evaluated on three key aspects—

Relevancy, Logical Flow, and Completeness—using a 7-point Likert scale, there were no statistically

significant differences between the steps generated by our pipeline and those annotated by humans.

(Table 3.1, Relevancy: µ=5.88, σ=1.19 vs. µ=5.42, σ=1.36; Z=1.5, p=0.13, Logical Flow: µ=5.58,

σ=1.56 vs. µ=5.52, σ=1.38; Z=0.37, p=0.71, Completeness: µ=4.5, σ=1.67 vs. µ=4.42, σ=1.53; Z=0.47,

p=0.64). Note that each condition was evaluated according to its intended outcome. The baseline involved

the general task (e.g., building a desk), while our pipeline was tested on specific outcomes (e.g., building

a standing adjustable desk). These results indicate that our pipeline can generate steps with a level of

quality comparable to human-annotated steps, even when addressing more specific tasks.

In terms of coverage, the steps generated by our pipeline captured a significantly greater range

of possible approaches to completing the task, as rated on a scale from 0 to 10, (0 being 0% and 10

being 100%). Compared to the baseline steps, our pipeline captured a more diverse range of approaches,

even when considering only the approaches (i.e., Standard, Simple, and Complex) for each intended

outcome type. (Table 3.1, µ=5.8, σ=2.24 vs. µ=7.05, σ=2.13; Z=-2.16, p¡0.05). When aggregating

these approaches across all outcome types, the coverage increased significantly from 58% to 80%, with an

average of 3.5 outcome types per task (Table 3.1, µ=5.8, σ=2.24 vs. µ=7.96, σ=1.83; Z=-3.37, p¡0.01).

These results demonstrate that our pipeline, which detects step information across various outcome types

and approaches, captures significantly more diverse ways to achieve a task. All statistical significance was

measured using the Wilcoxon Rank-Sum Test.

3.5 User Study

We conducted a within-subjects user study to evaluate VideoMix against a baseline YouTube-like

system, a platform most users are familiar with for watching how-to videos. The primary goal of the

study was to assess the effectiveness of VideoMix in enhancing users’ overall understanding of tasks, and

to explore how users would use VideoMix and how it impacts their learning experience.

3.5.1 Participants and Apparatus

We recruited 12 participants (4 male, 8 female, mean age=25.3, median=25.5) through an online

community at our academic institution, those who regularly watch how-to videos and often watch multiple

videos to learn a specific task. For the study, we selected 4 tasks from those used in our pipeline evaluation:

two from the ‘Hobbies and Crafts’ category (Build a Desk, Build a Bookshelf ), and two from the ‘Food

and Entertaining’ category (Make Chicken Cacciatore, Make Jambalaya). We randomly selected two

tasks for each participant, one for VideoMix and the other for a baseline system. Since our study involved

learning tasks, we ensured that none of the participants had prior experience with the tasks they would

be learning during the session.
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For a fair comparison between VideoMix and baseline, we built a baseline system similar to YouTube,

but with a limited set of videos available in VideoMix. Participants were provided with a list of videos in

the main feed, where they could click to watch each video along with its title and description sourced

from the original YouTube video.

3.5.2 Study Procedure

The study was conducted online through a Zoom meeting. Participants were first given an overview

of the study, including the two tasks they would be learning during the study. They were then instructed

to use either VideoMix or the baseline system to learn about an assigned task. Participants were asked to

imagine they would later be performing the task on their own, and that their current goal was to study

the task, gather as much information as possible to prepare for it.

We provided a brief tutorial on how the assigned system worked, and participants were given 15-20

minutes to explore and learn about the task using the system. They were encouraged to think aloud,

sharing their thoughts and decision-making process as they use the systems. After completing one

session, participants switched to the other system, and the same process was repeated. The order of

tasks and systems used were counterbalanced across participants. Following each session, we conducted a

questionnaire to assess participants’ perceived understanding of the task, perceived usefulness of each

feature (in the VideoMix condition only), and cognitive load using measures from NASA-TLX (Mental

Demand, Frustration, Effort, Performance) [66]. All responses were on a 7-point Likert scale. Finally,

we conducted semi-structured interviews to understand their strategies used in each system and gather

qualitative feedback on VideoMix. The study lasted 1 hour, and participants were compensated with a

$30 USD Amazon gift card.

3.5.3 Results

Overall, participants found VideoMix to be more helpful in understanding the task compared to the

baseline. Below, we provide a detailed report of the study’s findings. For all measures, we first conducted

a Shapiro-Wilk test to determine data normality, and then used a paired t-test (if parametric) and a

Wilcoxon signed-rank test (if non-parametric).

Enhanced Overall Understanding

Participants reported a significantly better understanding of the tasks when using VideoMix compared

to the baseline (Figure 3.4). They felt more successful in learning about the task (µ=4.83, σ=1.4 vs.

µ=5.75, σ=0.83; t=-2.42, p¡0.05) and more efficient in the learning process (µ=4.17, σ=1.9 vs. µ=5.75,

σ=0.92; W=7.0, p¡0.05). Participants appreciated how VideoMix provided a comprehensive overview of

the task, allowing them to grasp the entire scope at a glance. For instance, P2 noted, “With VideoMix, I

could see the overall process involved in the task and get a general understanding immediately. I could

figure out possible outcomes, required materials, and overall process, which would have taken a long time

to find on YouTube, where videos are scattered.”

VideoMix significantly streamlined the process of acquiring task-related information compared to

the baseline. With the baseline, participants typically relied on thumbnails to identify the outcome or

titles to see the approach they wanted (e.g., ‘simple recipe’). After selecting a video, they would check

the description box in hopes of finding a list of ingredients or basic step-by-step instructions, but this

information was not always available. In contrast, VideoMix offered organized information upfront, saving
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Figure 3.4: Participants felt they were more successful and efficient with VideoMix, and found VideoMix

to be more useful when learning about the task compared to the baseline. There were no statistically

significant differences in mental demand, effort, and frustration (*: p¡0.05).

participants considerable time. For example, P6 selected the standard approach in VideoMix because he

wanted to learn something basic, whereas on the baseline, he had to watch multiple videos and compare

processes to identify the original standard recipe. He also mentioned, “It’s nice because the ingredients are

written out, so you can just look at them and prepare everything right away.” While VideoMix presented

information from an average of 77.8 videos per task, participants watched only 2.6 videos on average

using the baseline system within the given study time.

Overall, participants rated VideoMix to be significantly more useful for gaining an overall under-

standing of the task compared to the baseline system (µ=5.08, σ=1.16 vs. µ=6.08, σ=0.49; t=-2.87,

p¡0.05 ). 10 out of 12 participants mentioned they would prefer VideoMix to baseline when understanding

a task. However, there were no statistically significant differences in mental load, frustration, or effort

during the learning process.

Tailored Learning Experience

VideoMix organizes instructional content from multiple videos into a hierarchical structure based on

outcome, approach, and method employed. This allowed participants to efficiently focus on instructions

that best suited their specific needs and context.

First, the outcome types helped participants narrow their focus to what they were most interested in

learning. After exploring various outcome choices, participants developed a clear preference based on

either personal tastes (e.g., Jambalaya with Chicken and Sausage vs. Vegan or Low-Carb Jambalaya) or

estimated proficiency level (e.g., Modern and Sleek Design Desk vs. Functional and Multi-purpose Design

Desk).

Next, the different approaches enabled participants to choose learning pathways that matched their

experience level. Most participants, being new to the task, looked for simple or standard methods. P8
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Figure 3.5: Participants’ ratings on the usefulness of each information piece in understanding the task.

Overall, they found the information provided by VideoMix—including outcome types, requirements,

different approaches, step details, methods, and tips and notes—to be helpful in gaining a better

understanding of the task.

remarked, “It was easy to have a clear criterion, whereas on YouTube, I had to guess content from

thumbnails and titles. Even if the first video I watched had a unique approach, I might have assumed it

was the original recipe for Jambalaya. I would have spent much more time than I did with VideoMix to

find a recipe that fit my situation.” P8 only realized that one of the three videos she watched on YouTube

matched her beginner level after viewing all three.

Finally, the variety of methods allowed participants to focus on instructions that aligned with their

available tools and ingredients. For example, P3 said, “It was helpful to see different methods because I

don’t have an oven, so I looked at the Using Stove or Using Pot methods instead of Using Oven.” In

contrast, finding a video that fit their context on YouTube was often more challenging. P7 noted, “As I

watched the video, I was concerned that I didn’t have the right equipment or materials used in the video,

and thought I’d probably need to search for another one.” In summary, VideoMix enabled participants

to learn more effectively by providing clear, relevant options that could be tailored to their specific

preferences and resources.

Knowledge Acquisition By Multi-Video Comparison

VideoMix allows users to easily navigate between videos showcasing the same method within a

step (Figure 3.2D). By comparing multiple segments, participants gained a deeper understanding of

the methods. For example, P4 said, “Even though both video segments I watched were all about using

wood glue, one video showed how to apply it while the other explained when to use it. This helped me

understand the step better.” Similarly, P1 initially didn’t know what Leger Boards were in Building a

Bookshelf when only watched a single video segment, but learned what they are after watching multiple

segments using them.

Participants also picked up key information about requirements and techniques. For example, P8

said, “I saw that celery and garlic were used across all standard approaches of different outcomes, so I

realized they are key ingredients.” P9 highlighted how different methods offered contrasting tips, saying,

“For the Instant Pot, tips suggested adding vegetables first, while for the rice cooker, they recommended

adding meat first. The order seems important based on the tool you’re using.” The ability to compare

multiple perspectives within the same task participants’ understanding, offering a more comprehensive

learning experience.
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Further Improvements for VideoMix

While participants found VideoMix to be an effective tool for learning new tasks through videos, they

noted suggestions on how VideoMix can be further improved. First, they mentioned the discontinuous

nature of the segmented videos throughout the steps could hinder the learning process. For example,

P1 said, “When I clicked a next step and a segment from a new video was shown, it took me a while to

understand the context of the video.” Participants expressed a desire to see a continuous video, while

having the information VideoMix offers. P2 said, “It would be great if I could select one main video, and

see additional details not covered in that video through VideoMix.” A potential improvement could be a

hybrid format, where users first watch a full video, and what VideoMix currently provides is organized

around that primary video.

Participants also suggested ideas on how methods are presented. For example, P10 suggested sorting

the methods by commonness, similar to how requirements are organized or how VideoMix shows the

‘Standard Approach’ (as we do for the approaches). P12 wished to see the outcome of each video segment

to better choose which method to follow, similar to how VideoMix shows different outcome types for

the task on the overview page. This feedback suggests that the hierarchical structure VideoMix uses to

organize task-level information could be re-applied at the step level, providing more detailed information.

3.6 Discussion and Future Work

In this paper, we present VideoMix, a system that aggregates multiple how-to videos to provide

a comprehensive understanding of a task. We discuss how it supports task learning, considerations

for designing multi-video systems, the incorporation of the hierarchical nature of tasks, and potential

directions for future work.

Supporting Task Learning: from Understanding to Following

VideoMix is designed to facilitate task learning by helping users synthesize multiple videos, enabling

a better understanding of the task. This aligns with a key search intention in Information Retrieval [155],

which emphasizes learning domain knowledge. While VideoMix is primarily intended to assist users in the

understanding phase before they move on to task execution, 7 out of 12 participants expressed interest in

using it throughout the task-following phase as well.

Participants highlighted several benefits of VideoMix in task following: it presents various methods

together, allowing users to choose their preferred approach as they follow the task without searching

through multiple videos (P2); its mixed-media format with text makes following instructions easier (P6);

and the segmented steps enable users to quickly revisit specific parts of the process (P11).

However, other participants preferred YouTube for task following, citing the importance of consistency

and flow. As P9 noted, “Mixing two different recipes is generally not a good idea.” While a few participants

could identify the same video across different steps by recognizing the background or demonstrator, it

remains important to support the tracking of a cohesive procedure within a single video, especially in the

following phase.

To better support the full learning cycle—from understanding to following—we envision a system

that allows users to explore various methods (as VideoMix currently does), then select specific videos for

following, while maintaining easy access to overview information [81]. To better support the following

phase, we suggest features like real-time prompting or interactive search to address the users’ more specific
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needs as they progress through the task. Additionally, while VideoMix offers some customization by

providing a list of tools for each approach and outcome type, or methods specifying tool usage, allowing

users to retrieve videos based on selected tools or choose the level of detail they want to explore could

further improve the customization experience.

Designing Multi-Video Systems

VideoMix organizes information from multiple videos to provide a comprehensive understanding of

tasks. Instead of treating videos as the primary object, VideoMix treats the task itself as the first-class

object, with multiple videos structured around it. Thus, the basic unit is a video segment (i.e., part of a

video), which is then organized around a task.

Designing a multi-video interface around video segments has both advantages and challenges. On

the positive side, splitting content by steps made it easier to digest, and multiple demonstrations for

each step enhanced learning (Section 3.5.3). However, users could feel a sense of discontinuity between

segments and sometimes lack the broader context of the full video (Section 3.5.3). To address this, a

multi-video interface should ensure that enough context is provided and consider strategies to maintain

continuity, such as using a common voice-over, visual connectors, or a consistent theme across videos.

Another challenge is managing the extensive amount of information drawn from multiple videos,

which may feel overwhelming to some users. Two out of 12 participants who preferred YouTube over

VideoMix appreciated its ability to present diverse methods at a glance but found the overall information

density to be excessive. While VideoMix aims to reduce the time required to learn viable methods through

structured presentation—particularly for tasks with high variability—this comes with trade-offs. Curating

information may limit certain details as well, and it is essential to balance organization with user agency

in the exploratory search process.

Lastly, it would be interesting to explore how a multi-video interface might reshape user engagement,

especially in interactions typically supported by traditional video-centered platforms, such as commenting,

liking, or sharing. Investigating how these interactions can be adapted to a multi-video interface, as

well as identifying potential new interactions unique to this interface, would be an interesting avenue for

future research.

Incorporating Hierarchical Nature of Tasks

How-to videos naturally contain hierarchical information [196]. Tasks often consist of multiple

sub-tasks or steps, each of which could be a task on its own. For example, in the task of making an Eggs

Benedict, one of the steps might involve poaching an egg, where there could be videos solely about it.

This hierarchical structure presents an opportunity for VideoMix to further enhance learning by

extending its current task-level organization to a more granular, step-level structure. Just as VideoMix

organizes information by outcome, requirements, and approaches at the task level, the same principle

could be applied recursively at the step level (as briefly discussed in Section 3.5.3). For instance, the

step of poaching an egg could be broken down into sub-steps such as preparing water, cracking the egg,

and cooking the egg, where there could be multiple variations within each sub-step. This approach

would allow users to delve deeper into specific areas of interest, fostering a more flexible and personalized

learning experience. By supporting this recursive exploration, users could not only learn how to complete

a task like making an Eggs Benedict but also master individual skills, like poaching eggs, that could be

applied in a wide range of other contexts, supporting a flexible and infinite journey of learning.
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Limitations and Future Work

Our pipeline only requires videos to have narration, as it relies on spoken content to extract task

steps and details. As long as videos are accessible and can be transcribed using ASR, our approach

remains applicable. However, a key limitation of VideoMix is its dependence on the quality and quantity

of the source videos. Since the system compiles content from various videos, the clarity of the presenter’s

instructions and the logical flow of the content can significantly affect its performance. In particular,

VideoMix relies heavily on transcripts for extracting steps and methods, making clear and well-structured

narration essential. If a video lacks coherence or clarity, the system may struggle to extract accurate and

meaningful information.

In terms of quantity, our system may not provide as comprehensive an overview when the available

videos are limited (e.g., only 10 videos on a given task). In such cases, we could consider expanding

the search to include more videos (e.g., similar methods used in different tasks) or incorporating other

tutorial resources, such as text-based materials. Similarly, while we demonstrated VideoMix based on

videos selected from the HowTo100M dataset [120], expanding the video pool through additional crawling

would allow VideoMix to offer a richer and more diverse set of instructions. By refining search queries to

capture more hierarchical videos (e.g., searching for specific outcome clusters or individual methods), the

system could provide a broader range of instructional content. We believe that as VideoMix processes

more videos, its comprehensiveness and ability to support users will improve.

Additionally, VideoMix has primarily been tested on tasks involving the creation of physical objects,

which typically feature well-defined steps and clear visual and verbal cues. However, extending VideoMix

to other types of tasks—such as digital tasks like Photoshop editing or guitar tutorials—may introduce

new challenges. For example, tasks like guitar tutorials may require a different structure that emphasizes

progressive skill building rather than multiple methods to achieve the same step. They may also rely

more heavily on subtle nuances such as hand placement, tone, or timing, which are difficult to capture

solely through transcripts. Beyond how-to tasks, there is potential for VideoMix to be applied to other

domains, such as organizing interview videos by specific questions or themes. By structuring interviews

around common topics across multiple videos, the system could provide users with a comprehensive view

of diverse perspectives. This approach could also be extended to educational content, where VideoMix

could organize lectures by subtopics, offering a clearer, more structured learning path for users.

3.7 Conclusion

This paper presents VideoMix, a system that helps users gain a comprehensive understanding of

how-to tasks by aggregating information from multiple tutorial videos. We demonstrated that VideoMix

enables users to explore different methods, materials, and outcomes more easily, leading to a better

understanding of a task. Our work highlights the potential of a task-oriented, multi-video approach

to support users in task learning. As online tutorials and video content continue to grow, our system

provides an important step forward in improving how people learn from them.
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Chapter 4. Beyond Instructions: A Taxonomy of Information

Types in How-to Videos

This chapter focuses on the second phase, the Comprehension phase, where learners begin narrowing

down to a specific video. In this stage, information types such as justifications and tips serve as useful

contextual units. This chapter has adapted and revised content from a paper at CHI 2023 [188]. All uses

of “we”, “our”, and “us” in this chapter refer to the coauthors of the aforementioned paper.

4.1 Motivation and Contributions

How-to videos provide procedural information about performing tasks such as cooking, makeup, and

crafting. They explain how to perform a task by visually demonstrating workflows while providing verbal

explanations. Due to their detailed explanations, how-to videos have been a popular source of help when

performing a task [80, 34].

There is diverse information beyond instructions intertwined in how-to videos. In addition to

instructional information about how to perform each step, instructors share their strategies for choosing

supplies [35] or give additional commentary [167]. They also share their personal tips or pitfalls [32], or

even ideas not directly related to the task, such as greetings or jokes [119].

From the sea of information, each user requires different information that caters to their specific

purpose or situation of watching videos. Depending on their needs, users might want to see only relevant

instructions [80], ingredients or tools used, or check the final outcome of a video [127]. To help users find

the content of interest, the most common approach has been to enable chapter-based navigation where it

segments the video into coherent subtopics [192, 167, 175, 56, 84, 149, 127, 141, 34]. It allows users to

navigate videos based on subtopics in videos and locate a section of interest.

However, the diverse information within a video is scattered throughout, making it difficult for users

to identify information that meets their needs. Even a chapter contains various types of information.

Moreover, the diverse kinds of information are intertwined in no particular order. The author may proceed

to offer their rationale, describe intermediate outcomes, or even promote their channels in the middle of

giving instructions at any part of the video. The unpredictability of a video’s structure makes it even

more difficult for users to retrieve the information they need.

We propose that a comprehensive taxonomy that identifies and categorizes the types of information

shared in how-to videos can serve as a foundation for supporting users in navigating videos. It provides

a structural basis for analyzing and understanding users’ navigational behavior. It facilitates the

understanding of useful information types for different user needs arising from distinct settings such as

the purpose of watching or the domain of the video. Understanding how users leverage information types

to navigate videos will ultimately lead to better designs of video navigation systems that suit users’ needs.

To this end, we investigated verbal utterances from how-to videos to identify and organize information

types in how-to videos. We focused on verbal utterances as the primary source of information because

they often contain explicit explanations of what instructors demonstrate [35, 120], sometimes giving

additional information that is not visually available. Thus, we presume that verbal information would

cover a wide range of information delivered in how-to videos.

To construct the taxonomy, we selected 120 videos from the HowTo100M dataset, a large-scale
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dataset of narrated how-to videos that covers 12 different genres (e.g., Cooking, Arts, Sports) [120]. We

performed an iterative open coding of 4k sentences from 48 videos to generate a taxonomy of information

types in how-to videos. From the analysis, 21 information types emerged under 8 categories: Greeting,

Overview, Method, Supplementary, Explanation, Description, Conclusion, and Miscellaneous.

To validate the taxonomy, we applied the taxonomy to a total of 120 how-to videos containing 9.9k

sentences which we contribute as a dataset, HTM-Type1. From the analysis of the dataset, we found that

Method, the core information required to complete the task, makes up 47.5% of the video time on average.

We also found that the task type (i.e., Creating, Fixing, or Using) and narration style (i.e., Real-time

or Dubbing) affect the distribution of information types, and that certain categories have a temporal

tendency.

After creating and validating the taxonomy, we demonstrate the utility of the taxonomy in both

analyzing users’ navigational behavior and supporting their navigation in how-to videos. We first show

how our taxonomy can serve as an analytical framework for existing video systems that were built to

support video navigation. We observed that the systems utilized different information types to meet users’

specific needs. To further investigate how users leverage information types in various navigation tasks,

we built a research probe that enables users to navigate using the information types within the video.

Through a user study with nine participants, we observed that the participants effectively used different

information types for finding specific information needed to perform each of the Search, Summarize,

and Follow tasks. We further discuss how our taxonomy can enable a number of applications in video

authoring, viewing, and analysis.

This paper makes the following main contributions:

• A taxonomy of information types in how-to videos

• HTM-Type, a dataset of 9.9k sentences from 120 videos labeled according to the taxonomy

• Empirical findings on how people use information types in navigating videos

4.2 Taxonomy of Information Types in How-to Videos

To examine the diverse information types present in how-to videos, we conducted a content analysis

on how-to videos. The goal of our analysis was to identify information types, which are the intent behind

the units of content in videos. We chose verbal utterances as the primary source of information in our

research scope. This is because instructors often explicitly describe the visual content such as what they

are doing or what is happening [35, 120], sometimes giving additional information that is not visually

available. However, we also considered visual information as an additional factor to take context into

account, because sometimes it is hard to identify the type of information the instructor is delivering just

from the textual description. For example, when the instructor uses pronouns such as ”it” or ”this”, it is

hard to know what they are referring to (e.g., tool, method, or situation). Also, it is hard to tell if a

sentence is a joke or an instruction without watching the actual situation (e.g., ”What do you do with

the half you have leftover? Dip it in some hummus, of course.”). Below we describe our approach to

generating the taxonomy and present the results.

1videomap.kixlab.org
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4.2.1 Methods

Data Collection

We selected videos from the HowTo100M dataset, a large-scale dataset of narrated how-to videos [120].

The dataset covers 12 different genres of how-to videos, organized according to the categories in Wiki-

How [176]: Arts and Entertainment, Cars and Other Vehicles, Computers and Electronics, Education and

Communications, Food and Entertaining, Health, Hobbies and Crafts, Holidays and Traditions, Home and

Garden, Personal Care and Style, Pets and Animals, and Sports and Fitness. To ensure that we cover a

wide range of topics, we selected 10 videos from each of the 12 genres, resulting in 120 videos in total.

We first filtered for videos that were longer than 5 minutes to ensure a sufficient amount of content

and that were produced within the last five years (that is, 2017 or later) to reflect the most recent and

relevant production trends in how-to videos. To acquire the duration and publication date of the videos,

we used youtube-dl [195], open-source software for downloading videos and the related metadata. Then,

we went through each of the filtered videos and selected 10 videos from each of the 12 genres that 1) are

narrated in English, 2) have one person demonstrating, and 3) are in the scope of “how-to videos”, namely

explaining how to get a task done2. After selecting the videos, we transcribed them using Microsoft Azure

Speech-to-text API [10], which transcribes the spoken language in videos with timestamps of each word

using Automatic Speech Recognition. Then, we used a BERT-based punctuation model [133] to split the

transcripts into sentences.

Constructing the Taxonomy

After selecting the videos, three of the authors performed an iterative open coding for the content

analysis of the videos. We individually coded each sentence based on the type they believed it to be

conveying. We watched the videos while identifying the types to make sure we incorporated the exact

context of each sentence and clarify any errors in the transcript. Also, we split a sentence if it contained

two or more information types so that each sentence only contains one information type. The total

number of split sentences was around 1% of all sentences. Then, we resolved each conflict through a

discussion between the three authors and merged the codes every six videos.

To ensure the validity of our taxonomy, we set two criteria for its construction following the practice

in taxonomy development [130]: (1) All elements in the taxonomy should be mutually exclusive (i.e.,

no overlapping between elements) and (2) the taxonomy should be collectively exhaustive (i.e. cover

everything). First, to verify that all elements are mutually exclusive, we convened every session to discuss

the discovered information types and whether they were mutually exclusive or could be divided into

smaller parts or merged. If there were any ambiguous sentences that could be interpreted as multiple

types, we handled those cases by figuring out what factors caused the ambiguity. We divided the types

into smaller components when the types covered multiple intents or merged if the types were redundant.

To make sure the taxonomy covered all information in how-to videos, we checked if any sentence

contained information that could not be covered by the existing taxonomy. If so, we added additional

types that encompassed the sentence and other similar content. After resolving conflicts and defining new

information types, the new taxonomy would be used to reexamine the entire dataset.

Among the entire dataset of 120 videos, we started from an initial set of six videos and repeated the

process until convergence was reached; (1) no new types were added and (2) no types were merged or

2HowTo100M dataset occasionally contains videos that are not exactly instructional, such as playing with toys or

comparing two products.
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split in the last iteration [130]. If these conditions were not met, we added six additional videos to the

investigation. This resulted in an analysis of 48 videos to create the taxonomy.

4.2.2 Taxonomy

Through the iterative open coding, 21 types of information were identified. We further grouped the

types into eight categories based on what function the types perform in a video. Below we explain the

eight categories and the information types under each category in detail. For ease of reading, we denote

the various hierarchies as follows: Category, and Type.

Greeting

Greeting category offers statements to start and end the video, such as hellos, channel introductions,

Intro and Outro, with Opening and Closing, respectively. Opening includes beginning remarks and

instructor/channel introductions, such as ”Welcome back to my channel!” On the other hand, Closing

gives parting remarks and wrap-up sentences, such as ”I hope you guys enjoyed this video, see you guys

next time!”

Overview

Overview category discusses the overall structure and information about the video. Goal is the main

purpose of the video and its descriptions. For example, Goal of a cooking video may be, ”Today, we’ll be

making potato soup.” Overview also includes Motivation, which is the reasons or background information

on why the video was created, such as ”Because everyone is getting a cold these days!”. Finally, Briefing

covers a quick rundown of how the goal will be achieved, such as ”I’ll be doing a two-step process in this

demonstration”.

Method

Method provides core information required to complete the task. Subgoal outlines the objective

of a subsection of the video, such as ”Now, let’s prepare all our vegetables.”, without detailing specific

directions that the user can follow. Rather, Instruction is the action that the instructor performs to

complete the task that directly informs the user what they must do, such as ”Now, cut this rubber sleeve

off.” Tool includes sentences that introduce or show the materials, ingredients, and equipment that will

be used during the task, such as ”What we get usually is some cooking aluminum foil.”

Supplementary

Supplementary information suggests additional instructions or knowledge that aid the core instructions.

Tip is information given to make the instructions easier, faster, or more efficient, such as ”This step is

easiest to complete if you lower the headrest all the way down.” They are typically optional, but helpful

advice that arises from the instructor’s experience or knowledge. Meanwhile, Warning alerts the user

on actions that should be avoided to prevent negative consequences, such as ”Don’t get too wild with a

hammer on there.”
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Category Type Definition Example from Dataset

Greeting
Opening Starting remarks and introductions ”Hey, what’s up you guys, Chef here.”

Closing Parting remarks and wrap-up ”Stay tuned, we’ll catch you all later.”

Overview

Goal Main purpose of the video and its de-

scriptions

”Today, I’ll show you a special technique

which is about image pressing.”

Motivation Reasons or background information on

why the video was created

”[...] Someone is making a very special

valentine’s day meal for another certain

special someone.”

Briefing Rundown of how the goal will be

achieved

”I’m pretty sure that just taking a pencil

and putting it over the front and then

[...] that’s going to do it.”

Method

Subgoal Objective of a subsection ”Now for the intricate layer that will

give me the final webbing look.”

Instruction Actions that the instructor performs to

complete the task

”We’re going to pour that into our sili-

cone baking cups.”

Tool Introduction of the materials, ingredi-

ents, and equipment

”I’m also going to use a pair of scissors,

a glue stick, some fancy or regular tape.”

Supplementary
Tip Additional instructions or information

that makes instructions easier, faster, or

more efficient

”I find that it’s easier to do just a couple

of layers at a time instead of all four

layers at a time.”

Warning Actions that should be avoided ”I don’t know but I would say avoid us-

ing bleach if you can.”

Explanation
Justification Reasons why the instruction was per-

formed

”Because every time we wear our contact

lenses, makeup and even dirt particles

might harm our eyes directly.”

Effect Consequences of the instruction ”And these will overhang a little to help

hide the gap.”

Description

Status Descriptions of the current state of the

target object

”Something sticky and dirty all through

the back seat.”

Context Descriptions of the method or the set-

ting

”[...] The process of putting on a tip by

hand [...] takes a lot of patience but it

can be done if you’re in a pinch.”

Tool Specification Descriptions of the tools and equipment ”These are awesome beans, creamy tex-

ture, slightly nutty loaded with flavor.”

Conclusion
Outcome Descriptions of the final results of the

procedure

”And now we have a dinosaur taggy

blanket that wrinkles, so a fun gift for

any baby on your gift giving list.”

Reflection Summary, evaluation, and suggestions

for the future about the overall proce-

dure

”However, I am still concerned about

how safe rubbing alcohol actually is to

use so maybe next time, I will give vodka

a try.”

Miscellaneous

Side Note Personal stories, jokes, user engagement,

and advertisements

”Tristan is back from basketball. He

made it on the team so it’s pretty ex-

citing.”

Self-promotion Promotion of the instructor of the chan-

nel (i.e. likes, subscription, notification,

or donations)

”So if you like this video, please give it a

thumbs up and remember to subscribe.”

Bridge Meaningless phrases or expressions that

connect different sections

”And we’re going to go ahead and get

started.”

Filler Conventional filler words ”Whoops.”

Table 4.1: Definition and examples of information types in our taxonomy. Minor errors from Speech-to-

Text results in example sentences are corrected. 35



Explanation

Explanation elaborates on the reasons or consequences of the instruction to help users understand

it more clearly. Justification is the reason why the instruction was performed. For example, the

instructor may decide to use chicken breast because ”it has less fat than chicken thighs.” Effect refers

to statements that explain the consequences of an action, such as ”Adding this activator will make the

slime harden.”

Description

Description adds descriptions regarding the information relevant to the task, such as the state of

the objects or the context of an action. Status describes the current state of the object or the target

of the task. Sentences such as ”The car is making less noise.” is reporting on how the car is behaving

currently and is thus Status. Context is the description of the method or the setting. For the method,

the instructor may point out how arduous a task may be or explain how long it might take, such as

”It will take a while to come up.” For the setting, the instructor could mention, ”The room was really

humid, so it took a while to dry.” Lastly, Tool Specification adds details and descriptions about the

materials, ingredients, and equipment that may be mentioned in Tool or other parts of the video. The

difference between the two types is that Tool merely establishes the usage of a tool (”We’ll be using some

resin.”) while Tool Specification supplies other information or characteristics about the tool (”This

resin emits a lot of fumes.” or ”I’ll leave a link of where I got it below.”).

Conclusion

Conclusion wraps up the video by showing the final outcome of the task and reflecting on the

overall procedure. Outcome describes the final results of the procedure, such as ”Look how beautiful our

cake turned out.” Reflection focuses on the summary, evaluation, and suggestions for the future. The

following sentences, ”We made the batter, baked and iced it, and finally decorated it with some fruit.”,

”The process was so easy that even kids can do it.”, ”Next time, let’s try using some honey instead of

sugar.”, all fall under Reflection.

Miscellaneous

Miscellaneous refers to trivial information or phrases devoid of relevant information to the task.

Side Note includes any sentences that mention personal stories, jokes, and advertisements or try to

engage and communicate with the user, such as ”Comment down below what you think about this new

look.” Self-promotion is the promotion of the instructor or the channel through the encouragement of

likes, subscription, notification, or donation features common on creator-based video-streaming platforms,

such as ”Please give it a thumbs up.” Bridge is meaningless phrases or expressions that connect different

sections or phrases, such as ”Let’s move onto the next part.” Finally, Filler is the conventional filler

words prevalent in spoken language, such as ”um”, ”uh”, or ”well.”

4.3 Dataset

To validate the taxonomy, we applied the taxonomy to the remaining 72 videos and contribute the

type-labeled 120 videos as a dataset. The dataset can be used to model automatic type detection pipelines

or be leveraged to explore various system design opportunities that apply our taxonomy. This section
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describes the dataset and the following section describes the analysis we performed on the dataset to

investigate how videos are structured.

4.3.1 Method

We applied the taxonomy to the remaining 72 videos (5.9k sentences) to validate the taxonomy

and contribute a dataset. Two external fluent English-speaking annotators coded 72 videos based on

the taxonomy (6 videos each from 12 genres), where they independently coded the sentences with their

types and merged the labels into agreed-upon final labels. Similar to the taxonomy construction process,

the annotators watched the videos while labeling the type of each sentence to understand the context

behind each sentence and to clarify any errors in the transcript. The annotators were asked to split the

sentence if they thought it contained more than one information type. The total number of split sentences

was around 1% of all sentences. The two annotators and one of the authors met regularly to discuss

ambiguous cases and resolve conflicts. For the last 42 videos (3.4k sentences, with the remaining videos

used for training), the two annotators had Cohen’s Kappa score of 0.78, which shows a satisfactory level

of agreement [4]. After the score was calculated, conflicts were resolved by a discussion between the two

annotators and one of the authors. The coding process took approximately 70 hours per coder.

4.3.2 Dataset: HTM-Type

We release a dataset, HTM-Type3, which contains a total of 9,918 type-labeled sentences (mean=82.65,

SD=21.8) from 120 videos selected from the HowTo100M dataset [120]. It consists of 10 videos from each

of the 12 genres identified by HowTo100M. All videos are longer than 5 minutes and published within the

last five years (2017 and onward). The average length of the videos is 7 minutes 3 seconds (SD=1 min 35

sec, min=5 min 1 sec, max=14 min 49 sec), totaling 14.1 hours. The average portion of spoken language

is 82.4%, representing the average portion of the entire video in which the author talks (min=50.5%,

max=97.6%). The dataset denotes for each sentence the id, publication date, duration, and genre of its

video, as well as start and end time stamps, and type and category categorization.

4.4 Analysis

To understand the structure of how-to videos, we analyzed the HTM-Type dataset in three different

aspects: (1) how each information type is distributed across the dataset, (2) how the video style affects

the type distribution, and (3) how information type distribution relates to time.

4.4.1 Method

For all three analyses, we first identified the proportion of each information type in a video by

calculating the start and end timestamps of each labeled sentence. Afterward, we divided the time portion

of each type by the total time of the video containing narration to obtain the final proportion.

(1) The first analysis aims to observe how the information types are distributed throughout the

how-to videos. We calculated the average distribution of each type across the entire dataset by dividing

the total time proportion of each type by the number of videos.

3Abbreviated from HowTo100M-Type
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Figure 4.1: Distribution of Categories and Types of all videos in HTM-Type. Categories are denoted above

the types using group brackets. Only proportions greater than 1.5% are written in text. Instruction

makes up 39.8% of the total video, suggesting that the majority of the video contains information that

does not directly give actions for the user to follow. The results illustrate the large diversity of information

types in how-to videos.

(2) The second analysis examines how the video characteristics affect the information distribution

along two different attributes: task type and narration style. We chose task type and narration style

specifically as the analysis axes as they require different strategies by the instructor in providing the

information. For example, explaining how to fix a car likely attributes a larger portion of the video to

describing the situation in comparison to baking cookies.

To compare whether video characteristics affect the distribution of the information type, we performed

the Kruskal-Wallis test for each of the two attributes with an α value of 0.05 for each category. We

further performed the Kruskal-Wallis test on types within the different categories if the category showed a

significant difference. To confirm which specific video characteristics differed from one another, we further

performed post-hoc Dunn’s test with Bonferroni adjustment on significantly different categories or types.

(3) The third analysis aims to investigate any specific patterns that may appear in the temporal

distribution of each category. To do so, we normalized video time to [0, 1000] seconds to align all the

videos in the dataset. Then, we counted each type occurrence across all 120 videos for every second on the

normalized timeline. As none of the videos in the dataset are longer than 1000 seconds, the normalization

will not drop any labels. Afterward, we calculated the range on the normalized timeline that contains

data points between the 5th and the 95th quantile for category.

4.4.2 Results

Information Distribution in How-To Videos

We first investigated the composition of the dataset to look into how the diverse information is

distributed over how-to videos. The results for categories and types are shown in Figure 4.1. The average

number of types in a video is 7.25 for category and 14.57 for type, signifying that the videos comprise a

wide variety of information. Additionally, the large variance of the types suggests diverse variations in

how the information is composed within instructional videos.

On average, the results show that almost half of the video comprises Method (47.5%, SD=16.9%).

Looking at the type level, Instruction makes up 39.8% of the total video, meaning that the majority of

the video contains information that does not directly give actions for the user to follow. The ratio shows
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a resemblance to the percentage of visually alignable narration as explained by Han et al. [65] (30%),

which is a narration that is visually demonstrated or shown in the video. As instruction usually entails

the majority of the visual information, the similarity may imply some correlation.

Information Distribution Based on Video Characteristics

We then analyzed how the video characteristics (i.e. task type and narration style) affect the

information distribution. Through the analysis, we found that the composition of information types in a

video differed by its characteristics, which we describe below.

Task Type The first aspect examined is the type of task completed. Through an iterative process, we

found three different task types: Creating, Fixing, and Using. Creating refers to tasks whose primary goal

is to craft or make a final product, such as cooking or woodworking. Fixing tasks address a problem and

improve the state of an object or a situation. Using tasks aim to demonstrate how a tool or equipment is

supposed to be used. Our dataset contains 82 videos for Creating, 27 videos for Fixing, and 11 videos for

Using.

The results of the Kruskal-Wallis test show significant differences between the tasks for Description

(H(3)=21.696, p¡0.001) and Miscellaneous (H(3)=10.435, p=0.015). Further performing the Kruskal-

Wallis test on the types in the Description and Miscellaneous categories reveals that Status, Context,

and Side Note are significantly different.

Further performing post-hoc Dunn’s test with Bonferroni adjustment showed that Creating-Fixing

and Using-Fixing pairs for Status and Creating-Fixing for Context are significantly distinct in their

distributions ((Z=-2.680, p=0.022), (Z=3.126, p=0.005), and (Z=-2.443, p=0.043) respectively). Fixing

(10.0%) has a greater proportion of Status than Creating (5.7%) and Using (3.3%). For Context, Fixing

(11.6%) is greater than Creating (6.2%) by 5.4%. Such differences can be explained by the tendency

for Fixing tasks to require more descriptions of the target object. Conveying Status in Fixing videos

lays the necessary foundation to communicate the instructions effectively. Likewise, Fixing has more

explanations than Creating about the method and the setting because the user needs to fully grasp the

current circumstances before they can improve upon them.

Narration Style The second aspect is the narration style of the video. Videos were classified by how

the instructor provided verbal information — whether the narration was spoken in real-time with the

action or dubbed afterward. We found 78 videos are real-time narrated and 42 are dubbed videos.

The results of the Kruskal-Wallis test on the categories showed that Method and Description show

significant differences between the narration styles ((H(1)=6.602, p=0.01) and (H(1)=7.036, p=0.008),

respectively). To figure out how each type distribution differs within the two categories (Method,

Description), we further performed the Kruskal-Wallis test for each type in the categories. Instruction

and Tool specification have significant differences in their distributions ((H(1)=7.568, p=0.006) and

(H(1)=4.043, p=0.04), respectively). When comparing the absolute value of each type proportion on

average, for Instruction, dubbed videos (45.0%) contain an 8.1% greater portion than real-time narration

videos (36.9%). On the other hand, for Tool Specification, real-time narration videos (5.9%) have

more than dubbed videos (4.2%).

The differences show that video styles can affect the distribution of information. Real-time narrated

videos contain a larger portion of descriptions such as Tool Specification, Status, and Context. One
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Figure 4.2: The number of labels for the category along normalized time. Greeting, Overview, Conclusion,

and Miscellaneous show clear positional preferences while Method, Supplementary, Explanation and

Description are widely distributed.

possible reason may be that the instructor dedicates more time to explaining the current status quo as

they actually perform the task.

Information Distribution Based on Time

We then analyzed the temporal distribution of each category to see if they showed any specific

patterns. We visualized the data with a time-series graph (Figure 4.2).

The results show that certain categories have a positional preference. Greeting shows skewed

distributions towards both ends of the video. Such a trend reflects the tendency for instructors to begin or

end their videos by greeting their audiences. Overview occupies the first (23.8%) of the video, as it covers

the overall structure or encompassing details of the video. Meanwhile, Conclusion lies in the last (28.0%)

of the video. In contrast, Method (11.1% to 85.3%), Supplementary (16.9% to 86.3%), Explanation (16.8%

to 87.2%) and Description (8.5% to 86.9%) are relatively evenly distributed towards the middle of the

video. Finally, Miscellaneous extends throughout the video (4.8% to 98.0%) with a noticeable increase at

the end (Figure 4.2), attributed to the abundance of self-promotion and side notes (e.g., outtakes).

4.5 Taxonomy as Analytical Framework

In this section, we demonstrate how our taxonomy can serve as a conceptual and analytical framework

for understanding existing systems that support video navigation. Existing video navigation systems are

designed to address specific user needs. Our taxonomy provides an opportunity to analyze the information

types that each system focuses on. Such an analysis can be used to identify important information types

that best fit the users’ context and also reveal information types that are underexplored by existing

systems.

For instance, ToolScape [84] and MixT [34] have identified step-by-step information (Subgoal) with

representative images for each step (Status) to allow users to navigate videos based on important
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milestones. To better support navigation in a specific video genre, VideoWhiz [127] has extracted

ingredients (Tool) and intermediate outcomes (Status) in food recipe videos, and Truong et al. [167]

has leveraged makeup tools (Tool) in makeup tutorial videos. To support users navigating videos in a

setting where they use voice commands, RubySlippers [24] has allowed users to refer to objects (Tool)

and actions (Instruction) that appear in the video.

As such, existing systems have leveraged different information types to address specific needs in

video navigation, which we list more in Table 4.2. We can see that the types in the Method category

(i.e. Subgoal, Instruction, and Tool) are commonly used, while Goal, Status and Outcome are also

used to some extent. At the same time, our investigation reveals that the other information types are

underexplored by existing systems, such as Motivation or Context. We believe that future systems can

establish important units based on the identified information types catered to user needs.

System Type Explanation

ToolScape [84], MixT [34],

Fraser et al. [56]

Subgoal, Status Presenting step-by-step information

(Subgoal) with representative images

for each step (Status)

Truong et al. [167] Tool, Instruction,

other types

Labeling segments as tool introductions

(Tool),

makeup application (Instruction), or

commentary (other types)

VideoWhiz [127] Tool, Subgoal,

Status, Outcome

Presenting ingredients and equipment

used in a recipe (Tool), visual mile-

stones (Status, Subgoal), and the ap-

pearance of the final output (Outcome)

RubySlippers [24] Tool, Instruction Allowing users to refer to objects (Tool)

and actions (Instruction) that appear

in the video

Pause-and-Play [148], SoftVideo [191] Instruction Segmenting software tutorial videos into

actionable steps (Instruction)

Weir et al. [175] Goal, Subgoal,

Instruction

A breakdown of a task into the goal

(Goal), subgoals (Subgoal), and indi-

vidual steps (Instruction)

Yang et al. [187] Tool, Instruction Segmenting recipe videos into actions

(Instruction) and visualizing their de-

pendencies as well as ingredients used

(Tool) throughout the video.

Table 4.2: Example systems that support video navigation and information types associated with each

system.

4.6 Exploratory User Study

From the preliminary analysis presented in Section 4.5, we demonstrate how our taxonomy could

serve as an analytical framework for understanding existing video navigation systems. To further explore
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the potential of the taxonomy, we conducted an exploratory user study. Our study aimed to investigate

how users would leverage the information types for navigating videos, by exposing information types to

users and allowing them to navigate videos using the information types as a control mechanism. Through

the study, we demonstrate the usefulness of the taxonomy both in accessing desired content and as a tool

for observing and analyzing users’ navigational behavior. We chose not to conduct a comparative study

because the purpose was not to evaluate the video interface itself but rather to highlight the potential of

the taxonomy in supporting video navigation, an aspect that has been underexplored in previous research.

Below we explain the research probe used in the study, the study procedure, and the results.

4.6.1 Research Probe

As the apparatus of the study, we built a video interface that supports navigation based on information

types (Figure 4.3). Users can see the video on the left (Figure 4.3a) and transcripts of the video on the

right (Figure 4.3b). In the transcript panel, users can see each sentence of the transcript along with its

timestamp and information type. The type label is color-coded based on the category of the taxonomy.

The timeline also shows the same information below the video (Figure 4.3c). Each segment is color-coded

based on its category and users can hover over each segment to see its type (Figure 4.3d). The type of

the current segment is always shown right next to the progress bar. Users can click either on the timeline

or the script to navigate through the video. Finally, users can filter segments based on their type or

category in the Filter panel (Figure 4.3e). Here, we grouped the categories into four high-level sections to

help users better organize the types and categories: Intro, Procedure, Closing, and Miscellaneous4. We

organized the categories based on their temporal positions reflecting our analysis in Section 4.4.2. Once

users select certain types from the Filter panel, only the filtered segments are shown in the transcript

panel and in the timeline. The video player automatically skips unselected portions.

4.6.2 Study Procedure

We recruited nine participants (6 male, 3 female, mean age=24.1, SD=2.26, min=22, max=29)

through an online recruitment posting. All the participants watch how-to videos regularly, at least

once a week. Participants performed three types of tasks: Search, Summarize, and Follow. These

tasks represent real video-watching scenarios and are commonly used in evaluating video navigation

systems [24, 82, 167, 84]. We chose three videos from HTM-Type that cover different tasks: Cooking5,

Slime6, and Illustrator7. The Cooking video teaches how to make soft-boiled eggs. The Slime video

explains how to make cloud slime. The Illustrator video demonstrates how to convert raster images to

vector images. To minimize learning effects, different videos were used in each task. The videos used for

each task were counterbalanced between the participants.

• Search task asked participants to find an answer to a given question from the video. For example,

for the Illustrator video, the task asked: ”To make the image more cartoonish, which feature do you

need to adjust?” There were three search questions for a video.

4In the process of grouping, Opening and Closing, which belong to the Greeting category, were divided into Intro and

Outro, respectively.
5youtu.be/6CJryveLzvI
6youtu.be/Rcsy2HRuiyA
7youtu.be/ Yb6xLqvsf0

42

https://youtu.be/6CJryveLzvI
https://youtu.be/Rcsy2HRuiyA
https://youtu.be/_Yb6xLqvsf0


Figure 4.3: Our research probe used in the user study. (a) Users can see the video. (b) Each sentence of

the script is shown with its timestamp and information type. Each type label is color-coded based on the

category. (c) The same information is shown in the timeline. (d) When users hover over each segment,

they can see the type and (e) its definition in the Filter panel. Users can filter segments based on their

type or category in the Filter panel. Only the filtered segments are shown in the transcript panel and the

timeline.

• Summarize task asked participants to summarize the main points of the video while skimming

through it. We asked participants to assume that they are making written instructions from the

video content. We gave participants freedom in the content and format of the summary.

• Follow task asked participants to follow the task in the video. We prepared the tools used in each

video. For the cooking video, we simulated the cooking environment with hand-made apparatus

such as a stove made of paper.

We first gave a tutorial on the system to the participants. After explaining its features, participants

tried out the system with a video that was not used in the three tasks. Then, we explained the taxonomy

presented in the system. After explaining the definitions and examples of each type, participants watched

a video with our interface from beginning to end to get used to the taxonomy. Participants were

subsequently asked to perform three tasks in the following order: Search, Summarize, and Follow. To

accurately evaluate the role of information types in each task, participants were not allowed to use the

browser’s native search function (i.e., Ctrl+F) in the transcript. After each task, we asked a few questions

about their task strategy. After all the tasks were done, we conducted a semi-structured interview and

survey, asking about their experience and perceptions of the taxonomy. Participants were compensated

with 20,000 KRW (∼15 USD) for a 1.5-hour-long study.

43



4.7 Results

The participants were able to find and use appropriate types or categories of the taxonomy to

complete the tasks. Below we explain how they used the taxonomy and the information types they

perceived as important in detail. Then, we discuss how the participants perceive the prototype and the

taxonomy.

4.7.1 How Taxonomy Was Used in Each Task

Figure 4.4: Helpfulness (left) and Importance score (right) of each category in the Summarize and Follow

task.

Search

The participants’ strategy to search for the answer to questions was to relate a given question to a

type and filter the video according to the type. For example, for a question asking about how the recipe

is different from others (Slime), P3 thought it would be described when the instructor talked about the

goal. Thus, he filtered the video to only see Goal and found the answer. For this task, participants looked

for different information types depending on what each question asked. All the participants were able to

match at least two questions out of three correctly to corresponding types (mean=2.44/3, SD=0.53), and

thus found answers effectively.

Summarize

The participants actively used the information types and found them helpful when summarizing

videos. In response to 5-point Likert scale questions about how helpful each category and type’s

existence was (including the removal of them), participants indicated that the existence of all of the

categories (mean=4.61/5) and types (mean=4.66/5) were useful, when asked about each category and

type individually (Figure 4.4-left).
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When asked about the importance of each category in summarizing videos, they rated Method and

Overview as the top two categories that contain the most important information (Figure 4.4-right, 4.89

and 4.11/5, respectively). Not surprisingly, all the participants looked for the Method category, as they

are the main points of videos. Regarding Overview, P3 said, ”I looked for Overview because I felt it is

necessary to include the purpose of the task when summarizing the video content.”

From the per-type evaluation, the participants rated Instruction, Subgoal, Tool, and Goal as

the top four important types (4.89, 4.78, 4.78, and 3.89/5, respectively). Regarding Instruction, all

the participants included instructions in their summaries (n=9) as they are the essential information

in how-to videos. Interestingly, participants not only used the Subgoal information to organize their

summary by subgoal unit (P7) but also to check and see if they have missed anything at the end (P3,

P4). Participants also included the tools used in the video (n=5) and the goal of a video (n=6) in their

summaries, along with a description of the goal (n=2) and warning (n=1). Additionally, some participants

(P1, P6) looked for Reflection, expecting the part to provide a summary, although the video did not

include any summary information and thus rated low (2.67/5). All the types under the Greeting and

Miscellaneous categories are rated the lowest (mean=1.61/5), as they do not include any task-relevant

information.

Follow

In following the task performed in the videos, the participants perceived the information types to

be helpful. In response to 5-point Likert scale questions about how helpful each category and type’s

existence was (including the removal of them), participants indicated that the existence of all of the

categories (mean=4.35/5) and types (mean=4.32/5) were useful, when asked about each category and

type individually (Figure 4.4-left).

When asked about the importance of each category in following the videos, they rated Method,

Supplementary, and Explanation to be the top categories that contain important information (Figure 4.4-

right, 5, 4.11, 4.11/5, respectively). Not surprisingly, participants thought Method contained most

of the information they should follow. After Method, the participants perceived Supplementary and

Explanation to be important, which was different from the Summarize task. The participants thought

the Supplementary category which includes Tips and Warnings to be important. P4 said, ”I thought tips

and warnings are too detailed information for the Summarize task. However, they were necessary when

following the video as they might contain important notes.” They also found the Explanation category

which includes Justification and Effect to be helpful. P3 said, ”It was helpful to know the reasons

behind instructions because then I can apply instructions to my context adaptively. For example, if I

understand that the reason instructor boils eggs for six minutes is that it’s the medium part of being too

runny and firm, I can adjust the duration according to my taste.”

From the per-type evaluation, participants rated Instruction, Subgoal, and Tool as the top

three important types (4.89, 4.78, and 4.45/5, respectively), followed by Effect, Tip, Warning, and

Justification, and Status (4.11, 3.89, 3.89, 3.67, and 3.67/5, respectively). The participants used

Effect and Status to make sure they are following correctly. P7 said, ”I considered Effect to be important

because I wanted to check that the consequences of an action explained in the video are actually shown

in my context.” Similarly, P8 said, ”I looked for Status to see if there is a desired state, and if so, I

would have liked to refer to it when following.” We could see that the participants mainly focused on

instructions while looking for additional information when following videos.
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4.7.2 Effect of Taxonomy on Video-watching Experience

All the participants appreciated that the system enabled selective watching of videos. P8 said, ”When

watching how-to videos, I usually watch the video at twice speed or skip parts because there is a lot of

unrelated information. It was nice to be able to get rid of useless information.” Selective watching can

also be helpful in repeated watches. P5 said, ”I think the system will be helpful especially when you watch

a video again and again. For complex tasks like repairing, it is hard to perform the task at once. If you

know where to watch repeatedly, it will be efficient.”

Some participants compared the selective watching feature to YouTube’s Chapter where it segments

a video into meaningful sections [194]. P2 and P4 appreciated that our system offers more details. P2

said, ”In YouTube, we can also skip some parts but it’s based on topics. We still have to search within a

topic by trial and error, to see the exact part I want.” However, other participants mentioned that the

amount of higher-level information they could perceive for each section was limiting. P5 said, ”I could

skip parts with the prototype, but YouTube chapters indicate subgoals better with a concise title, which

makes it easier to access desired parts.”

The information type was helpful in grasping the overall content. P6 said, ”By looking at the timeline,

I was able to quickly understand how the whole video is composed of. For example, from the timeline,

I was able to figure out the style of the video, such as whether this video has a lot of intro or outro, or

whether it has a lot of unrelated miscellaneous information.” It also allowed the participants to grasp the

main points quickly. P8 said, ”I was able to understand the flow of the video quickly, by looking at the

instructions only.” Participants also thought that it highlights important information for them. P5 said,

”Warnings are important information but they can be unnoticed easily. The prototype helped me identify

them.”

4.7.3 Perception Toward Taxonomy

Overall, the participants were able to understand the meaning of each category and type well

(Category mean=4.86, Type mean=4.75). They mentioned that the types were intuitive (P3), and they

were able to see the reasoning behind the categorization (P9). All the participants mentioned that each

sentence was well-matched with appropriate types, except for a few that were subjective. One feedback

that many participants had in common was that the categories would be enough for filtering the video

content (P1, P3, P4, P9). While types allowed for more precise control (P6), it was burdensome to recall

the meaning of each type and click them one by one due to the large number of types (P9). In the same

context, several participants also suggested indicating whether a type exists in the video so that they

do not have to manually click to see if it is in the video. As such, when designing systems that display

taxonomic information, we need to consider ways to reduce users’ cognitive burden.

4.8 Discussion

In this paper, we present a taxonomy of information types in how-to videos. We first demonstrated

how our taxonomy can serve as an analytical framework for existing video navigation systems. We then

investigated the utility of the taxonomy in video navigation through a user study. In this section, we

first reflect on the user study and discuss findings. We then discuss how the taxonomy enables various

video-related tasks and support the learning experience, and suggest opportunities for future work.
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Information Type That Fits the User’s Needs

While the essence of how-to videos is information that explains how to perform a step (i.e.

Instruction), our taxonomy identifies a total of 21 information types that span instructions and

beyond. From our user study, we could see that the participants used different information types for

each task. In the Search task, they were able to actively match the corresponding information types to

each question, finding answers effectively. In the Summarize task, Method and Overview were considered

important – the participants used Overview to summarize the goal and overall approach. In the Follow

task, in addition to Method that provides core information required to complete the task, the participants

also considered Supplementary and Explanation important in getting additional information needed in

following the video.

Just as important types vary depending on the task, our study also suggested that meaningful

information types can depend on various factors such as the topic of the video or the user’s level of

expertise. P6 said, ”In videos teaching how to play tennis, justification or effect might be more important

than just instructions. It is important to understand WHY a certain movement is needed to actually

understand and follow the movement.” It also echoes Semeraro et al.’s finding on instructional videos

for physical training, where having verbal cues helped users contextualize the movement [153]. Users’

familiarity with the topic also affects which information types they focus on. For example, P8 was

unfamiliar with Adobe Illustrator so she checked Overview for goal descriptions when following the video.

She said, ”I would have skipped the part if I were familiar with the program.” Future work will need to

investigate relevant information types depending on the topic and user context.

Moreover, some participants suggested further specification of instructions based on their importance.

In how-to videos, there are optional or conditional instructions that users can choose to follow or not

according to their preferences or environment. P6 mentioned that ”I thought all the instructions are

necessary, but there were some instructions that I didn’t need to follow. It would have been nice if it had

been marked.” In fact, four participants additionally marked optional or conditional instructions in their

summary when performing the Summarize task, which implies the importance of such information. As

such, future work can specify the instruction types to support users’ detailed needs.

In summary, our findings suggest that 1) information types other than Method can also play an

important role in accessing desired information, which opens up opportunities for future systems to take

into account a variety of information types. Our findings also suggest that 2) relevant information types

can be different depending on the task, topic, and user context, which future work can investigate more

in depth to support users’ different needs. We hope that our taxonomy can serve as a starting point for

such investigations.

Applications of Taxonomy in Video Tasks

The taxonomy can accelerate the design process of multiple applications if videos were labeled

by information types. We examine possible applications in three of the most commonly performed

video-related tasks: Authoring, Viewing, and Analysis. The creator first produces a video (Authoring),

and then viewers watch it (Viewing). The creator can analyze the video content or viewership to improve

the original video and make decisions about upcoming content (Analysis). We discuss how our taxonomy

enables various applications in each of these tasks.
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Application Explanation Example

Authoring
Editing Removing or fast-forwarding

parts of the video

Cut out irrelevant parts of the

video (Side Note)

Annotation Adding visual effects or captions

to the video

Highlight important parts of the

video (Tip, Warning)

Viewing

Navigation Supporting users to find relevant

portions of the video

Repeat an instruction segment

or jump to the next instruction

(Instruction)

Summarization Providing a summary of the main

points of the video

See an outline of how the

goal is achieved (Subgoal,

Instruction)

Search and Selection Supporting users to make a deci-

sion on which video to watch

See if one has required tools to

follow the video (Tool)

Analysis
Feedback Providing feedback to the author

of the video about the content

Inform the author about how

structured the video is (Subgoal)

Comparison Comparing content between mul-

tiple videos

Compare how approaches to-

ward a same goal are different

(Instruction)

Table 4.3: Possible applications of the taxonomy in video authoring, viewing, and analysis.

Authoring

Having a video labeled by the taxonomy can foster the video editing process. For example, instructors

can find fillers or side notes that they have made, thus removing or fast-forwarding the parts if necessary.

They can also add visual effects to parts that need extra attention, such as tips or warnings, or make

transition effects when moving to the next step introduced by a subgoal. They can also add subtitles

or textual descriptions and style them differently, depending on what and how much they want to

emphasize [100].

Our taxonomy also aligns with the components that facilitate video editing found in previous papers.

DemoCut [35], a video editing system designed for how-to videos of physical demonstrations, supports

five types of markers to assist in video editing: Step, Action, Closeup, Supply, and Cut-out. The

system segments a video and applies editing effects based on the markers. Our taxonomy aligns with

several types of the markers, such as Step (Subgoal), Action (Instruction), Supply (Tool), or Cut-out

(Miscellaneous).

Viewing

Our study revealed that the taxonomy can improve users’ viewing experiences by enabling them to

quickly find and skip irrelevant information based on the category and the type. Our findings echoes

with Chang et al.’s finding on the types of jumping in how-to videos: Reference Jump (reminding users

of past content), Replay Jump (re-watching a segment of the video), Skip Jump (skipping less interesting

content), and Peek Jump (skipping ahead to see what to expect) [26]. Reference and Replay Jumps can

happen around Instruction, to clarify any confusion and better understand the instruction. Skip Jump

can happen around Greeting or Side Note, where a user wants to skip task-irrelevant parts. Lastly, Peek
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Jump can happen around Status or Outcome, where a user wants to see intermediate or final outcomes.

Our taxonomy can further support video navigation by segmenting a video into meaningful sections,

by leveraging Subgoal, Status, or Bridge information. P9 said, ”If we have the Goal and Subgoal

information, I think the video can be divided by each section like a table of contents. I would have liked it.”

P8 mentioned the possibility of using Status. She said, ”If Subgoal remarks the start of a step, I thought

Status remarks the end of a step. It showed intermediate outcomes.” One can also leverage Bridge as it

may signal transition to next chapter. As such, we can leverage meaningful information types to make

navigation easier.

The taxonomy can also be useful when summarizing a video. As observed from our user study, users

could choose the relevant information such as Goal, Tool, or Instruction to summarize the main points.

They can also see a succinct summary explained by the author with Briefing or Reflection or an

outline of how the goal is achieved with Subgoal. We can also make the summary generation process

interactive by allowing the users to choose the information type that they want to see in a summary. In

this way, we can give users more control over the summarization process beyond the time budget [76].

Lastly, our taxonomy can help users make an informed decision when selecting videos to watch.

Users can use certain information types to assist their decision. P3 said, ”I would check Overview, Tool,

and Conclusion first when deciding on whether to watch the video or not. I would check Overview and

Conclusion to see if I like the method and outcome, and I would check Tool to see if I have all the required

tools.” They can also see the proportion of information types to make a decision. P8 said, ”I don’t

really like videos that have a lot of irrelevant information. I would filter out videos that have a high

portion of Miscellaneous information.” The taxonomy can also be used to recommend videos, providing

explanations of recommendations such as conciseness or required tools. As in Inel et al.’s work which

provides explanations of a video summary [73], it will help users understand the video with transparency.

Different users can rely on different information types based on their navigational or learning needs.

With our taxonomy, we believe that users will have more control and agency in navigating, summarizing,

and selecting videos with more informed decisions.

Analysis

Our taxonomy can provide a systematic way to help instructors reflect on their videos by analyzing

content, viewership, and watching patterns. Receiving feedback on a video is key for authors in improving

their videos [140]. Researchers have proposed several systems for providing feedback on videos, such as a

script-based review system [140] or a system that analyzes accessible factors of a video [143, 109]. By

applying our taxonomy to their videos, the author can see how focused the video is (e.g., Do I have too

many Side Notes?) or how structured the video is (e.g., Do I mention enough Subgoals?). It can also

give feedback on its accessibility, by looking at how descriptive the video is (e.g., Are there an adequate

number of Descriptions?) [109]. Authors can also see which information type received more attention

from viewers, and make informed decisions about the content revision and production.

The taxonomy can also enable comparison between multiple videos. With an increasing number of

videos, many systems have been proposed to enable the exploration and analysis of large collections of

videos [114, 59, 42]. However, one of the challenges in comparing videos is the complexity of the size

and items to be compared. Tharatipyakul et al. proposed video abstraction as a way to reduce such

complexity [163]. Our taxonomy enables abstracting a video such as by taking Instructions, thereby

enabling efficient comparison between videos. It will allow identifying commonalities and differences in

approaches toward the same goal [23, 25] or classify workflows at scale [170].
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Supporting the Learning Experience

Understanding the information types in videos can help users in organizing the information. Mayer’s

multimedia learning theory suggests that learning material should have an understandable structure and

guide the learner in making a mental model (Active processing principle) [115]. He suggests that it is

helpful to know how information models can be structured. We believe that our taxonomy can contribute

to structuring information in videos by organizing the information based on their kind, and thereby help

the learning process of users.

Our taxonomy also includes information types that are critical to effective instructional content.

According to Morain and Swarts [123], successful tutorial videos begin with an overview of what is to be

accomplished (Goal, Briefing), explain what is accomplished (Subgoal) and reasons for performing a

step (Justification), and describe details such as the tool selection (Tool), the settings (Context), and

the outcomes (Outcome). Identifying meaningful information types for learners can ultimately extend

their learning experiences beyond following along.

Furthermore, our taxonomy shares several components with the taxonomy of information types in

lecture videos. Although how-to videos and lecture videos differ in the type of knowledge they convey

(e.g. procedural vs. declarative), they share the commonality of conveying instructional information.

Comparing our taxonomy to Espino’s investigation on the taxonomy of verbal information in MOOC

videos, there are several common components: ‘Opening/closing shot’ (Opening, Closing), ‘Overview

of the contents’ (Briefing), ‘announce following section’ (Subgoal), and ‘Justify/motivate content’

(Justification, Motivation) [50]. We can see that our taxonomy identifies major components that aid

learners in their learning process.

Technical Pipeline

To foster leveraging our taxonomy and developing applications discussed in Section 4.8, it is essential

to develop a technical pipeline that classifies segments of a video into the information types of the

taxonomy. As one of the approaches, we can leverage the few-shot learning technique on transcripts of a

video with large language models such as GPT-3 [19]. However, since our taxonomy is not only based

on verbal information but verbal information that considers visual information, multimodal learning

that takes visual information into account might yield better accuracy. The hierarchy of our taxonomy

(Category and Type) enables Hierarchical Classification as well. We hope our dataset containing 9.9k

sentences labeled according to the taxonomy can be served as a useful starting point to build such

technical pipelines.

Limitations and Future Work

In our study, we chose verbal utterances as a primary source of information. This is because how-to

videos usually have content creators explaining verbally how to perform a task [35], with an explicit

intention of explaining the visual content [120]. They also give additional information that is difficult to

be delivered visually. Due to the unique and extensive role of verbal information in how-to videos, we

presumed that it would cover a wide range of information and thus chose it as our scope.

However, videos are multimodal and visual information also plays an important role [123]. Although

we considered visual information when annotating each sentence to understand context, it does not cover

information types that only visuals can convey. For example, visual information can describe instructions

in more detail, sometimes accompanied with annotations that describe emphasis on objects or provide
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more detailed information of a tool used [35]. It would be interesting to investigate videos that deliver

information only through a visual channel to understand the capacity of information types that visuals

convey. Furthermore, verbal and visual information might not always align with each other [65, 35]. For

example, an instructor can verbally share instructions first and then visually demonstrate them later. As

such, future work can incorporate visual information in how-to videos for a more comprehensive taxonomy

and analysis.

Also, while our taxonomy is based on diverse videos in terms of topics, styles, and production

methods, they were YouTube videos whose lengths are between 5 minutes and 15 minutes. It may be that

some types in the taxonomy are specific to YouTube videos (e.g., Self-promotion), and longer videos

(e.g., live streams) or shorter videos (e.g., TikTok videos [164]) may have introduced additional types of

information. Further research should explore a wider range of how-to videos, which could build upon our

taxonomy.

4.9 Conclusion

We present a taxonomy of information types in how-to videos. Our taxonomy identifies 21 types of

information under 8 categories: Greeting, Overview, Method, Supplementary, Explanation, Description,

Conclusion, and Miscellaneous. We demonstrate the utility of the taxonomy in both analyzing users’

navigational behavior and supporting their navigation in how-to videos. We first show how our taxonomy

can serve as an analytical framework for understanding existing video navigation systems. Then, we further

investigate how the information type can assist people watching how-to videos. An explorative user study

with nine participants showed that type-based navigation enabled participants to find specific information

and perform tasks effectively. We further discuss how the taxonomy enables multiple applications in

video authoring, viewing, and analysis. Finally, we release a dataset, HTM-Type, which contains 120

videos containing 9.9k sentences with each sentence labeled according to the taxonomy. We hope that

our work builds a foundation for understanding how-to videos in a more systematic way.
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Chapter 5. SoftVideo: Improving the Learning Experience of

Software Tutorial Videos with Collective Interaction Data

This chapter focuses on the third phase, the Following phase, where learners attempt to follow

instructions in the video step by step. In this stage, contextual units such as step difficulty and relevancy

help guide the following process. This chapter has adapted and revised content from a paper at IUI

2022 [191]. All uses of “we”, “our”, and “us” in this chapter refer to the coauthors of the aforementioned

paper.

5.1 Motivation and Contributions

Tutorial videos provide step-by-step instructions of complex tasks for feature-rich software such as

Photoshop [147] and AutoCAD [9]. People watch a tutorial video and try to apply the techniques from

the video to their software when learning new techniques [?]. For example, they search for a video about

”removing background from an image” and learn the skill by applying it to their own image.

When following a tutorial video, people often watch instructions and apply them to their own work

(e.g., image editing, document editing, video authoring, programming, etc.) by alternating between the

video and the software. Commonly, they first watch a step in the video and apply it to their application.

If the application results an error or an unintended outcome, users often adjust the pace of the video and

rewatch the step, trying to find what they did differently. Most people go through multiple trial-and-error

cycles, which could be cumbersome.

Also, when applying instructions from a tutorial video to their software, users need to constantly

compare the two to see if they are following correctly. Users can easily miss important details when a

demonstration in a video moves too quickly [80], or subtle visual changes are presented in the video [186].

This process is cognitively demanding with constant context switching and is prone to mistakes.

In this research, we propose SoftVideo, a prototype system that helps users plan ahead before

watching each step in tutorial videos, gives feedback to users on their progress, and provides help to

overcome confusing moments. Users can see step information such as the name of an action or the duration

and difficulty of each step to anticipate what is upcoming and prepare, which reduces context-switching

overhead. Users also get informed about whether they completed a step or not so that they can be aware

of any missed steps. Lastly, users struggling at a particular step can get help suggestions such as slowing

down the pace, replaying the step, or seeing relevant steps. SoftVideo detects users’ confusing moments

automatically and presents help suggestions at appropriate moments.

To build SoftVideo, we leverage previous learners who had watched the same tutorial and worked

toward the same end goal. Collective interaction logs of the video and the software from previous learners

can reveal patterns of how people learn from the tutorial. For example, analyzing the logs can detect

the steps people frequently struggle in or miss. It can also identify when the user is facing difficulties by

comparing their progress to previous learners. Furthermore, it can reveal how people overcome confusing

moments, such as by looking at which steps they referred to when completing a step.

We chose Adobe Photoshop as an instance of the software. We collected interaction logs composed

of video interactions (i.e., pause, play, jump) in synchronization with Photoshop usages (i.e., actions

performed in the software). Collecting interaction data of both sources in a synchronized manner is
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essential as it captures the actual interaction between the two sources. This allows for more accurate

estimations of the user’s current task state, enabling SoftVideo to provide appropriate help to people

facing the back-and-forth challenges.

We collected 120 complete interaction logs with two tutorial videos (60 logs for each) with 74

participants of varying levels of expertise in Photoshop. Our data analysis pipeline then analyzed the

collected data to 1) estimate the difficulty of each step by analyzing how users behaved on each step and

2) identify the relevancy of each step. For 1), we define six measures that portray the difficulty of each

step: Execution Time Index, Repetition Time Index, Backjump Frequency, Pause Frequency, Miss Rate,

and Re-follow Rate. For 2), we identify the ”Relevant steps” of each step, which are the steps that are

performed again in order to complete a particular step.

We evaluated our tool with the two Photoshop tutorial videos with which we collected interaction

data. We recruited 30 participants (23 novices, 7 experienced) and asked them to follow a tutorial

video with SoftVideo. Results show that participants were able to proactively and effectively plan their

pauses and playback speed, and vary their concentration level before watching a step by looking at

the presented step information. The difficulty visualization also made them feel relieved when they

encountered confusing moments. They were also able to identify and recover from errors with the help

SoftVideo provided. Relevant step information helped them overcome confusing moments and acquire

contextual Photoshop knowledge.

The primary contributions of this paper are as follows:

• A publicly available dataset of 120 interaction logs across the tutorial videos and Photoshop in use
1.

• SoftVideo, an interface powered by previous users’ interaction data that provides step information

and real-time feedback to users.

• Results from a study showing that participants used the system to efficiently plan their action and

recover from errors in Photoshop tasks.

5.2 Data collection study

1) Logo 2) Geometry

Outcome

Effect Galaxy-style logo design Geometric Shape Effect

Length 9m 35s 7m 34s

Number of Actions 27 45

URL youtu.be/ifG1SDxqpAQ youtu.be/vcLjyGbF40Y

Table 5.1: Tutorial videos used in the data collection study.

In our approach, we leverage interaction logs from previous learners who had watched the same

tutorial and worked toward the same end goal. Collective interaction logs of video and the software can

1softvideo.kixlab.org
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provide useful insights into patterns of how people learn from the tutorial. It can reveal meaningful

information of videos, such as where users struggle a lot and thus need to pay attention to. We recruited

participants to collect interaction data of both the tutorial video and the software in synchronization. We

used Adobe Photoshop as the target software, due to its high availability and popularity. Participants

were asked to follow Photoshop tutorial videos and complete image editing tasks.

5.2.1 System for Data Collection

We built a system to collect the interaction data from both the tutorial video and Photoshop

synchronously. The system collects video interaction logs (i.e., play, pause, and jump actions with the

corresponding video timestamp and user timestamp) in synchronization with software interaction logs

(i.e., actions done in Photoshop). In the system, we embedded a Youtube video player for a Photoshop

tutorial video. We logged video interaction data using the YouTube player API [7]. To log software

interaction logs, we used the History Log feature available in Photoshop. Once users enable the History

Log feature in Photoshop, a text file that logs the action history is saved in their local computer. A new

line is appended to the file for every action performed in Photoshop. Once a user uploads the path of the

text file to our system in the beginning, the system reads the changes in the file periodically and logs the

actions in Photoshop, together with the corresponding video timestamp and user timestamp. We stored

the logs in Firebase Realtime Database [41].

5.2.2 Participants

We recruited 75 participants from an academic institution through online recruitment postings (48

male, 27 female, mean age 23). We collected their frequency of Photoshop usage on a 5-point scale (1:

None, 2: Yearly, 3: Monthly–Yearly, 4: Monthly, 5: Weekly). Based on their responses, we grouped

participants who have not used Photoshop or use it 1-2 times a year as novice, and experienced otherwise.

We used the frequency of use for grouping expertise because new features are added to the software

several times a year [67] and to avoid subjective measures (e.g., self-reported expertise). Each participant

completed either one or two tutorials depending on their availability during the given time. The number

of collected logs for each tutorial and participants’ expertise level is shown in Table 5.2. Participants

were compensated with 20,000 KRW (approximately 17 USD) for a 90-minute-long study.

5.2.3 Task

The task was to follow a Photoshop tutorial video about making 1) a galaxy-style logo design (‘Logo’)

or 2) a geometric shape effect (‘Geometry’) (Table 5.1). We chose the videos from YouTube because they

were less than 10 minutes to ensure a feasible study duration, and the tasks were not too trivial (e.g.,

image cropping) nor too advanced (e.g., poster design).

5.2.4 Procedure

Participants were first assigned to one of the two tutorials. After we introduced the effect and the

final outcome of the tutorial, they were asked to prepare images they wanted to use. Participants could

optionally choose one of the images we provided. They were then instructed to open Photoshop and our

system, and follow the tutorial video. If time allowed after completing one, they followed another tutorial.
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Figure 5.1: An example session of the data collection study. A participant is following the tutorial video

(on the left) on their software (on the right).

The study was conducted in either an offline or online setting. The same system was used in both

settings.

• Offline setting: We set up computers with Photoshop installed. We enabled the Photoshop History

Log feature and uploaded the path of the log file to our system. A total of 24 participants joined

offline.

• Online setting: Participants were asked to install Photoshop and either Whale [174] or Min web

browsers [173] before the study to enable real-time tracking of Photoshop usage logs, as other

browsers did not support it due to their security policies. They were asked to enable screen sharing

during the study. We guided them to enable the Photoshop History Log feature and upload the

path of the log file to our system. A total of 51 participants joined online.

5.2.5 Results

With 75 participants, we collected a total of 120 interaction data, 60 for each of the tutorials

(Table 5.2). The interaction data is composed of video interaction logs and software usage logs. Below we

specify the scope of the video interaction logs and the software usage logs we collected.

• Video interaction logs: Play, Pause (duration) and Jump (from, to) on the video and the corre-

sponding user timestamps and video timestamps.

• Software usage logs: Actions done on the software (e.g., Crop, Resize) and the corresponding user

timestamps and video timestamps.

The average time taken to complete the tutorial was 32m 54s and 29m 35s for the Logo and Geometry

tutorials, respectively (Table 5.3).
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Novice (N=59) Exp. (N=16)

1) Logo 49 11

2) Geometry 48 12

Table 5.2: The number of collected logs

for each tutorial.

Novice Exp. Avg.

1) Logo 35m 24s 21m 46s 32m 54s

2) Geometry 30m 51s 24m 33s 29m 35s

Table 5.3: Average time taken to complete each tutorial.

Measure Definition (video time: a duration of a step in video)

Execution Time Index Time taken to follow a step / video time

Repetition Time Index Total time of a step being watched / video time

Backjump Frequency Number of backward jumps

Pause Frequency Number of pauses

Miss Rate The proportion of users who missed a step at first but followed it later

Re-follow Rate The proportion of users who re-followed a step after proceeded to the

next steps

Table 5.4: Definition of six measures that portray the difficulty of each step.

5.3 Data Analysis Pipeline

Our data analysis pipeline analyzes the collected interaction data to identify meaningful information

from the tutorial video. Specifically, we aim to 1) estimate the difficulty of each step so that users can

plan their action before watching each step, and 2) identify the relatedness of steps so that users can

refer to when having difficulties in a particular step. We first describe measures that are used for each of

the two purposes.

5.3.1 Measures

Difficulty of steps

We defined six measures that portray the difficulty of each step: Execution Time, Repetition Index,

Backjump Frequency, Pause Frequency, Miss Rate, and Re-follow Rate. Table 5.4 shows the definitions of

six measures. Below we describe each measure in detail.

• Execution Time Index: (Time taken to follow a step)/(video time). If a user spends much

longer time in a certain step than its length in the video, there is a high chance that the user has

difficulties completing the step. For a fair comparison between the steps, we take relative execution

time, defined as the time taken to follow a step divided by the video length of the corresponding

step. Note that there was no fast-winded or cut parts in the videos we used.

• Repetition Time Index: (Total time of a step being watched)/(video time). Users repeatedly

watch a step if something is unclear from the video or does not work in their context. Similar to

Execution Time Index, we take relative repetition time, defined as the total time of a step being

watched divided by the video length of the corresponding step. If the Repetition Index is 1.5, the

user watched the whole step once, and half of it once more.

• Backjump Frequency: (Number of backward jumps). Users jump backward on the video to

watch the part that is demonstrated quickly or unclearly. We count the number of backward jumps
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Measure Definition

Relevant Steps Previous steps that users followed after watching the current step to complete

the step

Referring Rate The proportion of users who followed previous steps again to proceed with the

current step

Continued Rate The proportion of users who only watched the current step to proceed with the

step

(i.e., 1 - Referred Rate)

Table 5.5: Definition of three measures related to relevancy of each step.

that occurred while watching a step.

• Pause Frequency: (Number of pauses). Users pause the video to transfer the content in the

tutorial to their application if it needs much attention. If there are frequent pauses, it may indicate

that the step is hard to digest and to be transferred to their context at once. We count the number

of pauses that occurred in a step. We do not consider the duration of pauses as it highly overlaps

with the Execution Time Index.

• Miss Rate: (Proportion of users who missed a step at first but followed it later). If a step is not

clearly shown in the video, sometimes users skip the step at first. We define the Miss Rate as the

proportion of users who missed a step at first but followed it later. A high Miss Rate indicates that

users can easily miss the step.

• Re-follow Rate: (Proportion of users who re-followed a step after proceeded to the next steps).

If a step was not completed in the users’ context, they might revisit and perform the action again

even after they moved on to the later steps. We define the Re-follow Rate as the proportion of users

who revisited the step and performed it again. A high Re-follow Rate means many users go back to

the step and follow it again, indicating a high chance where the step could not be properly done.

Step relevancy

We defined three measures about relevancy of each step: Relevant Steps, Referring Rate, and

Continued Rate. Relevant step information can help learners who get stuck in a certain step, by

suggesting they check other related steps again. To help learners decide whether they should check the

relevant steps, we also define Referring Rate and Continued Rate. Below we describe each measure in

detail (Table 5.5).

• Relevant Steps: When users get stuck in a certain step, they sometimes try previous steps again

to help them complete the step. We define the previous steps that are followed after watching the

current step to complete the current step as Relevant Steps. Figure 5.2 shows an example scenario

describing Relevant Steps.

• Referring Rate: Referring Rate means the proportion of users who followed the previous steps

after watching the current step, to complete the current step. In other words, it is the proportion of

users who produced the Relevant Steps. It indicates how relevant the Relevant Steps are.
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• Continued Rate: In contrast to the Referring Rate, the Continued Rate means the proportion

of users who only watched the current step to proceed with the step. In other words, it is (1 -

Referring Rate).

Figure 5.2: An example scenario where the relevant step of step 15 is step 12. After a user followed

the step 12, 13, and 14, he is now on step 15. However, the user was not able to complete it. The user

jumped back to step 12 and then followed it again. Then, he came back to step 15 and followed the step.

(red: followed, gray: watched but not followed, blue: followed again).

5.3.2 Methodology

We describe the methodology we used to compute the above measures for each step from the collected

interaction data.

Removing actions that are unrelated to the task

After collecting interaction data—video interaction logs (play, pause, jump backward/forward) in

synchronization with the software usage logs—we first processed the software usage logs to remove the

actions that are unrelated to tasks. The History Log feature in Photoshop extracts actions done on

Photoshop including actions that are not directly related to the main tasks, such as auto-saving files or

quitting the application. Thus, we removed log entries that are not related to the tasks.

Identifying the followed and skipped steps

To compute the Execution Time Index, Miss Rate, Re-follow Rate, and Relevant Steps, we need

to identify when and which steps were followed or skipped. For example, we need to know when a user

successfully followed a step to compute the Execution Time Index.

To identify if a user followed or skipped a step, we first define baseline actions as actions done

in tutorial videos and baseline timestamps as the starting timestamps in the tutorial video of the

corresponding baseline action (Figure ??). To get the baseline actions, we followed the tutorials exactly

the same on our Photoshop, checking which action is being logged in the History Log feature. For the

baseline timestamp, we manually recorded the timestamp where each action began to be described in the

video by watching the tutorial videos.

After setting up the baseline actions and baseline timestamps, we developed an algorithm that detects

whether a user followed or skipped a step from the interaction logs (Algorithm 2). The algorithm detects

that a user followed a step 1) if they performed a baseline action after passing, 2) but still nearby the
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corresponding baseline timestamp; threshold values in Algorithm 1 determine the range of ”nearby”. The

algorithm detects a user skipped a step if they did not follow the step but followed the next step. The

algorithm detects a user added an action if the action does not exist in the video or it exists but is not

considered as followed.

Algorithm 1: IsFollowed

1 Input: A list of baseline timestamps, T = t0, ..., tn

A list of baseline actions, A = a0, ..., an

A current video timestamp, t

An action performed by a user, a

An index of the expecting action that needs to be done, i

An index of the most recent action that a user has watched, w

Output: True if the action is a followed action, False otherwise

2 thresholdPrevious, thresholdAfter ← Thresholds of video timestamp offsets

if i ≤ w then

3 thresholdPrevious← 20 ;

4 thresholdAfter ← 20

5 else

6 thresholdPrevious← 5;

7 thresholdAfter ← 15;

8 if a = ai then

9 if ( (i ≤ w and ai is unique in A) or (t ≥ ti − thresholdPrevious and

(t ≤ ti + thresholdAfter or i = n)) then

10 return True

11 return False

Computing the measures for each step

Among the six measures regarding the difficulty of steps, we computed the Execution Time Index,

Repetition Time Index, Backjump Frequency, and Pause Frequency for each user per step. Then, we

averaged the values among users per step and regarded the averaged value as a representative value

of each step. We computed Miss Rate, Re-follow Rate, and the three measures of step relevancy (i.e.,

Relevant Steps, Referring Rate, and Continued Rate) per step.

To estimate the difficulty of each step, for each of the six measures, we identified the steps with a

value higher than the third quartile (i.e., 75%) of all steps. For example, we identified a step with high

Execution Time Index by comparing its value to the third quartile of the Execution Time Index values of

all steps. We apply the quartile method since it is widely used to classify data into subgroups considering

the distribution [18].

Additionally, for the measures that could be computed per user (i.e., Execution Time Index, Repetition

Time Index, Backjump Frequency, and Pause Frequency), we computed the third quartile of each measure

within a step among users in the same group (i.e., Novice or Experienced). This is to set multiple

thresholds to identify if a user is having difficulty. For example, if a novice user’s Execution Time Index
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Algorithm 2: Action State Detection

12 Input: A list of baseline timestamps, T = t0, ..., tn

A list of baseline actions, A = a0, ..., an

A current video timestamp, t

An action performed by a user, a

An index of the expecting action that needs to be done, i

An index of the most recent action that a user has watched, w

An index of the previous followed action, p

A list of user logs, L = [(state0, action0), ..., (statem, actionm)] ; /* state is either

‘followed’, ‘added’, or ‘skipped’ */

13 Output: L= [(state0, action0), ..., (statem+1, actionm+1)]

14 if a is not in A then

15 L ← L + (‘added′, p);

16 return

; /* Check if a user followed the expecting action or previous actions */

17 j ← i

while j > 0 do

18 if isFollowed(T, A, t, a, i, w) then

19 L← L + (‘followed′, j);

20 return

21 j ← j − 1

; /* Check if a user skipped an action and followed a further action */

22 j ← i + 1

while j < len(L) do

23 if isFollowed(T, A, t, a, i, w) then

24 for k = i to j do

25 L← L + (‘skipped′, k)

26 L← L + (‘followed′, j);

27 return

28 j ← j + 1

29 L ← L + (‘added′, p);

60



of a step is exceeding the third quartile of novice users in the same step, we could assume that the user is

undergoing difficulty in the step.

5.3.3 Results

Through the analysis, we computed 1) the six difficulty-related measures for each step and for each

user per step, and 2) the three step relevancy-related measures for each step. Table 5.6 shows the average

values of the six difficulty-related measures across the step for each tutorial. Except for the Miss Rate, the

difference between novice and expertise group was statistically significant (Mann-Whitney Test, p < 0.01

or p < 0.05), showing the reliability of the measures used (Table 5.6). It indicates that novice users

showed more behavior of having difficulties than the experienced users.

We describe several examples of the results below. Table ?? shows example measures of steps that

exceed the third quartile of all steps, which might indicate that the step is likely to be more difficult.

Table ?? shows the third quartile values of each measure for each step, which serve as threshold values

when detecting users’ confusing moments. Table ?? shows examples of Relevant Steps, Referring Rate,

and Continued Rate. We can see that even though steps Move and Select Canvas from the Logo tutorial

all have at least three Relevant Steps, their significance could be different as the Referring Rates differ

substantially (41% vs. 8%).

From the analysis, we could also see that Miss Rate demonstrated steps that have certain properties

that make them easy to miss. For example, 39% of participants missed the Drag Selection on the Logo

tutorial, which was passing fast and not noticeable. Re-follow Rate captured steps that need attention.

For example, 60% of users followed Layer Order again in the Geometry tutorial. Positioning the layers

in the right order was important but many participants did it incorrectly at first.

Measure Expertise Logo Geometry Avg.

Execution Time Index
Novice 5.4* 6.3* 5.9

Experienced 4.0* 5.5* 4.7

Repetition Time Index
Novice 1.82* 1.8* 1.81

Experienced 1.43* 1.53* 1.48

Backjump Frequency
Novice 1.79** 1.24** 1.52

Experienced 0.76** 1.10** 0.93

Pause Frequency
Novice 1.60* 1.07* 1.34

Experienced 1.27* 0.58* 0.93

Miss Rate (%)
Novice 5.1% 4.5% 4.8%

Experienced 3.2% 5.7% 4.5%

Re-follow Rate (%)
Novice 16.8%* 15.4% 16.1%

Experienced 8.3%* 13.0% 10.7%

Table 5.6: Mean values of the six difficulty-related measures among all steps. In general, novice users

show more behavior of having difficulties than experienced users. For each measure, the table shows if

the difference between the novice and experienced groups was statistically significant (*: p¡.05, **: p¡.01,

Mann-Whitney Test) for each measure.

5.4 SoftVideo

We present SoftVideo, a prototype system that provides step information, gives feedback to learners

on their progress, and provides help to overcome confusing moments (Figure 5.3). SoftVideo provides
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Figure 5.3: Overview of SoftVideo. Along with the software tutorial video, SoftVideo provides (a) a

timeline where users can see the action name, its length, and the estimated difficulty. (b) Users can receive

real-time feedback on their progress. If a user followed a step, the circle will be filled. (c) SoftVideo

detects users’ confusing moments. Once detected, it provides users with suggestions such as (d) slowing

down the pace, (e) replaying the step, or (f) seeing relevant steps. Users see customized information

based on (g) the expertise level they enter.

step information such as the name of an action, and the duration and estimated difficulty of each step in

the timeline (Figure 5.3(a)). It gives feedback to users about their progress by letting them know if they

completed or missed a step (Figure 5.3(b)) and detecting when they struggle (Figure 5.3(c)). Finally, it

presents help suggestions such as to slow down the pace, replay the step, or see relevant steps when they

struggle (Figure 5.3(d)-(f)).

There are three components in SoftVideo that are powered by the analyzed data (Section 5.3):

Estimated difficulty of each step, criteria for detecting users’ confusing moments, and relevant steps that

are suggested when they struggle. All the information is determined based on the group the user belongs

to (i.e., Novice or Experienced) so that the system provides customized help. User can enter their level of

experience before they start watching the video (Figure 5.3(g)).

5.4.1 Step Information

SoftVideo provides a timeline that shows step information in the tutorial video (Figure 1.4). The

timeline is segmented into steps and each step is shown with the Photoshop action name and its duration,

which is reflected in its length in the timeline. The timeline display of step descriptions has been introduced

by other systems (e.g., [84]), but we additionally provide characteristics of each step that represent the
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Icons Meanings Measures

Users spent more time in this step compared to other steps. Execution Time Index

Users watched this step repeatedly more than other steps. Repetition Time Index

Users did backward jumps frequently at this step more than other steps. Backjump Frequency

Users paused frequently at this step more than other steps Pause Frequency

There are relatively many users who missed the step. Miss Rate

There are relatively many users who followed again the step. Re-follow Rate

Table 5.7: Icons that depict the difficulty of each step, and their corresponding meanings and measures.

difficulty of a step. With the six difficulty-related measures (Section 5.3.1), SoftVideo presents icons for

the measures with values that exceed the third quartile of all steps. Table 5.7 shows the icons and their

meanings, and corresponding measures. For example, if a step is shown with the pause icon, it means

that users paused frequently at the step more than other steps. Thus, users can estimate the difficulty or

complexity of a step by skimming through the icons shown in the timeline. We chose to present such

potentially useful indicators rather than a single quantified difficulty level, so that users can have control

over how they leverage the given information.

5.4.2 Real-time Feedback

SoftVideo gives real-time feedback to users on their progress by tracking both the video and the

application logs. First, it lets users know if they completed a step or not with our action detection

algorithm, described in Section 5.3.2. If a user follows a step in their application correctly, then the circle

of the step gets filled. If a user misses a step and proceeds to the next step, the circle remains unfilled

and the user is warned (Figure 1.4(c)). Second, it detects when a user is facing difficulties. If any of the

six measures exceeds its threshold value (Section 29), the system alerts users by asking ”Are you stuck?”

and presents appropriate help suggestions, which are described in the next section (Figure 5.4-right).

5.4.3 Help Suggestions

When SoftVideo detects users undergoing confusing moments, it suggests users to 1) slow down the

pace, 2) replay the step, or 3) go back to relevant steps. Users can slow down the video pace to x0.5

or x0.75 by clicking the button (Figure 5.3(d)), or replay the step by clicking the circle on the timeline

(Figure 5.3(e)). SoftVideo also suggests users to check relevant steps (Figure 5.3(f)). The arrow to a

relevant step is thicker if more users followed the step after watching the current step. To help users

better decide if they should check the relevant steps or not, SoftVideo presents the ratio of users who only

watched the current step to complete it and users who watched and followed previous steps to complete

it (Section 5.3.1). This is to help users with decision making rather than giving pressure to check relevant

steps. If a user moves to other steps, the suggested help gets closed.

Users can also request to see help by clicking the ”I need help!” button (Figure 5.4(a)) or close the

help suggestions by clicking the ”No, I don’t need help” button (Figure 5.4(b)). This is to make sure users

access necessary help suggestions on demand (or dismiss unnecessary information) in case the algorithm

failed to detect their confusing moments.
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Figure 5.4: (Left) A user is following the tutorial video. Once the system detects that the user may be

confused or struggling, (Right) SoftVideo presents action suggestions as help. Users can also proactively

(a) request to see the help (b) or close the help.

5.4.4 Implementation

We implemented SoftVideo using React.js, HTML, and CSS for the front-end web interface, and

Node.js and Firebase for the backend server. The implementation mostly follows the system used in the

data collection study (Section 5.2.1). It additionally runs the action detection algorithm (Algorithm 2)

in real-time to track users’ progress and runs the data analysis pipeline (Section 5.3) in real-time for

computing the Execution Time Index, Repetition Time Index, Backjump Frequency, and Pause Frequency

measures to detect users’ confusing moments.

5.5 User Evaluation

We evaluated the feasibility of using data-driven information and the effectiveness of SoftVideo

through a study. Specifically, the goals of our evaluation were (1) to see how participants think about

and use the step information when performing tasks, and (2) to assess the effect of real-time feedback

and help suggestions on improving the user experience of software tutorial videos.

5.5.1 Participants

We recruited 30 (22 male, 8 female, mean age 23.8) participants from an academic institution through

an online community posting, including 23 novice and 7 experienced users for Photoshop. The level of

Photoshop expertise were determined in the same manner as in Section 5.2.2. People who participated in

the data collection study were excluded from this recruitment. Each participant was assigned to one of

the two tutorial videos used in the data collection study. We assigned the participants equally for each

tutorial; 15 (11 novice, 4 experienced) were assigned to the Logo tutorial while the remaining 15 (12
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novice, 3 experienced) were assigned to the Geometry tutorial. Participants were compensated 20,000

KRW (approximately USD 17) for their participation in a 80-minute-long study.

5.5.2 Study Procedure

The study took place face-to-face, following the COVID-19 guidelines: participants had to wear masks

and sanitize their hands before using computers. Windows and doors were open and an air conditioner

was turned on to keep the room ventilated. We sanitized the utilities after each session.

Participants were first asked to complete a pre-task survey about their experiences in using Photoshop

and how they interpret each of the six message types (Table 5.7) to make sure they become familiar with

the messages. We then introduced a Photoshop tutorial video to participants and asked them to choose

images to be used based on their preference. After explaining how to use SoftVideo, one researcher set

up their expertise level (novice or experienced) in SoftVideo based on the pre-task survey result and

entered the path to the Photoshop History Log file for real-time tracking. Participants were then asked to

follow the given tutorial video using SoftVideo. Once participants completed the main task, we conducted

a survey about their experience and a semi-structured interview to get more detailed feedback. Each

participant was provided with two monitors; one for the tutorial video (SoftVideo) and the other for

Photoshop.

We chose not to do a comparative study as SoftVideo is a complex system with multiple novel

features: a comparative study cannot clearly uncover the source of differences observed, and it is unclear

what a convincing baseline might be. Rather, we focus on observing and analyzing how participants use

SoftVideo in a realistic task. We logged the number and the timestamp of detected confusing moments,

help requests and help dismissals made by participants, and their usage of help suggestions.

5.6 Results

Below we summarize the main findings and usefulness of SoftVideo with respect to each feature.

5.6.1 Step Information

Participants were able to estimate the difficulty of steps with the number of icons shown in the

timeline. In general, they felt that the number of icons implied the difficulty of a step (perceived accuracy

= 3.73/5, std=0.98). Being able to know about the difficulty of steps affected them in a few different

ways, which we report below.

Participants planned their behavior and level of concentration according to the difficulty of

steps.

Participants were able to plan their action and level of concentration by looking at the difficulty of

upcoming steps. They planned their pauses on the video depending on the difficulty (P3, P4, P22, P26).

P22 said, ”I put my fingers on the space bar in advance when facing difficult steps so that I can be ready

to pause.” Similarly, P3 said, ”when there were no icons, I tried to watch the step at once until the end

without pauses.” Participants not only planned their pauses but also controlled the speed of the video

playback (P1, P10, P14, P23). P1 said, ”I was able to prepare myself for upcoming steps by slowing down

the pace whenever I saw many icons.” Even if they did not perform an explicit action to be prepared, they

adjusted their level of concentration based on the difficulty (P11, P13, P17, P19, P23, P24, P27, P29).
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P13 said, ”When there were no icons, I was relaxed and watched the step in a relaxing way. However,

when there were many icons, I focused more.”

Participants’ experiences in early steps affected their planning strategy. P14 said, ”I found myself

being able to watch and follow at the same time when there were two or fewer icons. After experiencing

that I pause a lot during steps with three or more icons, I started to slow down the pace of the video right

before such steps came up.” P6 built their own understanding of the icons through the earlier steps which

made them perform certain actions prior to watching steps with particular icons. P6 said, ”I learned that

there was a pause icon whenever the step required me to enter in some parameters like width and height.

After experiencing it, I was able to know when similar actions (i.e., setting values) are coming (when I

saw the pause icon) and so I was able to perform them in advance.”

Step-wise difficulty information increased the level of safety and gave hints when they

struggle.

When participants faced confusing moments, they checked to see icons and felt relieved to see many

icons on the step (P4, P5, P8, P12, P16, P18, P19, P27). P27 said, ”I felt relieved to see many icons when

I was struggling because I knew it was not only me and the problem is the step itself.” It also happened

when participants came back to a certain step after having done it differently or missed it. P18 said, ”I

didn’t notice the icons at first, but when I revisited a step to do it again, I could see many icons and was

able to know that there were many similar users like me.”

The difficulty level also gave hints on how to overcome confusing moments—whether they should

look into the step in more detail or watch other steps. P7 said, ”When I struggled, I watched the step

more carefully if there were many icons. In contrast, if there were few icons, I realized something went

wrong in previous steps, not the current step, so I watched previous steps.”

Differences in the perceived usefulness between the messages

Although most participants perceived the icon count as an indicator of step difficulty, there were

differences in perceived usefulness between the messages. Participants rated the usefulness of messages as

follows (ordered by score): Pause Frequency (4.03/5), Repeat Index (3.73/5), Revisited Rate (3.73/5),

Execution Time (3.63/5), Backjump Frequency (3.6/5), and Missed Rate (2.7/5). Pause Frequency might

have been the most useful because knowing how to split a step is important in following tutorial videos.

P27 said, ”I tended to pause if there was the pause icon when I wasn’t sure about when to pause.” On the

other hand, Missed Rate might have been the least useful because participants might have felt that there

are small chances of missing a step, partially due to SoftVideo’s feature of letting users know if they have

missed a step. In general, participants said it was helpful to see step information (3.7/5, std=1.3).

5.6.2 Real-time Feedback

We report how participants felt about real-time feedback on their progress and automatic detection

of confusing moments.

Letting users know about their progress

With the feedback SoftVideo provides, participants were able to identify missed steps (P4, P6, P9,

P18) as well as steps that they performed differently from the tutorial video (P7, P12, P14). P9 said, ”I

noticed a difference between the image on the tutorial and the image on my application. Then I noticed
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that there was a step that I missed due to an alert SoftVideo gave. I was able to go back to the missed

step and follow it.” SoftVideo also let users know about steps that they thought they followed but not

actually because they behaved differently. P7 said, ”I thought I followed the step Move but it didn’t appear

to be so, so I checked it again. I realized that I didn’t press ‘Ctrl’ while doing the action.” Participants

mentioned that the real-time feedback on the progress encouraged them to follow the tutorial more

meticulously (P11) and it made following along more enjoyable as it felt like solving a series of quests

(P25). Participants said the feature was helpful in general (3.67/5, std=1.3).

Detecting confusion moments

Overall, participants felt that SoftVideo detected their confusing moments accurately. On a scale of 1

to 5, with 1 being early and 5 being late about the timing of SoftVideo’s confusion detection, participants

rated 2.9 (better if closer to 3, std=0.92). P6 said, ”I thought it detected quite well. I was struggling

at a step of doing ‘Ctrl+T’ and the system detected it right away.” On average, SoftVideo detected

17.83 confusing moments per user (min: 1, max: 29). Participants closed 2.76% of the suggested help

and requested to see help 0.77 times additionally on average. For about 32% out of 543 detection and

requested cases, participants utilized at least one of the suggested help, which we discuss next.

5.6.3 Help Suggestions

We report the usage of help suggestions by SoftVideo and how participants found information of

relevant steps helpful.

How participants used suggested help

Among the three help suggestions SoftVideo provides (i.e., speed control, repeating a step, and

relevant steps), participants repeated a step most frequently (114), followed by checking the suggested

relevant steps (46) and slowing down the pace (13). Participants might have repeated a step a lot because

it is what most users are familiar with, checking if they have missed anything and figuring out why it

does not work on their application by watching over and over. On the other hand, they rarely slowed

down the pace when faced with difficulties. P25 said, ”I didn’t use the speed control because the part that

needs attention only lasted a few seconds. I didn’t want it to be slower for the entire step.”

How seeing relevant steps was helpful

Participants reported that seeing the suggested relevant steps was helpful in overcoming confusing

moments (P2, P5, P7, P9, P11, P14, P16, P19, P23). It helped them by suggesting steps that they

should watch again. P2 said, ”When I knew I made a small mistake, I jumped back to 5 seconds before by

using the left arrow key on the keyboard. However, when I wasn’t sure what caused a problem, seeing the

relevant steps was helpful.” In particular, if one of the relevant steps was pointing to a step that they

have missed, they perceived it as an important step and went back to the step to follow it (P5, P7, P14,

P19). It not only helped participants follow the step they have missed, but also to re-follow the step that

they have followed before. P11 said, ”I was able to catch up right away after watching a relevant step.

Even though I followed the step, there was something I pressed in a wrong way.”

Some participants perceived the relevant steps as ”similar steps”, and transferred the knowledge of

the step to the current step. P8 mentioned ”I was able to relate the information from a relevant step.

I remembered how I completed the step, so I thought I could do this step in a similar way.” Another
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interesting usage was that it helped participants acquire the knowledge of the software, by looking at

which steps are frequently related. P25 said, ”It helped me a lot in understanding how to use Photoshop

in general. I was able to know which actions are related and which should be done for other actions to be

done.” Also, with relevant steps participants reported feeling safe because even if they failed to follow a

step, there are alternatives that they could try (P26, P27).

However, unlike our expectations, the Referring Rate and Continued Rate were rarely used. Nearly

all participants mentioned that they did not look at the numbers. P7 said, ”I didn’t see the numbers at

all. If there was at least one relevant step, I checked it out no matter how many referred to it.” Although

the Referring Rate and Continued Rate were not used in deciding whether they should watch relevant

steps, some participants used the information to adjust their concentration level on the relevant steps

(P2, P24). P24 said, ”If the Referred rate was about 80%, I watched it normally. If it was higher than

85%, I paid more attention. If it was 92% or higher I paid extra attention and watched it carefully.”

5.6.4 Other Feedback

Participants also appreciated the basic timeline that shows the name and duration of each action.

It helped them learn about the sub-goal of each step (P4, P8, P17) and made it easier to navigate the

video (P1, P9, P13, P29). Seeing the action name was helpful because participants were able to expect

which menu they should click (P29), especially when the same step appears again later (P19). Overall,

participants found SoftVideo helpful in following along the tutorial content (4.17/5, std=0.87). Moreover,

they preferred using SoftVideo compared to the basic video-only interface (‘I’d prefer to use this system

to the basic video-only interface.’ (5-point Likert scale): 4.13/5, std=0.97).

5.7 Discussion, Limitations, and Future Work

In this paper, we investigated the feasibility of enhancing software tutorial videos with data-driven

information. In this section, we discuss considerations, limitations, and possible future work of using

collective interaction data.

Utilizing Synchronized Interaction Data of Both Software and Tutorial Video

Synchronized interaction data of how a user uses both the software and the tutorial video possess

much more potential than just two single data sources. It allows for more accurate inference of the

user’s current state and more personalized support. For example, our Execution Time, Missed Rate, and

Revisited Rate measures are induced from (and are only made possible by) synchronized data of both the

software and the tutorial. Using such metrics extracted from synchronized data, in addition to metrics

obtained from video interaction logs (i.e., Repetition Index, Backjump Frequency, and Pause Frequency)

which have been shown to be relevant with video difficulty [98], we were able to detect whether the user

is experiencing difficulty in following the tutorial. Similarly, previous work also showed that utilizing

additional logs such as physiological data collected from smartwatches can significantly improve the video

difficulty detection [38]. Likewise, if we only utilized one data source or if the data was not synchronized,

the impact of SoftVideo could have been less significant.
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Users’ Trust and Interpretations on Data-driven Information

SoftVideo’s data-driven information shows the collective behavior of a number of users who have

worked toward a shared goal. How users perceive the meaning of information might be different from

user to user. Participants from our study built up their trust towards the system and came up with their

own understanding of how to interpret the provided information as they used the system. P26 said, ”I

found out that those steps do not have icons because I could easily follow the video while watching at the

same time.” Similarly, P4 said, ”It was cool that I actually paused a lot in steps with many icons.” This

shows that their trust towards the system grew as they used the system and their experience aligned with

the presented information. After understanding how the presented information matches their context,

participants built their own techniques to interpret and follow subsequent steps (e.g., to pause the video

at steps with three or more icons). It also shows that giving users control to selectively leverage useful

signals rather than presenting a single answer predicted by the system allowed them to build trust and

make their own interpretations.

Availability of Interaction Data and Its Privacy Implications

In order to utilize synchronized interaction data of both software and tutorial video, it is essential

to first consider how to obtain software interaction data. For example, our work uses Photoshop as an

instance of software, which enables tracking software usage logs through its History Log feature. Modern

software applications such as AutoCAD [9] or Fusion360 [1] also provide history logs so that users can

track their progress and easily revert to a particular action. For software with no history logs or API

for them, accessibility APIs [58, 113] or computer vision techniques [148, 13, 112, 105] could be used to

reverse-engineer the software interactions. Augmenting open-source software such as GIMP [72] could be

another possible solution.

When capturing interaction data, privacy issues should be carefully considered. Unlike videos that

are published publicly on online platforms, the software is often where users work privately. Previous

work suggests that when users acknowledge that there are enough benefits provided, users’ perceived

privacy concerns may be alleviated [85, 146], but still sensitive personal information or assets (e.g., file

names) can be recorded in the software usage logs. Potential solutions include automatically filtering out

such information or giving users control by allowing them to review and filter what gets shared.

Leveraging Richer Interaction Data

In our work, we collected pause, play, and jump as video interaction data and Photoshop action

names as software interaction data. Future work could look into leveraging richer interaction data. For

example, playback speed change or volume control of videos might capture important or non-important

parts of the video. Also, users’ Undo and Redo behavior on the software can be used [126, 49], as it may

imply important moments of the video such as confusing parts or the parts where people explore. With

such data, it may be possible to identify steps that are optional or steps where users can branch out

and be more creative about. As such, more extensive interaction data could improve the accuracy in

revealing important points in tutorial videos. Moreover, analyzing the interaction data with respect to

users’ expertise level or quality of outcome can enable tailored support according to expertise level or

goals.
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More Support for Learners and Authors of Educational Videos

SoftVideo demonstrates how utilizing interaction data can enhance the learning experience of software

tutorial videos. Extending this idea, future systems can provide further support to learners. As people

use the system, the system can give adaptive information to users. The system can control the amount

and the content of the information in a personalized way by identifying what information a user needs.

For example, a certain part of the video can be only shown to users who encounter a certain type of

difficulties. Also, although we set the third quartile as a universal metric when defining the difficulty of a

step or detecting users’ confusion, future work can investigate adaptive techniques for identifying the

user’s state and providing more personalized experiences.

Furthermore, our system could be beneficial for authors of educational videos. For example, an

author of an instructional video can identify where users struggle a lot or which steps users miss frequently

so that they can improve the video or provide additional explanations. Visual analytics tools of how

users learn through instructional videos might give insights into understanding users and improving the

content as well.

With our public dataset of synchronized interaction logs of the tutorial videos and the software, we

expect that it could facilitate a further understanding of how users learn from software tutorial videos.

We expect that it will enable future research in data-driven video-based learning.

5.8 Conclusion

This paper presents SoftVideo, a data-driven interface for improving the learning experience of

software tutorial videos. SoftVideo helps users plan ahead before watching a step, gives feedback on

their progress, and presents help suggestions when they struggle. We analyzed collective interaction

logs of a tutorial video in synchronization with the software to provide the difficulty of each step, detect

users’ confusing moments, and suggest relevant steps. A user study showed that data-driven information

allowed participants to plan their behavior of following the tutorial, feel relieved, and overcome confusing

moments. We believe that leveraging richer interaction data could further enrich the learning experience

of both instructional videos and complex software.
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Chapter 6. GUIDE: A Benchmark for Understanding and

Assisting Users in Open-Ended GUI Tasks

This chapter focuses on the final phase, the Autonomous phase, where users work independently in

their own environment. In this stage, user behavior states and intent serve as useful contextual units for

understanding user demonstration videos and providing appropriate assistance.

6.1 Motivation and Contributions

Graphical User Interface (GUI) agents hold great promise for supporting users in complex workflows,

in mobile [108, 75, 199], web [159, 68, 193, 43, 206], and software application tasks [197, 137]. In creative

and analytical tools such as Photoshop or PowerPoint, these agents can automate repetitive subtasks or

provide guidance to help users achieve their goals more efficiently. Most existing GUI agents, both in

academic research [61, 104, 201] and in commercial services like Microsoft Office Copilot [118] or Figma

Make [52], focus on full automation: given a goal, they either execute a sequence of clicks and keystrokes

to complete the task or directly generate the desired output. While this approach offers convenience,

it overlooks how people actually work with software. In real-world open-ended creative or analytical

workflows, users often prefer to retain control—to experiment, explore alternatives, or iteratively refine

their designs [78]. An agent that takes over the entire interface can undermine the user’s agency and may

even slow down the progress when users must repeatedly revise prompts or undo automated actions.

Recent work on proactive task assistance takes a more balanced approach [177, 111, 183, 198, 184].

Rather than automate tasks for users, proactive assistants infer a user’s context and intent and deliver

timely, relevant help. Studies in programming and productivity tools show higher efficiency and satisfaction

when a system detects a need and intervenes at the right moment [151, 28, 144, 177]. Yet, the ability to

model and track users’ evolving behavioral context remains underexplored in current multimodal systems

that power GUI agents.

To achieve a truly human-assisting GUI agent, a key ability is to comprehend users’ cognitive context

and intentions to provide appropriate support [69]. In real-world scenarios, users rarely articulate their

goals or needs explicitly, making it natural for systems to rely primarily on visual cues from the screen.

These user actions often carry semantic structure, such as hovering, undoing, or repeatedly opening

menus, that signal intent. However, interpretation remains challenging: similar actions may stem from

entirely different intents. For example, repeated undo actions might indicate confusion or deliberate

refinement. As a result, without deeper reasoning, assistance based solely on surface-level actions can

lead to shallow or misaligned responses.

To address this challenge, we present GUIDE (GUI Understanding, Intent, and Help Decision

Evaluation), a benchmark designed to evaluate multimodal models (MLLMs) on their ability to understand

and assist users in complex software workflows. GUIDE introduces a three-stage evaluation framework:

(1) Understanding the user’s behavioral state to identify their current workflow phase; (2) Reasoning

about their underlying intention and what they aim to accomplish; and (3) Assisting by delivering the

appropriate form of help at the right moment.

We collected 67.5 hours of screen recordings from 120 human demonstrations across 10 widely

used applications—including Photoshop, Figma, PowerPoint, Premiere Pro, and Excel—covering 40
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Dataset
Domain

#

Video

#

Video

Duration
Video Source Primary Goal Evaluation Focus

Behavior Intent Help

PsTuts [95] 1 - 71.4 h Instructional Videos Action Understanding

VideoWebArena [74] 6 74 3.8 h Human-Recorded Tutorials Task Automation

VideoGUI [104] 11 178 7.1 h Instructional Videos Task Automation ✓

UI-Vision [128] 83 450 4.8 h Experts Performing Tasks Task Automation

AssistGUI [61] 9 100 <8.3 h Instructional Videos Task Automation ✓

WorldGUI [201] 10 611 <30.5 h Instructional Videos Task Automation ✓

GUIDE (Ours) 10 120 67.5 h Novice Demonstrations Behavior Understanding ✓ ✓ ✓

Table 6.1: Comparison of GUIDE with existing GUI video understanding datasets. GUIDE differs

from existing benchmarks by (i) collecting screen recordings from novice users, (ii) capturing how they

naturally behave in open-ended tasks with a focus on behavior understanding, and (iii) evaluating systems

based on human user needs rather than task automation.

open-ended tasks designed to elicit natural user behavior. Unlike prior work that primarily targets video

understanding from expert-recorded instructional videos on closed-ended tasks [95, 104, 128, 61, 201], our

focus is on novice users working on open-ended tasks, with the goal of building collaborative AI systems

that assist users during exploration, trial-and-error, and learning. Observing novice workflows allows us

to capture authentic moments of confusion, decision-making, and discovery, offering rich opportunities for

AI to provide timely, context-aware support. Each session includes both screen recordings and think-aloud

narrations that surface the user’s underlying intentions and cognitive states.

Building on this dataset, we define three-staged benchmark tasks: First, (i) Behavior State

Detection evaluates whether a model can identify the user’s behavioral state, such as exploration or

confusion, based solely on visual cues. To support this, we developed a taxonomy of nine user states

reflecting diverse cognitive and behavioral phases in open-ended GUI workflows, grouped into four

high-level categories: Planning, Execution, Problem-Solving, and Evaluation (Figure 6.4). This structure

aligns with human cognition and interaction theories [17, 131], while introducing finer distinctions tailored

to GUI-based task behavior. Next, (ii) Intent Prediction targets inference of the user’s immediate

goal—what they are trying to accomplish in the given moment. The final task, (iii) Help Prediction,

assesses whether a model can determine 1) whether the user needs assistance or not, and if so, 2) what type

of help would be most appropriate, such as explaining a feature, suggesting an alternative, or addressing

an error. By leveraging both visual screen recordings and accompanying think-aloud narrations, we

automatically generated data for each task, which was subsequently verified through human review for

accuracy and consistency.

Evaluation across eight state-of-the-art MLLMs reveals that while current models struggle to interpret

user behavior and predict underlying intent and help needed—achieving only 44.6% accuracy on behavior

state detection and 55.0% on help prediction, performance improves significantly when structured user

context is provided. For example, supplying behavioral state and intent information boosted help

prediction accuracy by up to 50.2 percent point for the lowest-performing model.

Our results suggest a promising path forward: providing different layers of human-grounded context,

such as behavioral cues and inferred goals, can lead to more accurate assistance decisions. These findings

indicate that training models on data reflecting users’ behavior, intentions, and help needs may enable

72



agents to reason more deeply and assist more effectively. To facilitate future research on collaborative

GUI agents, we will publicly release the dataset.

6.2 GUIDE Benchmark

(1) User Behavior State Detection

A. Change the color of the rectangular shape

B. Adjust the spacing between the form elements

C. Create a sign-up button

D. Create a progress barPerforming Actions

Ideation and PlanningIdeation and Planning
Seeking External Help

Waiting and Monitoring

Assessment

Frustration

Debugging

Task Understanding 
and Preparation

Exploration and 
Decision-Making

(2) Intent Prediction (3) Help Prediction

(3-1) Help Need 

(3-2) Help Content 

A. How to color grade the video footage

B. Generate automatic captions

D. Apply a special effect to the video clip

C. Get a guide on how to use text effects

“I’m going to duplicate this and make it 
smaller.”

“I really don't know how to make use of 
any of these texts.”

Which behavior state is the user in? What is the user trying to achieve? Does the user need help? If so, what kind?

“I’m trying to see all the effects we can 
explore..”

Does the user need help?

What help is needed?

Yes No

Figure 6.1: Overview of the three core tasks in the GUIDE benchmark. (1) User Behavior State

Detection identifies the user’s current behavioral mode (e.g., Exploration and Decision-Making). (2)

Intent Prediction infers what the user is trying to achieve (e.g., Create a progress bar). (3) Help

Prediction determines whether the user needs assistance and, if so, what kind of help is relevant (e.g.,

Get a guide on how to use text effects). Together, these tasks enable a comprehensive understanding of

user behavior and assistance needs in software GUI environments. We evaluate MLLMs on their ability

to infer these solely from the visual input, without access to the demonstrator’s narration — a setting

that closely reflects real-world use.

To develop a benchmark that focuses on understanding and assisting users, we collected demon-

strations from novice users. Unlike existing datasets that focus primarily on expert demonstrations or

polished instructional videos [95, 104, 128, 61, 201], our dataset captures the authentic challenges and

exploratory behaviors that novices exhibit during task completion, serving a crucial role in building

collaborative agents. Building on these demonstrations, we propose a suite of tasks designed to evaluate

models’ capabilities to understand users and provide effective assistance.

6.2.1 Video Collection

We collected 120 demonstrations from novice users across 10 software applications spanning five

categories: Photo Editing (Photoshop, GIMP), Graphic Design (Figma, Canva), Presentation Design

(PowerPoint, Google Slides), Video Editing (Premiere Pro, CapCut), and Data Analysis (Google Sheets,

Microsoft Excel). For each application, we designed four open-ended tasks aimed at eliciting natural and

diverse user behaviors and approaches (Table ?? in supp.).

We chose creative and analytical tools to surface exploratory workflows and variation in problem-

solving strategies. Each task was completed by three different users to capture diverse strategies and
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Variable Value

# Videos 120

Total Duration 67.5 hours

Avg. Duration 33 min 44 sec

Max Duration 1 hour 23 min 50 sec

Min Duration 16 min 42 sec

Think-Aloud Narration Ratio 78%

Task Samples & Granularity

(1) Behavior State Detection 1.8K

Avg. Segment Length 14.16s

(2) Intent Prediction 1.3K

Avg. Segment Length 25.40s

(3) Help Prediction 1K

Avg. Segment Length 25.56s

Figure 6.2: Statistics of the GUIDE

dataset.

Figure 6.3: Distribution of screen recording video

lengths.

behaviors. We ensured that each task was flexible enough, while still incorporating elements of challenge.

Participants were asked to spend at least 20 minutes per task and meet a few minimal requirements (e.g.,

inserting a relevant image) to mark it as complete.

We recruited 54 novice users of software from Prolific and our institution. Participants were screened

based on their self-reported expertise and familiarity with the features in each application to ensure they

were novice users. During the study, participants worked on the assigned task while recording their screen

and keyboard/mouse input events. They were also asked to think aloud and record their voice as they

carried out the task, verbalizing what they were doing and their thought process.

6.2.2 Benchmark Tasks

To evaluate a model’s ability to understand user context and deliver appropriate assistance, we design

our benchmark as a unified three-stage framework: Understanding → Reasoning → Assisting. These

stages progress from interpreting user behavior to inferring intentions and ultimately providing helpful

assistance. Each task corresponds to a distinct level of cognitive inference required for a human-assisting

GUI agent to effectively support users in open-ended software workflows.

To construct a dataset for task evaluation, we used the Human-AI collaborative method. We first

transcribed the think-aloud narration using WhisperX [11], and used the narration as a main source

of extracting initial annotations in addition to the video. We employed Gemini-2.5-Pro to first create

annotations needed for each task, which were then refined by human annotators. Note that we use

narration only as an annotation source to capture users’ intentions and mental states. The benchmark

evaluates vision-only understanding, testing whether models can infer these states solely from visual cues,

as in real-world settings without access to user speech.

User Behavior State Detection

Description. This task evaluates whether a model can interpret the user’s behavioral context directly

from visual cues. Models are asked to classify a video segment into one of nine behavior states in

our taxonomy (Figure 6.4), which spans the full range of cognitive and behavioral processes observed

in creative and analytical workflows. Grounded in established theories like Norman’s Human Action
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Figure 6.4: Our proposed taxonomy of user behavior states in GUI-based software tasks, organized into

four main phases: Planning, Execution, Problem-Solving, and Evaluation. Each phase captures

distinct patterns of user cognition and interaction, from initial goal formulation to iterative action,

troubleshooting, and reflection.

Cycle [131] and Bloom’s Taxonomy [17], our taxonomy provides a structured foundation for understanding

user behavior, from early planning to problem-solving and reflection.

We developed the taxonomy through a multi-stage, human–AI collaborative process [93]. First, three

authors iteratively created and consolidated an initial taxonomy over five sessions based on observations

of online software task videos. Separately, we prompted Gemini-2.5-Pro to generate a taxonomy from

scratch using our collected video dataset, without providing our initial version. We then augmented the

human-generated taxonomy by integrating novel categories identified by the LLM. Finally, the combined

taxonomy was validated against the entire video dataset to ensure comprehensive coverage and reorganized

into the final set of nine distinct states.

Dataset Curation. After constructing the taxonomy, we aligned each video with its corresponding

narration segments. For every segment, we annotated the user’s behavior state using Gemini-2.5-Pro

according to the taxonomy, prompting the model to produce both a predicted label and its reasoning.

Two human annotators recruited from Prolific then verified and refined these annotations, achieving a

96.1% agreement rate. Finally, we uniformly sampled 200 instances from each of the nine classes, resulting

in a balanced dataset of 1.8K annotated segments.

Intent Prediction

Description. This task evaluates whether a model can reason about the user’s short-term, immediate

goal in context. It focuses on identifying what the user aims to achieve within open-ended workflows.

Dataset Curation. Using the narration-aligned video segments, we prompted Gemini-2.5-Pro to infer

users’ intention in each segment. The think-aloud narrations often revealed users’ goals (e.g., “I’m going

to align these objects”, “I’ll try another color”). Leveraging this signal, we prompted the model to

infer the underlying user intention. After collecting and deduplicating the inferred intents, we further

instructed the model to generate three plausible but incorrect alternatives to serve as distractors for the

multiple-choice evaluation. The resulting intent annotations and distractors were then validated by the

authors, with 88.68% of the data retained, yielding a final set of 1.3K instances.
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Help Prediction

Description. The final task evaluates whether a model can progress from understanding and reasoning

to deciding how to assist. Help Prediction consists of two subtasks: (1) Help Need Detection, a binary

classification task that determines whether the user needs help, and (2) Help Content Prediction,

which identifies the specific type of help needed—such as explaining a feature or suggesting an alternative.

Together, these subtasks assess a model’s ability to anticipate user needs and recommend appropriate

assistance, bridging the gap between perception and actionable support.

Dataset Curation. We identified potential help-seeking moments using two complementary signals.

First, explicit help-seeking behaviors, such as switching to external resources (e.g., Google, YouTube,

ChatGPT) indicated direct attempts to seek guidance. Second, implicit help-seeking cues were extracted

from user narration, where they expressed uncertainty or confusion (e.g., “How do I align this?”, “I can’t

find Layer Mask.”). Additionally, we included clear no-help-needed moments, where users demonstrated

confidence through their narration. Using these signals, Gemini-2.5-Pro was prompted to generate

initial annotations for help-need and help-content labels. After deduplication, the model was additionally

prompted to generate three plausible but incorrect options for each instance for multiple-choice question

evaluation. All annotations and distractors were then reviewed by the authors, resulting in 1K validated

instances, with 78.89% of the original data retained. For 12.5% of the retained instances, the segment’s

start or end time was adjusted to exclude explicit visual help signals (e.g., user turning to Google Search)

to ensure fair evaluation. Overall, 66% of the instances were labeled as help-needed, while the remaining

34% required no help.
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Screenshot User Behavior State

“Okay, I downloaded it already. Delete my test, so I don’t

get confused. I have the video.”

Software: Premiere Pro

Task: Edit a short instructional video to clearly

guide a process.

Behavior State: Task Understanding and

Preparation

The user is preparing their digital workspace

before starting the editing task. They locate the

necessary video file on their desktop and delete a

superfluous ’test’ file to prevent confusion.

“I would like to just use this design or the white some

minimalistic like iOS design. Oh, this one. This one

looks good. Okay, let’s just...”

Software: Google Slides

Task: Create a product pitch deck highlighting a

product’s key features.

Behavior State: Exploration and

Decision-Making

The user is actively browsing and comparing

different templates, as shown by the scrolling and

hovering behavior. The narration (’This one looks

good’) confirms they are evaluating options to

make a final decision.

“Okay, that’s strange. That’s very strange, honestly.”

Software: CapCut

Task: Design a creative intro using animated text.

Behavior State: Frustration

The user verbally expresses confusion (’that’s

strange’) after the software behaved in an

unexpected way. They are momentarily paused,

indicating a blocker in their workflow before they

decide on a new course of action.

(no narration)

Software: Google Sheets

Task: Summarize and visualize product sales by

category or region.

Behavior State: Seeking External Help

The user is unable to find a feature and turns to

ChatGPT for assistance. They type a question

clarifying their problem, wait for the response, and

then read the provided instructions.

Table 6.2: Example instances for the (1) User Behavior State Detection task.
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Screenshot Intent

“So now that I have the frame as a design base, I need to

include the input field for name, email.”

Software: Canva

Task: Design a mobile sign-up screen for a

fictional app.

Intent:

A: Rename the design file to reflect the new

project

B: Add the required input fields to the

design

C: Search for a suitable illustration to use as a

header

D: Resize the canvas to a custom dimension

“okay looks perfect, I need to adjust the end date as well”

Software: Excel

Task: Design a Gantt chart for a mini project.

Intent:

A: Adjust the end date of the chart’s

horizontal axis

B: Adjust the date interval of the chart’s

horizontal axis

C: Reverse the order of the chart’s vertical axis

D: Adjust the start date of the chart’s horizontal

axis

“When this slot comes, we should put some kind of image

here.”

Software: Premiere Pro

Task: Transform a long video into a short-form

clip.

Intent:

A: Create a new text layer above the existing

video track

B: Add an image to a specific empty slot in

the timeline

C: Apply a transition effect to the end of a video

clip

D: Add a video clip to the end of the current

sequence

“Paste, paste, paste, paste. Done. Done.”

Software: PowerPoint

Task: Create a product pitch deck highlighting a

product’s key features.

Intent:

A: Align the logos with the main text boxes.

B: Delete the logos from all the slides.

C: Duplicate the logos onto the remaining

slides.

D: Change the color of the logos on all slides.

Table 6.3: Example instances for the (2) Intent Prediction task.
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6.3 Experiments

6.3.1 Experimental Setup

We evaluate a range of multimodal large language models (MLLMs) on our benchmark to assess their

ability to understand, reason about, and assist users in open-ended software workflows. Our evaluation

includes eight representative MLLMs spanning both proprietary and open-source models: Gemini-

2.5-Flash [62], Gemini-2.5-Pro [62], GPT-4o-mini [136], GPT-4o [136], Claude-4.5-Sonnet [6],

Qwen3-VL-8B [162], InternVideo2.5-Chat-8B [172], and InternVL3-8B [207]. All models are

evaluated in a zero-shot setting using publicly available APIs or checkpoints, without any additional

fine-tuning.

For each test instance, we uniformly sample 32 frames from the corresponding video segment,

providing only visual input (excluding narration audio) to simulate perception based solely on visual

cues. To ensure consistency across models, we use standardized prompting templates. We also prompt

models to generate both a predicted label and supporting reasoning, a strategy shown to improve task

performance [87].

Our main experiments are conducted in an offline inference setting, where models are given the full

video segment to solve the task. To approximate real-world proactive assistant scenarios, we additionally

evaluate an online setting, in which the model receives visual input progressively. Specifically, at 25%,

50%, 75%, and 100% of the segment, we uniformly sample 32 frames from the corresponding prefix for

inference.

6.3.2 Evaluation Tasks

(1) Behavior State Detection. This task measures whether a model can identify the user’s behavioral

state from a given video segment. We provide each model with clips and ask it to classify them into one

of nine taxonomy-defined states. Two configurations are tested: (i) using only the current segment and

(ii) with prior history, where the model is given the immediately preceding segment’s behavior state.

This is framed as a multi-class classification problem, and performance is evaluated using accuracy.

Accuracy =
1

N

N∑
i=1

I(ŷi = yi) (6.1)

(2) Intent Prediction. This task evaluates a model’s ability to infer the user’s underlying goal within

a given video segment. Models are prompted to predict what the user is trying to accomplish in two

settings: (i) using only the current segment, and (ii) with additional context from the detected behavior

state, where the model is also given the state label and its definition. We adopt a multiple-choice question

(MCQ) format, where the model selects the most likely intent from four candidate options. Performance

is measured using accuracy. For the default setting (i), we additionally report multi-binary accuracy

(MBAcc) following prior work [21, 36, 31], which evaluates whether the model correctly identifies the

ground-truth intent in all three pairwise comparisons against incorrect alternatives.

Accuracy. Measures the proportion of instances where the model selects the correct intent option from

the four candidates.

Accuracy =
1

N

N∑
i=1

I(ŷi = yi) (6.2)
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Screenshot Help

“Where could I insert the text? [...] I’m just going to,

because the help function I don’t quite understand, but I

can see if I can add it. Find it in Google.”

Software: GIMP

Task: Create a bakery logo with a warm, friendly

identity.

Help Content:

A: how to add another image as a layer

B: find the tool to add text

C: remove the image background

D: add a background color or shape

“I think I made a mistake here and I need to rectify this.”

Software: Google Slides

Task: Create a quiz deck with multiple-choice

questions testing sustainability facts

Help Content:

A: align the answer choice boxes

B: how to create a quiz slide template

C: how to fix a self-identified audio related

error

D: add animation to reveal the correct answer

“I’ll scale it. I just want to scale this up. How do I keep

it?”

Software: Photoshop

Task: Create a composite from two images.

Help Content:

A: how to use the perspective or warp transform

tools

B: center the new layer on the canvas

C: how to use layer blend modes

D: maintain aspect ratio while scaling

“So I believe this is, this is great. I believe it’s just

simple.”

Software: Canva

Task: Design a custom 404 error page with a

visual and animated element.

Help Need:

A: help needed

B: no help needed

Table 6.4: Example instances for the (3) Help Prediction task. For the Help Need Detection task, the

top three instances are labeled as help needed.
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Multi-Binary Accuracy (MBAcc). Following prior work [21, 36], we employ MBAcc to evaluate

robustness against distractors. For a given sample i, let yi be the correct option and C−i = {ci,1, ci,2, ci,3}
be the set of three incorrect distractor options. The model performs a pairwise comparison function

f(x, optA, optB) which returns the chosen option between A and B. A prediction is considered correct

under MBAcc only if the model prefers the ground truth yi over every distractor in C−i .

MBAcc =
1

N

N∑
i=1

 ∏
c∈C−

i

I(f(xi, yi, c) = yi)

 (6.3)

(3) Help Prediction. The final task evaluates whether models can move beyond understanding and

reasoning to provide actionable assistance. Given a video segment, models are asked to predict whether

the user requires help (Need), and if so, what kind of help would be most appropriate (Content). Help

Need Detection is framed as a binary classification task and evaluated using accuracy, precision, recall,

and F1-score. Help Content Prediction, similar to Intent Prediction, uses a multiple-choice question

(MCQ) format and is evaluated using accuracy and multi-binary accuracy (MBAcc) for the default setting.

We test three settings for both tasks: (i) video only, (ii) video + behavior state, where the model is given

the behavior label and its definition for the current segment, and (iii) video + behavior state + intent,

where the model additionally receives the identified user intention. These settings progressively assess the

model’s ability to leverage layered user context for meaningful, situation-aware assistance.

Help Need Detection

• Accuracy: The ratio of correctly predicted observations to total observations.

Accuracy =
TP + TN

TP + TN + FP + FN
(6.4)

• Precision: The ratio of correctly predicted positive observations to the total predicted positives.

Precision =
TP

TP + FP
(6.5)

• Recall: The ratio of correctly predicted positive observations to the all observations in the actual

class.

Recall =
TP

TP + FN
(6.6)

• F1-Score: The harmonic mean of Precision and Recall.

F1 = 2 · Precision · Recall

Precision + Recall
(6.7)

Help Content Prediction Same as the metrics used in (2) Intent Prediction.

6.3.3 Results

Table 6.5 presents the performance of baseline models on GUIDE across the tasks, with accuracies

reported under default and context-augmented settings. Overall, models performed weakest on Behavior

State Detection and Help Prediction, with default-setting accuracies peaking at 44.61% and 55.00% for

Behavior State Detection and Help Content Prediction, respectively, both from Claude-4.5-Sonnet [6].

While Gemini-2.5-Pro [62] reached nearly 70% accuracy on Help Need Detection, most other models

showed substantially lower performance across both Help sub-tasks. Across tasks, we observe that models

generally benefit from added behavioral and intent context, with particularly notable improvements in

help-related predictions. We report the main findings below.
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Model

(1) Behavior Detection (2) Intent Prediction (3) Help Prediction

– + Prev. – + Behavior Help Need Detection Help Content Prediction

– +Bhv. +Bhv.+Itnt. – +Bhv. +Bhv.+Itnt.

Gemini-2.5-Flash [62] 36.91 38.19 65.40 66.77 53.64 76.33 78.07 49.53 53.75 78.59

Gemini-2.5-Pro [62] 42.44 43.79 67.80 70.16 69.82 84.73 82.38 52.74 57.03 79.69

GPT-4o-mini [136] 17.65 17.07 60.76 62.19 46.05 78.92 82.26 31.32 42.86 79.84

GPT-4o [136] 36.32 37.24 61.19 62.58 49.69 87.79 87.91 45.95 48.37 79.78

Claude-4.5-Sonnet [6] 44.61 45.63 71.39 72.62 39.49 58.56 59.43 55.00 62.17 82.79

Qwen3-VL-8B [162] 37.97 38.13 62.70 64.03 52.83 70.39 77.36 46.06 50.63 80.11

InternVideo2.5-8B [172] 21.57 27.02 43.79 45.13 34.36 35.35 35.25 23.67 29.15 73.86

InternVL3-8B [207] 22.57 24.90 46.11 46.97 34.94 43.73 46.82 27.03 32.20 72.97

Table 6.5: Evaluation results on accuracy across (1) Behavior State Detection, (2) Intent Prediction, and

(3) Help Prediction.

Behavior State Detection

Behavior state detection remains highly challenging. All models struggled to accurately infer

the user’s behavioral state from video segments, underscoring the difficulty of the 9-way classification

task. While proprietary models such as Claude-4.5-Sonnet [6] and Gemini-2.5-Pro [62] performed best,

no model surpassed 45% accuracy, and most fell below 40%.

Models often misinterpret signals of struggle. The most common failure was misclassifying

Frustration or Debugging as Performing Actions or Exploration and Decision-Making (Figure 6.5). These

errors reveal a critical limitation in current MLLMs: a systemic bias toward interpreting interactions

as productive execution while failing to recognize signs of struggle or hesitation. While models achieve

reasonable accuracy for visually distinct states like Seeking External Help (0.61) and Performing Actions

(0.57), they show near-zero capability in detecting Frustration (0.07) and Debugging (0.04). Instead, these

negative states are overwhelmingly misclassified as Performing Actions (39% and 43%, respectively) or

Exploration and Decision-Making (31% and 29%). This suggests that models perceive the visual activity

of a struggling user—such as repeated clicking or rapid mouse movements—as deliberate progress, lacking

the temporal understanding to distinguish between trial-and-error and confident execution.

Temporal context shows modest potential. Incorporating the prior behavior state led to small but

consistent gains across models. While most improvements were marginal, the largest gain was observed

for InternVideo2.5-8B [172] with 5.45 percentage points, suggesting that temporal context holds value

and may be more effectively utilized with improved temporal reasoning capabilities.

Intent Prediction

Intent prediction is the most tractable task, but still imperfect. Among the three tasks, models

achieved the highest performance on intent prediction, with several surpassing 60% accuracy. However,

performance drops under the stricter MBAcc metric, which requires consistent discrimination across all

answer pairs. This indicates that while models can often select a plausible intent, they still struggle with
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Figure 6.5: Normalized confusion matrix for user behavior state classification. The most common

errors occur when Frustration or Debugging is misclassified as Performing Actions or Exploration and

Decision-Making.

reliably identifying the correct one over all distractors (Table 6.7).

Behavior context helps, but only slightly. Incorporating behavior state context (i.e., the user’s

behavioral label and definition) consistently improved performance, but the gains were relatively modest

across all models. This suggests that while such context may offer useful cues, it does not provide sufficient

information on its own or is not yet effectively leveraged by current models for intent inference.

Help Prediction

High Variance and Missed Help Cases in Need Detection. Table 6.6 shows the full performance

results for Help Need Detection. This subtask exhibited the most variance across models, with F1

scores ranging from 0.31 (InternVideo2.5-8B [172]) to 77.42 (Gemini-2.5-Pro [62]). Notably, recall was

particularly low across most models—except for Gemini-2.5-Pro, all others had recall under 37. This

indicates that many instances where users actually needed help were misclassified as not needing it,

echoing similar trends in Behavior State Detection (Section 6.3.3) where models frequently misinterpreted

signals of struggle.
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Model

Help Need Detection

– + Behavior State + Behavior State + Intent

Acc Prec Rec F1 Acc Prec Rec F1 Acc Prec Rec F1

Gemini-2.5-Flash [62] 53.64 83.27 36.62 50.87 76.33 97.67 65.47 78.39 78.07 94.56 70.62 80.86

Gemini-2.5-Pro [62] 69.82 76.42 78.09 77.42 84.73 93.61 82.34 87.61 82.38 91.20 80.94 86.76

GPT-4o-mini [136] 46.05 83.03 22.31 35.17 76.73 97.61 66.23 78.92 79.71 97.20 71.29 82.26

GPT-4o [136] 49.69 74.41 35.14 47.73 87.79 95.39 85.53 90.19 87.91 95.12 85.95 90.30

Claude-4.5-Sonnet [6] 39.49 87.69 8.92 16.19 58.56 99.16 37.09 53.99 59.43 99.19 38.44 55.41

Qwen3-VL-8B [162] 52.83 79.86 34.23 47.92 70.39 94.35 58.50 72.22 77.36 95.38 67.56 79.09

InternVideo2.5-8B [172] 34.36 33.33 0.16 0.31 35.35 90.91 1.56 3.07 35.25 83.33 1.56 3.07

InternVL3-8B [207] 34.94 72.73 1.25 2.46 43.73 98.88 15.77 27.20 46.82 98.40 19.22 32.16

Table 6.6: Results for Help Need Detection on accuracy, precision, recall, and F1-score across three

conditions (default, with behavior state, with behavior state and intent).

Behavior state context improves Help Need Detection. Providing the user’s behavior state led

to consistent and significant improvements in Help Need Detection across all models, with the largest

gain observed in GPT-4o [136], which achieved a 42.46-point increase in F1 score. This suggests that

context, such as whether a user is exploring, hesitating, or showing signs of frustration, provides strong

cues for determining help needs.

Help Content Prediction remains challenging, but benefits from intent context. Help Content

Prediction proved particularly challenging, with all models struggling and the top accuracy reaching

only 55% from Claude-4.5-Sonnet [6], which further declined to around 50% under the stricter MBAcc

evaluation. However, incorporating intent information, representing what the user is trying to accomplish,

led to substantial improvements across models. The largest gain was observed in InternVideo2.5-8B [172],

with a 50.19 percentage point increase, highlighting the importance of understanding both user state and

intent for providing meaningful, targeted support.

Other Findings

Online vs. Offline Setting: models benefit more from temporal Context. In our online

simulation experiment, where models are given progressively more of the video segment (25%, 50%,

75%, and 100%), we observe consistent performance gains across all four tasks (Figure 6.6). Gemini-2.5-

Flash [62] shows substantial improvements with more visual input, indicating a strong ability to integrate

growing context into more accurate predictions. In contrast, InternVideo2.5-8B [172] displays relatively

minor gains. These findings suggest that gathering appropriate context over time is crucial for proactive

AI assistance, where systems must not only react but also anticipate user needs based on incomplete and

evolving information.
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Figure 6.6: Accuracy trends for Gemini-2.5-Flash [62] and InternVideo2.5-8B [172] across the tasks in

the online setting, where models are given progressively more of the video segment (25%, 50%, 75%, and

100%). Both models show steady performance gains as they see more segments, while Gemini-2.5-Flash

shows larger and more consistent gains.

Model
Intent Prediction Help Prediction

Acc MBAcc Acc MBAcc

Gemini-2.5-Flash [62] 65.40 59.09 49.53 44.69

Gemini-2.5-Pro [62] 67.80 64.34 52.74 45.31

GPT-4o-mini [136] 60.76 50.24 31.32 28.59

GPT-4o [136] 61.19 56.58 45.95 41.25

Claude-4.5-Sonnet [6] 71.39 65.44 55.00 50.78

Qwen3-VL-8B [162] 62.70 58.07 46.06 44.69

InternVideo2.5-8B [172] 43.79 27.98 23.67 18.75

InternVL3-8B [207] 46.11 40.75 27.03 23.75

Table 6.7: Evaluation of Intent Prediction and Help Content Prediction, with Accuracy (Acc) and

Multi-Binary Accuracy (MBAcc).

6.4 Conclusion

We introduced a benchmark for evaluating models in understanding, reasoning about, and assisting

users in open-ended GUI-based workflows. Grounded in real novice user demonstrations, our tasks—

behavior state detection, intent prediction, and help prediction—capture core capabilities needed for

collaborative GUI Agents. Evaluation across state-of-the-art MLLMs revealed that models struggle to

interpret nuanced user behavior and accurately infer assistance needed in open-ended GUI scenarios.

However, when provided with appropriate user context, such as behavior state and intent, models showed

consistent improvements, highlighting the value of structured user understanding in enhancing model

support capabilities. Unlike prior benchmarks that primarily focus on action recognition, our work

emphasizes user cues related to cognition, behavior, and intent that agents must interpret to collaborate

effectively with people. Overall, our benchmark lays the groundwork for developing user-aware agents

that support human workflows.

85



Chapter 7. Discussion

This dissertation set out to bridge the gap between the linear, unstructured nature of procedural

video and the dynamic, non-linear needs of learners. Through the development of structural frameworks

(VideoMix, Beyond Instructions) and assistance systems (SoftVideo, GUIDE), I have demonstrated that

augmenting video with Contextual Units—semantic structures that define the what, how, and why of a

procedure—can effectively scaffold the full Video Learning Cycle.

In this chapter, I synthesize findings across the four projects to discuss the broader implications of

this work. I first examine how the granularity of contextual units should adapt to the user’s learning

phase (Section 7.1). I then discuss design principles for selecting effective contextual units (Section 7.2).

Next, I outline directions for adaptive procedural support through user modeling (Section 7.3). Finally, I

discuss the generalizability of contextual units (Section 7.4).

7.1 The Dynamic Nature of Contextual Units

A central finding of this thesis is that there is no single “atomic unit” of procedural knowledge.

Traditional approaches often rely on static temporal segmentation, such as dividing a video into chrono-

logical steps or chapters. However, the projects in this dissertation show that the most useful unit of

analysis is not fixed. It shifts with the user’s goals and phase within the learning lifecycle. As users move

from exploring a task to executing it, the type of contextual unit that supports their progress changes

accordingly.

In the Exploration phase, users benefit from macro-level units that help them understand what

the procedure consists of and how different tutorials compare. VideoMix [190] showed that users reason

at the level of Outcomes, Approaches, and Methods when forming a mental model of the task landscape.

At this stage, the unit is essentially the “what” of a procedure. High-level structure helps users decide

which strategy fits their needs.

In the Comprehension phase, once users commit to a tutorial, the relevant unit shifts to more fine-

grained semantic content. Beyond Instructions [188] revealed that users attend not only to instructions,

but also to other information types that clarify the “why” or “how” behind a procedure, such as

Justifications, Warnings, or Tool Specifications. These semantic cues help users access and navigate the

content efficiently.

In the Following phase, the salient unit becomes the “how.” As users attempt to carry out the

procedure, they need cues that reflect difficulty, effort, and typical pitfalls. SoftVideo [191] demonstrated

that interaction-derived signals such as Step Difficulty and Step Relevancy provide meaningful guidance

for pacing, identifying struggles, and recovering from errors. These units do not describe the content

of the video alone. They capture how people actually experience the procedure, allowing the system to

support them as they act.

Finally, in the Assistance phase, the contextual unit shifts again toward modeling user cognition.

GUIDE showed that intelligent assistance depends on understanding both why the user is acting (Intent)

and how they are progressing (Behavior State), such as moments of Frustration. They allow assistive

agents to decide when to intervene and what support to offer.

Across the four projects, I demonstrate that contextual units are dynamic and phase-specific. This
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Exploration Comprehension Following Autonomous

How to do layer mask in Photoshop

Figure 7.1: The same user query can be supported differently depending on the learning phase, with

systems adapting contextual units to the user’s current goal.

progression suggests that future procedural learning interfaces should adapt their level of granularity to the

user’s current phase. Although I presented the task learning cycle linearly as Exploration, Comprehension,

Following, and Autonomous, task learning is inherently iterative. Users move back and forth between

phases rather than progressing in a fixed order. In the GUIDE dataset, I observed many instances of

users transitioning from the Autonomous phase back to earlier phases, such as opening a tutorial video

alongside the software to follow or replicate specific steps. These observations show that any learning

phase can occur at any point in a user’s workflow. As a result, effective user support must be conditioned

on an ongoing inference of the user’s current learning phase, rather than assuming a fixed progression.

Adapting to these shifts is key to supporting real procedural learning in practice.

7.2 Design Principles for Selecting Effective Contextual Units

Based on the findings, I present design principles for selecting contextual units that support task

learning. First, contextual units should be selected according to the learner’s current goal, which is

closely tied to their learning phase. When users seek to understand an underlying concept, they benefit

from informational units such as justifications, which are most relevant during the Comprehension

phase. In contrast, when users attempt to correct an error or replicate an action, they benefit more

from interaction-derived units, such as relevant steps demonstrated by other users, which align with the

Following phase.

This distinction has direct implications for system responses. For example, when a user asks, “How do

I create a layer mask in Photoshop?”, current systems typically provide a single, static answer. However,

the appropriate response depends on the user’s underlying goal (Figure 7.1). If the user’s goal is to explore

available options, the system should present multiple possible approaches. If the goal is to understand

the underlying concept, the system should explain what a layer mask does and why it is useful. When

the goal is to execute or replicate an action, the system can highlight common pitfalls or critical steps

during execution. Finally, when the user’s goal is to work independently but resolve emerging issues, the

system should provide targeted, proactive assistance when difficulty is detected.

Furthermore, contextual units should be chosen to reduce the dominant cognitive burden at the user’s

current moment. During the Exploration phase, the primary challenge lies in searching and comparing

alternatives, so units should focus on reducing discovery and comparison costs. During the Comprehension
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phase, the challenge shifts to extracting relevant segments from long or dense instructional content,

making concise explanatory units particularly useful.

Taken together, these principles emphasize that effective assistance in task learning depends not on

static content delivery, but on dynamically aligning contextual units with the learner’s evolving goals,

phase, and cognitive demands. By selecting units that reflect where users are and what they need at

a given moment, systems can provide support that is timely, relevant, and aligned with real learning

behavior.

7.3 User Modeling for Adaptive Procedural Support

While contextual units such as approaches, information types, and step-level cues can broadly benefit

learners, their effectiveness can be significantly enhanced when grounded in user modeling. Capturing

user-specific context allows systems to select and present contextual units in ways that better align with

individual needs and learning trajectories, rather than offering uniform, static support.

Learners differ in their prior knowledge, preferences, and behavioral patterns, all of which shape how

they interpret instructions and where they may require guidance. Signals such as navigation behavior,

software interaction logs, and other engagement patterns can reveal these differences in a non-intrusive

manner. For example, how a user typically interacts with software when confident versus when struggling

can help a system infer their current progress and determine whether support is needed. By leveraging

such signals, systems can move from static presentation to dynamic recommendation, such as prioritizing

information types a user is likely to value based on prior experience, or identifying moments of difficulty

and offering timely assistance.

Through user modeling, systems can deliver adaptive video experiences that tailor explanations,

highlight relevant information, and adjust the level of detail to the learner’s current needs. They can also

support personalized generation, producing examples or instructions that reflect a user’s specific context,

such as the tools they are using or missing background knowledge. Over longer periods, such systems

can offer longitudinal support by tracking evolving skill profiles, identifying recurring challenges, and

adapting assistance as the learner progresses.

These ideas have important implications for the design of AI agents that assist users during task

learning. First, effective user-assisting agents must be able to infer which stage of the task-learning cycle

a learner is in, so that they can provide appropriate forms of support. Second, they must incorporate

user modeling to understand and adapt to diverse factors, including background knowledge, interests,

preferences, and habitual workflows. Overall, developing user-aware AI agents opens opportunities

for more personalized and adaptive procedural learning. By integrating perception, inference, and

interaction, these systems can respect user agency while providing meaningful support across domains,

from software-based tasks to hands-on physical activities.

7.4 Generalizability of Contextual Units

The systems and frameworks presented in this dissertation are grounded in specific task domains,

which shaped both their design and evaluation. VideoMix and Beyond Instructions focus on tasks with

tangible and physical outcomes, such as cooking or assembly. This setting made it possible to clearly

demonstrate the value of macro-level contextual units such as outcomes, approaches, and methods. At

88



the same time, this domain focus raises broader questions about how these findings extend to tasks with

different learning dynamics or less clearly defined outcomes.

Many of the contextual units introduced in this work are likely to generalize across domains. High-

level approaches or alternative methods, for example, are common in a wide range of procedural activities.

However, other domains may rely on distinct, domain-specific contextual signals. For example, in

music learning, tone, rhythm, or expressive variation may play a central role, while in programming,

language-specific constructs, abstractions, or debugging patterns may be more critical. Understanding

which contextual units are broadly shared and which are domain-specific remains an important direction

for future research.

The latter part of this dissertation focuses on software and GUI-based tasks through SoftVideo and

GUIDE, where fine-grained interaction logs and behavioral cues serve as key signals for understanding user

state. These domains benefit from rich, readily available interaction data, such as mouse clicks or cursor

movements. Extending this approach to non-GUI domains presents new challenges and opportunities. In

physical tasks such as cooking or craftwork, cues may instead arise from tool-handling patterns, timing

rhythms, or coordination between actions, which may require alternative sensing modalities such as

wearables, environmental sensors, or computer vision. Together, these directions suggest that while the

specific implementations in this work are domain-bound, the broader concept of contextual units as a

link between video content, user behavior, and adaptive support has the potential to generalize across a

wide range of procedural learning domains.
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Chapter 8. Conclusion and Future Work

This dissertation demonstrated that augmenting procedural videos with granular Contextual Units

can effectively support the full lifecycle of human task learning. This chapter summarizes the main

contributions of the thesis and proposes future directions.

8.1 Summary of Contributions

• Video Understanding: Novel computational pipelines and taxonomies for extracting meaningful

semantic structure from unstructured procedural videos.

• Video Interaction: Interaction techniques that facilitate the sensemaking of procedural content

and bridge the gap between passive viewing and active execution.

• User-Assisting AI: Benchmarks and frameworks for developing intelligent agents and assistive

interfaces that model high-level user states for building context-aware systems.

8.2 Future Directions

8.2.1 Personalized and Adaptive Videos

Learners differ in their prior knowledge, background, navigation patterns, and responses to difficulty.

Through user modeling, future systems could infer a learner profile to tailor recommendations, highlight

relevant information, or adjust the level of detail presented in a video. In addition, videos themselves can

become “live” instructional materials that evolve based on how learners interact with them. By detecting

where users struggle or repeatedly revisit, a system could automatically restructure or annotate videos

by inserting clarifying tips, adding pauses, or surfacing alternative explanations at those timestamps.

Such personalized and self-evolving tutorials would help learners access the most relevant guidance while

continuously improving in response to real usage patterns.

8.2.2 Generative Instructional Media

While this dissertation focuses on structuring and reorganizing existing instructional videos, the

contextual units identified here reveal opportunities for generating pedagogically meaningful learning

materials. Rather than producing arbitrary content, generative systems could use these units as semantic

constraints to create tutorial segments that address specific learner needs. For example, a generative

model could be conditioned to amplify scaffolding for novices by synthesizing additional Justifications

or Tips, or conversely, to enhance visual clarity by generating detailed intermediate Status of the work.

Grounding generative output in structured contextual units would allow future systems to produce

instructional media that support more controllable and effective learning.
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8.2.3 Collaborative AI Agents for Task Learning

There is a growing opportunity to design collaborative AI agents that assist users while preserving

their sense of control. Rather than relying on full automation, future agents could model user intent,

anticipate upcoming challenges, and intervene in ways that complement the user’s ongoing actions. The

form of assistance should flexibly adapt to the user’s immediate goals. Users who want to maintain

momentum may benefit from explicit help, such as automating a small sub-action or surfacing a highly

relevant tutorial segment, while those aiming for deeper procedural understanding may benefit more

from implicit help, including gentle cues, clarifications, or highlighting relevant prior interactions. Such

scaffolded assistance would help users overcome difficulties without disengaging them from the learning

process. Importantly, this perspective also suggests rethinking how we evaluate AI agents for task learning:

while many current systems emphasize task completion or success rate, a more meaningful measure is

whether the support leads to durable learning, such as whether users can independently resolve similar

challenges when they arise again. By grounding interventions in user modeling and evaluating their

impact on long-term retention rather than short-term completion, collaborative agents can more effectively

support procedural learning.

8.2.4 Longitudinal Support for Skill Development

Future research can also examine procedural learning over longer time horizons. While SoftVideo

showed how collective interaction data reveals meaningful patterns within a single tutorial, an equally

important direction is modeling a single user across many videos to understand their evolving skill profile.

Tracking how learners revisit tutorials, where difficulties persist, and how their reliance on guidance

changes over time would enable more nuanced and personalized support. Longitudinal models could

recommend different tutorial styles as the learner matures, identify recurring weaknesses across tasks,

or gradually adjust the level of assistance to foster greater independence. By combining structured

instructional representations with long-term behavioral insights, future systems can support not only

immediate task completion but also sustained skill development.
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