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Abstract

People rely on procedural videos to learn and carry out complex tasks, from developing physical skills
to operating software. Although videos capture the full flow of a procedure, their linear format lacks
the structure needed for effective learning. Important details are scattered or buried within the stream,
making it difficult to locate relevant segments or process information efficiently. Learners, whose workflows
are non-linear and constantly shifting, must therefore invest substantial effort in extracting key details,
interpreting them in context, and mapping them onto their own environments. To address this, I develop
systems that augment procedural videos with contextual units—semantic structures that define the what,
how, and why of a procedure. I propose contextual units aligned with each phase of the task-learning cycle
across both the understanding and applying stages. In the understanding stage, I present frameworks
for structuring video knowledge to enhance comprehension, including systems that consolidate scattered
tutorials into holistic overviews and taxonomies that support non-linear navigation. In the applying stage,
I show how user interaction data, along with user behavior and intent modeling, can provide real-time
feedback and context-aware assistance during software tasks. My work shows that when procedural videos
are augmented with granular contextual units, they can effectively support users from the initial stage of

information gathering to the final stage of complex task execution.

Keywords Procedural Videos, Task Learning, Context-Aware Systems, Human-AI Collaboration, Intelli-

gent User Interfaces
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Chapter 1. Introduction

1.1 Procedural Videos

Procedural videos have become a dominant medium for knowledge acquisition. From mastering
cooking skills to operating complex software, millions of learners turn to platforms like YouTube to
acquire new skills. The appeal of video lies in its ability to capture the dynamic flow and rich visual
details—showing not just what to do, but how to do it, including subtle visual cues, timing, and technique
that static text often fails to convey.

However, despite the richness of this medium, the format of video remains inherently linear and
unstructured. Unlike text, which is indexed and organized into paragraphs and headers, video is a
continuous temporal stream, which allows access to only one point at a time. Critical information is often
fragmented across the video stream, or buried within rapid and visually dense demonstrations.

In contrast, the learner’s workflow is inherently non-linear. Rather than consuming information
sequentially, users engage in dynamic behaviors—jumping, repeating, and pausing—as their focus shifts
from broad exploration to targeted troubleshooting. This discrepancy is most pronounced when users
attempt to transfer video instructions to their own environments, a task that requires an iterative,
back-and-forth process.

Consequently, learners face substantial difficulties. They struggle to skim content for relevant
segments, to synthesize information across scattered tutorials, and to adapt demonstrations to their own
constraints or goals. As a result, much of the cognitive burden falls on learners as they extract relevant

details, interpret them within context, and translate them into actions.

1.2 Contextual Units in Videos

To bridge the gap between the linear nature of video and the dynamic needs of the learner, this thesis
introduces the concept of Contextual Units — semantic structures that capture the distinct aspects

)

of a procedure, including the “what,” “how,” and “why”. Traditionally, approaches have attempted to
mitigate the continuous nature of video through temporal segmentation, where the “step” serves as the
fundamental unit of organization [56, 33]. This method divides the timeline into chronological chapters,
enabling users to navigate by step. Other systems have expanded this by utilizing “objects” (e.g., tools
or ingredients in a recipe video) as primary units of interaction [24].

While these traditional units effectively define the “what” of a procedure and support basic navigation,
they remain limited in scope. They are primarily designed for passive watching or sequential following,
failing to accommodate the dynamic, evolving workflow of learners. The definition of a meaningful unit
must evolve depending on the learner’s current stage. Consequently, supporting users beyond simple
navigation requires identifying new types of contextual units that address the complex needs arising

across different stages of task learning.
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Figure 1.1: Overview of the Task Learning Cycle. The process is divided into two primary stages: (1)
Understanding, which comprises the Exploration and Comprehension phases for gathering and
processing information, and (2) Applying, which involves the Following and Autonomous phases for

transferring knowledge to the target environment.

1.3 Task Learning Cycle

To introduce appropriate contextual units for each stage of task learning, we begin by outlining the
Task Learning Cycle. Learning from procedural videos is not a linear act of consuming content but a
dynamic, iterative process that evolves as learners move from initial curiosity to proficient execution.
This dissertation conceptualizes this process as the Task Learning Cycle, which consists of two primary
stages: Understanding, where knowledge is acquired and synthesized, and Applying, where that knowledge
is transferred into active practice. Each stage is further composed of distinct sub-phases, each characterized

by unique user behaviors and information needs.

1.3.1 Understanding: Knowledge Acquisition and Synthesis

The first stage focuses on the learner’s interaction with the video content itself. Before a task can be
performed, the learner must navigate a vast landscape of available resources to construct a mental model

of the procedure.

e Exploration Phase: The cycle begins with a broad search. Learners often start with a high-level
goal (e.g., “how to build a desk” or “how to edit a portrait image”), but are confronted with
hundreds of potential tutorials. In this phase, users are not yet committed to a single instructional
path. Instead, they scan multiple videos to survey the landscape of possibilities, comparing different
outcomes (e.g., rustic vs. modern designs) and assessing various approaches (e.g., beginner tools vs.
professional equipment). The primary challenge here is synthesizing scattered information to select

the workflow that best matches their constraints.

e Comprehension Phase: Once a specific resource is selected, the learner shifts to deep processing.
The goal transitions from filtering content to internalizing instructions. However, comprehending

a procedural video involves more than passive watching; users actively seek specific types of



information—such as the rationale behind a step, the tools required, or warnings about potential
pitfalls. They must deconstruct the continuous video stream to locate these granular details, often

navigating non-linearly to re-watch complex segments or skip known information.

1.3.2 Applying: Knowledge Transfer and Execution

The second stage marks the shift from the video player to the user’s work environment. Here, the

video serves as a reference utility while the user engages in the physical or digital execution of the task.

e Following Phase: In this phase, learners attempt to replicate the demonstrated steps in their
own environment (e.g., software application). This process is mentally demanding, as users must
constantly switch contexts between the instructional video and their workspace. The challenge lies in
synchronization: users struggle to match the video’s pacing with their own speed, frequently pausing
to interpret actions or rewinding to recover from missed details. They must map the demonstration

to their specific context, often dealing with differences in software versions or available assets.

e Autonomous Phase: As users gain proficiency or encounter open-ended problems, the guidance of
a tutorial becomes insufficient. They move beyond simple replication into independent exploration,
where they inevitably face errors or uncertainties. Systems must recognize the user’s evolving intent
(e.g., “why isn’t this layer blending?”) and behavioral state (e.g., frustration or confusion) to provide

context-aware support that complements their autonomous workflow.

1.4 Contextual Units for Each Learning Phase

1.4.1 Understanding: Structuring Video Knowledge

The first thread of my thesis focuses on the Understanding phase, where the primary challenge is the
lack of structure in raw video data. Learners often need to synthesize information from multiple sources
or navigate non-linearly within a single video to grasp the “big picture” of a task. To support this, I

propose frameworks that organize video content into meaningful informational units.

(1) Exploration: Aggregating Multiple How-To Videos for Task-Oriented Learning

When learners start a new task, they often need to watch multiple videos to understand the landscape
of possible outcomes and methods. Navigating these scattered resources is time-consuming. VideoMix [190]
is a system that aggregates information from multiple how-to videos to provide a holistic understanding
of a task. By organizing content into contextual units of Outcomes, Approaches, and Methods, VideoMix
allows users to compare different workflows (e.g., “Standard” vs. “Simple”) and methods to achieve a

step, enabling them to form a mental model of the task before committing to a specific tutorial.

(2) Comprehension: A Taxonomy of Information Types in How-to Videos

Once a learner selects a video, they face a vast amount of information—not just instructions, but
also rationale, tips, and warnings. I present a comprehensive taxonomy of information types in how-to
videos [188]. Through an analysis of 120 videos, we identified 21 distinct informational units (e.g.,

Justification, Status, Tip). We demonstrate that exposing these units allows learners to navigate directly
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specific Steps, extracting distinct Methods, tips, and notes.
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Figure 1.3: Taxonomy of information types in how-to videos.

to the knowledge they need, supporting non-linear consumption that goes beyond simple step-by-step

playback.

1.4.2 Applying: Supporting Context-Aware Assistance

The second thread focuses on the Applying phase, where the challenge shifts to the friction between
watching a video and executing the task in the user’s environment. Here, I show how user interaction
logs and user demonstration videos can reveal meaningful contextual units that enable real-time feedback

and context-aware assistance.

(3) Following: Improving the Learning Experience of Software Tutorial Videos with Collec-

tive Interaction Data

When users transfer instructions from a video to their own software, such as Photoshop, they often
struggle to map the demonstration to their specific context. SoftVideo [191] is a system that improves the
learning experience by utilizing collective interaction data. By analyzing how previous learners interacted
with both the video and the software, the system computes contextual units of Difficulty and Relevancy
for each step. This allows the system to provide real-time feedback, such as detecting moments of struggle,
warning users about commonly missed steps, or suggesting relevant video segments when they become

stuck.
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Figure 1.4: (a) The SoftVideo timeline visualizes step-wise difficulty using data-driven icons. (b) Users
can inspect these icons to understand specific challenges. (c¢) The system provides real-time feedback on

execution progress, alerting users if a step is skipped.

(4) Autonomous: Understanding and Assisting Users in Open-Ended GUI Tasks

Finally, users move beyond following instructions to engaging in open-ended, self-directed tasks.
In this setting, the user’s own demonstration video becomes the target video, and an intelligent agent
must “watch” the continuous stream of screen activity to infer the user’s needs. GUIDE introduces a
benchmark for evaluating multimodal Al systems on their ability to perceive high-level contextual units
from this visual stream, such as user behavior state and intent. For Al agents to serve as truly effective

collaborators, they must be able to infer these human-centric units and provide context-aware assistance.

GUIDE

Behavior State Detection

Which behavior state
is the user going through?

- Exploration and Decision-Making

Intent Prediction

What is the user trying to
achieve now?

- Find the appropriate icon color

Help Prediction

Does the user need help now?
If so, what help do they need with?

- Yes, suggest a complementary
color for the background.

‘ “What'’s the opposite of yellow?”

Figure 1.5: An example of the GUIDE benchmark, which jointly models three tasks: Behavior State
Detection, Intent Prediction, and Help Prediction, to interpret what the user is doing, aiming to achieve,

and whether and what they may need assistance with during open-ended software tasks.

1.4.3 Summary

In summary, effectively supporting human task learning from procedural videos requires more than
generic video segmentation. As learners’ goals shift—from high-level scanning in the Exploration phase
to precise troubleshooting in the Autonomous phase—the contextual units needed to structure and
interpret the video must evolve accordingly. This dissertation demonstrates that by identifying the specific

Contextual Unit tailored to each learning phase, we can transform the linear video stream into an



adaptive interface that scaffolds the user’s journey from initial understanding to proficient execution. The

specific contextual units identified for each phase are summarized as follows:

1. Understanding: The initial stage of knowledge acquisition where learners gather and synthesize

information.

e Exploration Phase: Users scan multiple videos to survey the landscape of a task. Here, the

relevant units are macro-level structures like Outcomes, Approaches, and Methods(Chapter 3).

e Comprehension Phase: Users dive deep into a single video. Here, the relevant units are

granular Information Types, such as justifications and tips (Chapter 4).

2. Applying: The active stage of task execution where learners transfer knowledge to their own

environment.

e Following Phase: Users perform the task in their software. Here, the relevant units are

data-driven metrics of Difficulty and Step Relevancy (Chapter 5).

e Autonomous Phase: Users work independently in their own environment. In this stage, user
demonstration videos require higher-level contextual units, such as Behavior States and Intent,

to support effective assistance (Chapter 6).

1.5 Contributions

This thesis makes two primary technical contributions:

1. Frameworks and pipelines for decomposing unstructured, linear video streams into semantic contex-

tual units to enhance learner comprehension and navigation.

2. Data-driven methods and evaluation benchmarks that leverage these units to scaffold active task

execution, providing real-time feedback and enabling context-aware human-AT collaboration.

These contributions are instantiated through a series of systems, taxonomies, and benchmarks
designed to support the full Task Learning Cycle. The structural frameworks (VideoMix, Beyond
Instructions) aggregate and categorize scattered video content to support the Understanding phase, while
the data-driven systems and benchmarks (SoftVideo, GUIDE) utilize collective interaction data and user
intent modeling to support the Applying phase. Together, these approaches demonstrate that moving
beyond the raw video stream to a structured representation of contextual units allows for intelligent
systems that adapt to the learner’s evolving needs—from initial exploration to complex problem-solving.

The contributions are enabled by uniquely combining and extending the following methodological
foundations: Human-Computer Interaction, which informs the design of user-centered methods that
support the comprehension and application of procedural knowledge; and Video Understanding and
AT, which enable the automatic extraction of semantic structures and the inference of user states from
visual data.

Thesis statement: Augmenting procedural videos with granular contextual units can effectively

support the full lifecycle of human task learning.



1.6 Thesis Overview

e Chapter 2 reviews prior work across four areas foundational to this thesis: (1) learning from
procedural videos, (2) structuring instructional video content, (3) intelligent user assistance, and (4)

computer vision approaches to video understanding.

e Chapter 3 presents VideoMiz, a system that supports the exploration phase of learning by
aggregating multiple how-to videos into a holistic overview. It introduces a pipeline to extract
contextual units of outcomes, approaches, and methods, allowing users to compare workflows before

diving into specific instructions.

e Chapter 4 introduces Beyond Instructions, a comprehensive taxonomy that structures the informa-
tion types in how-to videos. By analyzing 120 videos, this work identifies 21 granular information
types (such as justifications and tips) that allow systems to support non-linear video navigation

beyond step-by-step playback.

e Chapter 5 describes SoftVideo, a system designed to scaffold the execution phase where users
transfer video knowledge to their own software environment. It demonstrates how collective
interaction data can serve as a contextual unit for estimating step difficulty and providing real-time,

context-aware feedback.

e Chapter 6 presents GUIDFE, a benchmark for the assistance phase that evaluates multimodal Al
models on their ability to collaborate with users. It introduces high-level user context—specifically
behavior states and intent—as essential units for shifting AT agents from blind automation to

user-aware collaboration.

e Chapter 7 discusses the broader implications of transforming linear video streams into structured
contextual units, synthesizing findings across the four systems to propose design guidelines for

future intelligent learning systems.



Chapter 2. Related Work

This thesis builds upon four key areas of prior research: (1) learning from procedural videos,
which examines how learners navigate and extract meaningful information from videos; (2) structuring
instructional content, which investigates semantic units and interaction signals that reveal how
procedural knowledge is organized within videos; (3) intelligent user assistance, which explores
systems that adapt to users’ context and behavior to provide timely support during task execution; and
(4) computer vision approaches to video understanding, which enable the modeling of actions

and workflows in procedural videos.

2.1 Learning from Procedural Videos

2.1.1 Video Navigation and Skimming Techniques

How-to videos provide rich explanations of how to complete a task. However, the linear nature of the
video makes it difficult for users to navigate or skim through the content [141, 54, 34]. For example, it is
hard to locate a specific point of interest in videos without navigating over a time scale. Researchers have
proposed several approaches to overcome such limitations. One of the popular approaches is to segment a
video into meaningful sections [192, 167, 175, 56, 84, 149, 127, 141, 34, 56, 84, 149]. It helps users navigate
the video based on semantics and locate a section of interest. Truong et al. have introduced two-level
hierarchical makeup videos, where they organize a set of actions into spatial locations [167]. Similarly,
VideoWhiz organized steps in recipe videos by reflecting the dependencies between the steps [127].

Another approach is to identify conceptual objects introduced in videos, which allows users to
navigate a video based on objects or concepts of interest [24, 107, 122]. Specifically, RubySlippers [24]
focused on a setting where users’ hands are occupied with physical activities, which it supports with
keyword-based voice commands for navigating videos. A data-driven approach has been introduced as
well to improve video navigation. Researchers found that interaction traces of other users help identify
points of importance or confusion [82]. Finally, transcript-based navigation approaches have allowed users
to efficiently search the content [139, 82], give feedback on videos [140], or edit videos [45, 70, 166, 16].

To better convey this information within the video interface, several systems present it in a mixed-
media format, displaying screenshots alongside corresponding descriptions such as step labels [141, 139,
34, 167]. This presentation format helps users digest the content more efficiently, making it easier to skim
and navigate through the material.

In summary, existing methods for video navigation are based on the script, conceptual objects,
section, or interaction traces. While the script and conceptual objects allow users to navigate in a
finer-grained way, it lacks in supporting navigation in a holistic view. On the other hand, while section
and interaction traces allow users to see the overall flow of videos, it does not support detailed navigation.
Beyond Instructions [188] presents a novel unit for video navigation, information types, which allows
users to see the overall composition of videos as well as navigate at a shorter segment level. It shows how

information types enable efficient navigation through a research probe.



2.1.2 Learning from Multiple Videos and Workflows

Learning from multiple resources can foster a deeper understanding of a subject [116, 106]. Fol-
lowUs [92] demonstrated the effectiveness of offering multiple demonstrations of a software tutorial
performed by different users, providing various insights and allowing learners to pick up on pieces from
different tutorials. To facilitate this, researchers have developed systems that enable the comparison
of hundreds of cooking recipes [23] or software workflows [88], as well as computational pipelines that
capture the diversity of these demonstrations [25, 170]. A similar approach has been explored in the
context of multi-document analysis, where systems were proposed to effectively collect and organize
information from multiple relevant documents [55, 64].

In video-specific research, several systems have been proposed to facilitate multi-video analysis. For
example, Surch [81] enables structured search and comparison of surgical videos, while Video Lens [114]
offers interactive search and exploration of baseball videos. Work in this space has explored techniques for
comparing instructional steps across videos, including detecting differences between two demonstrations
of the same step [124] and navigating to alternative videos that illustrate different ways of performing
that step [8]. These approaches expand multi-video navigation by helping learners understand procedural
variations across demonstrations.

When presenting information from multiple videos, it is important to organize the content in a
structured manner to avoid overwhelming users. Prior work has explored improving the browsing of
multiple video snippets by organizing frames along meaningful dimensions for video editing [101], or
content exploration [114, 200]. However, these approaches typically focus on visual frames, sorting them
in latent space, or rely on metadata for a specific application. In instructional how-to videos, however,
verbal content also carries critical information [188, 189], as these videos often contain a richer depth of
knowledge, delivered through both visual and verbal channels. Building on these ideas, VideoMix [190]
enhances multi-video skimming of how-to videos, helping users process and synthesize complex, detailed

information from multiple sources.

2.2 Structuring Instructional Video

2.2.1 Semantic Units and Information Types

Instructional videos contain rich semantic cues that help convey how a procedure unfolds, but these
cues are often implicit and embedded within an unstructured visual stream. Prior work has examined
various ways to surface these units to support learning. In how-to videos, researchers have identified
meaningful components such as subgoals, tools, and intermediate outcomes to structure the procedural
flow and support navigation [175, 167, 84, 127]. These units highlight what the user is trying to achieve
and what resources are needed, providing coarse structure for understanding the task.

Beyond structural cues, several studies have explored the semantic content within instructional
videos. For instance, analyses of narrated how-to videos have classified transcript sentences by their visual
relevance to surface which parts of narration are directly grounded in the demonstration [65, 119]. Other
systems have leveraged scene- or concept-level markers to support video authoring and editing, enabling
users to annotate or organize content based on the nature of each segment [35]. These efforts show that
identifying semantic units can support multiple tasks such as segmentation, editing, and browsing.

While these approaches advance the understanding of instructional content, they focus primarily

on isolated unit types such as subgoals, scene markers, or visual anchors. Beyond Instructions [188]



investigates the broader landscape of information types present in how-to videos, providing a more

comprehensive view of the semantic elements that shape procedural understanding.

2.2.2 Interaction Data for Understanding Instructional Content

A stream of research has analyzed interaction data of educational videos to gain insights into learners’
understanding of the video. A number of work analyzed interaction sequences to relate with learners’
engagement and performance [18, 157, 97, 86, 89, 18, 63]. Another stream of research has analyzed video
interaction data to reveal meaningful insights of the videos such as perceived difficulty [98] or important
moments of the video [82, 39]. Kim et al. [83] have analyzed dropouts and peaks of interactions in
different types of videos and suggested design implications for better video learning experiences. Li et
al. [97] have analyzed in-video interactions together with a survey about perceived video difficulty to
find relevant video interactions that indicate a student has experienced difficulty. However, it is still
challenging to fully estimate a users’ state with only video interaction data, especially in procedural tasks.
Even if a user watches an entire tutorial, it remains unclear whether they were actually able to follow the
steps or complete the task successfully. SoftVideo [191] addresses this limitation by analyzing synchronized
interaction data from both the tutorial video and the target software, enabling the identification of

meaningful signals such as in-step difficulties and relevant step relationships.

2.3 Intelligent User Assistance

2.3.1 Modeling User Behavior from Software Usage Logs

Software usage logs have been used to uncover patterns in how people perform tasks, providing a
foundation for intelligent assistance. Prior work has analyzed application logs to identify frequent tasks
or recommend workflows by comparing usage patterns across users [46, ?, 125, 170]. Other research has
classified sequences of commands to offer high-level overviews of user workflows and support semantic
navigation through complex task histories [44, 110, 27].

Researchers have also incorporated usage-log analysis into user interfaces to surface helpful cues.
For example, Patina [113] visualizes collective usage patterns of UI elements to help users work more
efficiently. Such approaches demonstrate how behavioral traces can reveal user goals, task structures, and
moments of difficulty—signals that are essential for building assistance systems that adapt to user needs.
SoftVideo [191] extends this direction by analyzing synchronized video and software logs to identify step

difficulty and relevancy, enabling more responsive and context-aware support during task execution.

2.3.2 Context-Aware Assistance for Following Tutorials

A line of work has explored how systems can assist users as they follow tutorial videos, particularly
in software environments where learners often encounter context mismatches, such as interface differences
between the video and their application [186, 145]. To mitigate these issues, systems like ReMap [57]
and Replay [58] surface contextually relevant video segments based on the user’s current software state,
reducing navigation burden and helping users locate the most applicable instructions. Other approaches
track a learner’s progress across both the tutorial video and the target application, automatically adjusting

playback or synchronizing the two contexts to support smoother task execution [148, 148, 129].
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For physical how-to tasks, where users’ hands are often occupied (e.g., using tools while watching
video), researchers have investigated voice-based video control as an alternative interaction modality [26,
203, 102]. These systems highlight challenges in conversational video interaction, such as uncertainty from
unseen content. RubySlippers [24] addresses some of these issues by enabling keyword-based navigation
that lets learners quickly jump to relevant segments while staying engaged in their task.

Beyond video-specific assistance, related work has examined real-time suggestion mechanisms that
guide users as they perform complex tasks. ViZig [180] and LectureScape [82] help learners locate
important regions in educational videos by surfacing anchor points derived from collective interaction
patterns. In broader interfaces, systems such as Adaptive Hypermedia [20], Ephemeral Adaptation [53],
and Patina [113] personalize or adapt Ul elements in response to user behavior. These methods collectively
demonstrate how timely, context-aware assistance can reduce cognitive effort, anticipate user needs, and

support learners as they navigate complex workflows.

2.3.3 Collaborative and Proactive AI Agents

Graphical User Interface (GUI) agents show strong potential for supporting users in complex workflows
by automating tasks toward a given goal [61, 104, 201]. However, agents that fully automate interface
operations can conflict with the needs of users in creative or analytical settings, where retaining control,
exploring alternatives, and iterating on ideas are essential parts of the workflow. To address this, recent
research has shifted toward assistive GUI agents that collaborate with users by understanding context
and offering timely support. Several works have explored inferring user goals and intent in both web [142]
and software environments [14, 60, 204] to better align assistance with user needs. For example, Zhao et
al. [204] introduce ProactiveVA, a visual analytics agent that monitors user interactions and leverages
LLMs to detect when users may be stuck, providing context-sensitive suggestions or guidance.

Recent works explore this shift toward collaboration and contextual support. CowPilot [71] proposes
a mixed-initiative framework that enables users to share control with an autonomous web navigation
agent, improving efficiency while preserving agency. In programming settings, proactive assistants like
Codellaborator [151] and NeedHelp [28] demonstrate how real-time intervention can aid users when
well-timed. Studies on software applications [78] show users prefer Al agents that guide them rather than
take over entirely, reinforcing the need for transparency and shared control. ProMemAssist [152] further
highlights the benefits of modeling user cognition (e.g., working memory) to deliver timely, non-intrusive
support. These findings echo broader discussions on autonomy levels [51] and the importance of aligning
agent behavior with human preferences [99, 79]. GUIDE builds on these insights, evaluating how well
current multimodal models can perceive a user’s state and intentions in GUI workflow recordings and

decide if and how to assist, aiming to push GUI agents toward true user-aware collaboration.

2.4 Computer Vision Approaches to Video Understanding

2.4.1 Action Understanding in Procedural Videos

Instructional videos provide step-by-step guidance toward achieving task goals, containing hierarchical
and procedural knowledge. To facilitate procedural video understanding, various datasets have been
introduced [205, 171, 208, 161, 158, 196, 169, 120, 90]. These datasets are annotated with temporal segment

boundaries and the actions performed within each segment, enabling a range of video understanding
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tasks such as video or moment retrieval [179, 120, 94, 12], video captioning [182, 3, 154, 103, 90, 168],
and action recognition or localization [22, 15, 165, 91, 77, 138, 132, 30].

While these datasets have advanced video understanding, they primarily capture what actions occur,
leaving open the challenge of modeling how those actions are performed. This distinction is central to
procedural learning, where skill hinges on subtle variations in pace, technique, and control [160, 156, 178].
Emerging work in fine-grained action understanding begins to address this challenge by modeling
verb—adverb relationships that differentiate manners of execution, such as “slice slowly” versus “slice
quickly” [47, 121, 48]. These developments point toward richer representations that capture the nuance

necessary for supporting procedural understanding.

2.4.2 GUI and Software Workflow Video Understanding

Several benchmarks evaluate video understanding in the context of GUI and software workflows.
Early work by Li et al. [95] collected Photoshop tutorial videos to understand screencast videos. More
recent datasets span multiple applications and tasks. For example, AssistGUI [61] focuses on automating
GUI tasks using an actor-critic agent, serving as a benchmark for task-oriented GUI automation.
VideoWebArena [74] evaluates long-horizon multimodal agents on web browsing tasks, emphasizing
extended video context and web UT interactions. VideoGUI [104] compiles high-quality instructional
screen recordings and introduces a hierarchical model for mapping visual observations to GUI actions.
UI-Vision [128] provides a fine-grained desktop UT video benchmark with dense annotations for perception
and interaction. Lastly, WorldGUT [201] increases task diversity by allowing arbitrary initial interface
states for each task, challenging agents to handle varied starting conditions. These prior benchmarks
primarily focus on close-ended tasks with predetermined goals, aiming to replicating expert demonstrations.
In contrast, GUIDE targets open-ended GUI workflows with novice users, emphasizing understanding of
user intent and context rather than step-by-step replication of actions. This shift toward user-centric
evaluation fills a gap not covered by existing GUI video datasets that evaluate task completion or action

prediction.

2.4.3 Video Question Answering

To enhance the comprehension of videos through question answering, a range of computational
approaches has been explored. Some methods focus specifically on screencast tutorials, such as Tutori-
alVQA [40] and PsTuts-VQA [202], which aim to support deeper understanding of software instruction
videos. Broader-scale efforts leverage the extensive HowTol00M dataset to build large QA corpora, as
seen in HowToVQA69M [181], iVQA [181], and How2QA [96]. However, many of these datasets rely on
automatically generated questions, which may differ from the kinds of questions real users ask when
learning from tutorials. To address this, some work has collected questions manually—either through
crowdworkers generating questions from answer segments [40, 96, 181] or through domain experts crafting
QA pairs [202]. Other efforts, such as YTCommentQA [189], have drawn questions from naturally
occurring YouTube comments to better reflect authentic user information needs. Together, these datasets
highlight diverse approaches to modeling the types of questions learners may have when engaging with

instructional videos.
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Chapter 3. VideoMix: Aggregating How-To Videos for
Task-Oriented Learning

This chapter focuses on the first phase, the Exploration phase, where users learn from multiple
tutorial videos. In this stage, the most useful contextual units are macro-level structures such as outcomes,
approaches, and methods. This chapter has adapted and revised content from a paper at TUI 2025 [190].

All uses of “we”, “our”, and “us” in this chapter refer to the coauthors of the aforementioned paper.

3.1 Motivation and Contributions

How-to videos are a popular resource for people looking to learn new tasks (e.g., cooking a pasta
dish or knitting a mitten) due to their abundance and the detailed, step-by-step instructions [188, 34].
When learning a task, people typically start with understanding the procedure and then applying it in
their specific context [37, 5, 185]. This process involves gathering and processing information to construct
an understanding of the task, followed by active engagement through execution and iterative learning via
trial and error.

In the initial phase of learning, people often develop their understanding by watching or skimming
through multiple videos. Watching multiple videos on the same topic can significantly enhance under-
standing of the task, by offering diverse perspectives and insights [92, 81]. This exposure allows users
to learn about different methods, tips, or prerequisites, and select the approach that best fits their
context. Additionally, learners can reference different videos to clarify any unclear points or to confirm
the reliability of a specific method.

While this diversity provides such benefits, making sense of the loads of information in multiple videos
is challenging. These videos are not curated, leaving the job of organizing and tailoring the information
for the personal needs on the user. Navigating through numerous videos can be time-consuming, as most
platforms are designed for viewing one video at a time, making related content fragmented and scattered.
Moreover, since videos are not easy to skim, users must watch them sequentially, which can be inefficient.
As a result, learners may end up watching only a few, potentially missing out on valuable information
and knowledge. While systems like Surch [81] and RecipeScape [23] aggregate multiple procedures for a
common task, they are specialized for specific domains (e.g., surgery) or primarily designed for analytical
purposes, which often require domain expertise. Further exploration is needed to support learners in
building a well-rounded understanding of tasks across a variety of domains.

To better understand why users watch multiple videos and what specific information they seek
to gain from this process, we conducted a formative study in which we asked twelve participants to
learn a task of their choice using how-to videos. We found that learners primarily look for four key
aspects in the videos: 1) Outcomes, to understand the possible results of the task and decide which
outcome they prefer; 2) Requirements, to identify the necessary tools or materials, and check whether
certain tools are commonly used across videos; 3) Approaches and Methods, to explore alternative
approaches presented by various instructors and find the method that best suits their needs; 4) Details,
to gather additional insights, such as tips or know-how shared by different instructors. While participants
recognized the value of watching multiple videos to gather this information, they noted the difficulty of

tracking and organizing the information and the inefficiency of navigating between multiple videos.
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Based on these findings, we developed VideoMix, a system that aggregates and organizes information
from multiple how-to videos on a single task, helping users gain a holistic understanding of the task.
VideoMix focuses on physical tasks with tangible outcomes, organizing videos into meaningful axes;
outcomes, approaches, steps, methods, and details (Figure 5.3). Once the user inputs a task they want to
learn, VideoMix identifies different outcome types (Figure 3.1B), and for each outcome type, VideoMix
provides three different approaches to achieve the outcome: the standard (most commonly followed), the
simplest (with the fewest steps), and the most complex (with additional steps) approaches (Figure 3.1C).
Each approach is presented with the specific steps that make up the process, accompanied by a list of
materials and tools used across the videos (Figure 3.1D, E). Once the user selects an approach they are
interested in, they can explore different methods to achieve each step (Figure 3.2B). VideoMix provides
video snippets demonstrating each method, along with useful tips or important details drawn from the
videos (Figure 3.1C, E). To present potentially heterogeneous information from multiple videos in a
coherent and digestable way, we integrate concise textual summaries with relevant video clips, enabling
users to quickly digest and navigate the content.

To extract and generate this information, we designed a technical pipeline powered by a Vision-
Language Model (VLM). Our pipeline processes a collection of videos to automatically extract key
information such as outcome types, requirements, and step information along with relevant details from
both the visual and verbal content of videos. A key component of our pipeline is the Dynamic Approach
Identification (DAI) module, which captures different possible sequences of steps to achieve an intended
outcome from a set of videos.

To evaluate VideoMix, we conducted a within-subjects study (N=12), where participants were asked
to learn tasks that they had not done before, with our system and a conventional YouTube-like system.
The results revealed that VideoMix helped participants gain an overall understanding of the task more
efficiently, allowing them to tailor their learning experience by exploring approaches that matched their
interests and suited their needs. Overall, VideoMix demonstrates the potential of task-based learning for
videos, where videos are organized around a common task or goal, offering a concise yet comprehensive
resource.

This paper presents the following contributions:
e A formative study that uncovers how users learn from multiple videos.

e VideoMix, a system that aggregates and presents information from multiple how-to videos on a
task.

e An evaluation study that demonstrates the effectiveness of our system in task learning.

3.2 Formative Study

We conducted a formative study to gain insights into how users learn new tasks through multiple
how-to videos and to understand the specific information they seek across these videos. In this section,

we describe the methodology used and key findings identified from the study.

3.2.1 Method

We recruited 12 participants (6 male, 6 female, mean age=27.7, median=27) through online commu-

nities of academic institutions, who regularly watch how-to videos and often watch multiple videos to

14



gain a comprehensive understanding of a task. All participants reported that they watch how-to videos
of various domains such as cooking, painting, gardening, and assembly, at least 1-2 times per month.

To begin, we asked participants a few questions about their current practices on learning from how-to
videos. We asked about the types of how-to videos they usually watch and asked them to describe their
typical workflow, from watching the videos to following through with the task.

Next, participants were asked to select a topic or task they wanted to learn, ensuring it was a
subject they had not previously learned or explored. Once the task was chosen, we conducted a think-
aloud observation study. Participants were instructed to open YouTube, share their screen, and learn
about the selected task as they would normally do. To simulate a realistic learning scenario, we asked
them to imagine a setting where they had to learn about the task so that they could execute the task
later. During the session, we observed how participants searched for videos, the specific information
they sought, when and why they chose to look for another video and switch between them, and what
information they gathered from each video. Participants were encouraged to think aloud about their
thought process throughout the learning phase. We repeated the observation study with at least two
tasks of the participant’s choice, within a 45-minute timeframe.

Following the observation study, we conducted a semi-structured interview. We asked participants to
describe the overall approach they used to learn the task, the types of information they found useful from
different videos, the challenges they encountered, and the kind of support they would find helpful when
navigating through multiple videos. The study was conducted online, and participants were compensated
with a $30 USD Amazon gift card for the 1-hour session.

3.2.2 Findings

Current Workflows

All participants mentioned that when learning a task, they typically start by watching videos to
understand the materials, processes, and techniques involved, forming a mental map before following
the task. To watch videos, all participants began their video search with broad, general queries (e.g.,
‘how to make gnocchi’), believing that these general queries would provide a better overview of the task
and increase the chances of finding higher-quality videos, as a larger video pool is more likely to contain
quality content. In contrast, they believed that more specific queries with personal contexts or constraints
(e.g., ‘how to make gnocchi without potato’) might limit the search results. Additionally, since participants
did not yet have an understanding of the task, they were often unsure about what specific details would
be relevant to include in the search.

These broad queries yielded a large number of videos. All participants watched multiple videos when
learning the task, and demonstrated two common behaviors for navigating through them. In the first
behavior, demonstrated by five participants, they quickly scanned a list of videos and opened several
videos in separate tabs, selecting those that aligned with their interests based on factors such as an
appealing outcome, a title that matched their expectations (e.g., ‘simple recipe’), or visual cues suggesting
the video was of high quality. In the second behavior, observed in seven participants, they selected one
video to watch at a time. Through watching that video, participants developed a better understanding of
which personal constraints were relevant (e.g., not having a tool they needed), what specific outcome
they wanted, or any knowledge gaps they needed to be clarified. They then accordingly refined their

search queries for subsequent videos to become more specific and tailored to those needs.
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Information Users Expect to See from Multiple Videos

Watching multiple videos allowed participants to get a broader understanding of the task and see
various approaches and details that might not be covered in a single video. Below are the key pieces of
information participants sought from multiple sources:

Outcomes: Participants quickly scanned video thumbnails and titles to grasp the specific outcomes
of the task. For example, in learning how to "make gnocchi,” they encountered variations like ”cream
gnocchi,” ”basil gnocchi,” or ”gnocchi soups.” This allowed them to compare different end results and
decide which version they wanted to pursue. Understanding these possible outcomes helped participants
shape their goals and choose the appropriate approach.

Requirements: Participants also looked for the tools, materials, or ingredients used in the videos.
By observing the requirements across multiple videos, they could identify commonly used items and
ensure they had everything necessary to complete the task. This also allowed them to compare any unique
items suggested by different instructors, helping them decide which tools or materials were essential.

Approaches and Methods: Participants explored various workflows presented in the videos,
helping them identify both standard and alternative approaches. This comparison allowed them to
understand the complexity of different methods and select one that best matched their skill level or
specific context. Additionally, learning about different alternative methods provided flexibility and
adaptability in their learning process.

Details: Participants appreciated the additional details that different videos provided, such as tips,
tricks, or know-how. These insights added value to the learning experience, giving them more in-depth or

practical knowledge that could enhance their understanding of the task.

Challenges

While participants found that watching multiple videos to be very beneficial to their learning, they
also noted that the current process for using multiple videos is time-consuming and mentally demanding.
They encountered the following challenges while trying to select, watch and organize information from
multiple videos:

Search Results Lack Organization: The search queries always returned a large number of
videos that weren’t organized in a way participants could understand. As a result, participants found
it difficult to select which video or videos to watch from the large set. For example, all participants
primarily selected videos based on the outcome, which they determined from the search result titles
and thumbnails. However, the search results were not organized by outcome; videos sharing a common
outcome were scattered throughout the result list and participants had to exhaustively examine the list
to comprehend all the possible outcomes for the task. Moreover, it was difficult for participants to gauge
how videos sharing a common outcome differed. Better organization of the task videos based on the
expected information types (Section 3.2.2) could help to reduce users’ mental load.

Information Extraction Requires Watching Videos: Participants found it difficult to skim
videos and spent a significant amount of time watching each video end-to-end in order to extract the
information they wanted. For example, unless the original creators manually annotated the video or
specified in the description box, participants often had no quick way to determine all the steps or
ingredients used without watching the video through and risked missing important information while
skimming. In contrast to video-only interfaces, past research has shown that mixed-media tutorials,

which incorporate text, images and video together, are easier to skim and more effective at giving users a
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high-level overview of the task [34, 167].

No Easy Way to Compare and Consolidate Information Across Videos: As participants
watch multiples video, they don’t just want to gather information about each video independently. Instead,
they were trying to form broader task insights which span multiple videos such as what the common
approach is, which steps are not strictly necessary, or different methods to execute a single step. However,
current video interfaces only support single video contexts; in order to watch multiple videos, participants
had to open each video in a new tab and the videos were not aligned to each other in any way. This
interface design made it difficult for participants to compare multiple videos and, as a result, participants
spent considerable mental effort synthesizing and tracking these task insights. Additionally, participants
also wanted to aggregate information across videos (e.g., all the tips and details from different instructors
about a single step), but had no way of doing so in the current video browsing interface. Multiple
participants expressed a desire for a system that could help them connect and consolidate the information

from multiple videos more effectively.

3.2.3 Design Goals

From the formative study, we observed that watching multiple videos offered participants a more
comprehensive understanding of a task, enriched with diverse instructions and insights. However, there
was a need for a more efficient way to access and organize this information. Based on the study insights,

we derive the following design goals for a multi-video system that is designed around a common task goal:

e DGI1: Enable users to gain a comprehensive overview of possible outcomes and requirements for the
task.

e DG2: Help users compare and navigate different approaches and methods to achieve the task.

e DG3: Provide easy access to detailed information, including relevant video snippets and key details

shared across multiple videos.

3.3 VideoMix

Based on our design goals, we present VideoMix, a system that helps users gain a holistic understanding

of a how-to task, by aggregating and organizing information extracted from multiple videos on the task.

3.3.1 System Interface

The system consists of an (1) Overview page (Figure 3.1) and (2) Details page (Figure 3.2). The
overview page gives an overview of the task by organizing possible outcomes of the task, required materials
and tools, and several approaches to achieve the task. Once the user selects an approach they are
interested in, they see the steps that the approach involves. Once they click on a step, the system
takes the user to the Details page, where users can see details for the step including multiple alternative

methods and important tips, along with the corresponding video snippets.

Overview page

Once the user specifies the task they want to learn, VideoMix presents an overview of that task.

First, it offers several possible outcomes (Figure 3.1B) for the task (e.g., for the task ?Build a Desk,” it
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shows options like ”Rustic Wooden Design,” ”Modern Sleek Design,” ”Functional Multi-purpose Desk,”
or ”Standing Adjustable Desk”).

After the user selects a preferred outcome, VideoMix provides three different approaches (Figure 3.1C)
to achieve it: the standard approach (the most commonly used across videos), the simplest approach
(involving the fewest steps), and the most complex approach (involving the most steps). These approaches
inform users of multiple ways to accomplish the task, varying in both commonness and complexity, while
also providing flexible options tailored to their experience level and the amount of effort they wish to
invest,.

Once the user selects an approach, the system provides an overview of information gathered from
multiple videos corresponding to that approach. First, a list of materials and tools used in the videos that
follow the approach is provided (Figure 3.1D). Since not all items are used in every video, they are sorted
by frequency of use—items appearing more often are highlighted with darker colors, making it easy for
users to identify the most commonly used ones. Below the item list, the system displays step-by-step

information for the approach, with each step labeled and briefly described (Figure 3.1E).

Details Page

Once the user selects a step in an approach, they are presented with more in-depth information on the
Details page(Figure 3.2). In this detailed view, VideoMix displays the step-by-step instructions previously
shown in the Overview page, in a vertical format (Figure 3.2A). Here, each step can be expanded to
reveal multiple variations or methods for accomplishing that step (Figure 3.2B). For example, for the
step ”Cook meat and vegetables,” the user can choose between methods such as ”Using an Instant Pot,”

)

”Using a Rice Cooker,” or ”Using a Cast Iron Pot.”

Once the user selects a method, VideoMix presents video snippets corresponding to the chosen
method (Figure 3.2C). These videos automatically play from the relevant start time and stop at the end
of the segment, but users have the option to explore the video further by watching earlier or later parts to
understand its context. On the right side of the video player, users can navigate between different video
snippets, each accompanied by a brief summary (Figure 3.2D). This allows users to quickly understand the
content of each snippet before selecting one to view, helping them explore different videos demonstrating
the method. Below the video player, VideoMix provides useful tips and key information extracted from
the video snippets to highlight important points or considerations for the selected method (Figure 3.2E).

As such, VideoMix enables users to gain a comprehensive understanding of the task by presenting
information in a structured and hierarchical manner. This approach allows users to progressively learn

about the task, revealing details as they delve into each outcome, approach, and step in depth.

3.3.2 Technical Pipeline

To provide the aggregated information from multiple how-to videos, we developed a pipeline that
processes and extracts content in videos. Figure 5.3 illustrates the overall process. It begins by clustering
videos into different sets based on their outcome and approach type. Each video set is then analyzed
to extract more detailed information, such as steps and methods used. For the video dataset, we used
HowTol00M [120], a large-scale collection of narrated how-to videos from YouTube. We downloaded
the corresponding YouTube videos using youtube-dl [195], a command-line program for downloading
videos from YouTube. We then obtained the video transcripts open-sourced by Han et al. [65], which

were generated with sentence-level timestamps using WhisperX [11]. Each video is labeled with its task
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Task Modern and Sleek Designs - Standard Approach

Materials & Ingredients:

Build a Desk Q
Wood glue Plywood Paint Pencil Polyurethane Primer Danish oil
Search Results
Walnut plugs Tin foil Lock washer Wood stain Glass Veneer Silicone
Rustic and Wooden Designs Tools:

Drill Screws Clamps Table saw Sander Measuring tape Paintbrush

Overview Details
. Prepare Wooden Parts Assemble Desk Frame

Modern and Sleek Designs Cut and prepare wooden parts to @ rttach desk frame components using
specified dimensions. screws, glue, and brackets.
Attach Tabletop and Legs Apply Finish

’ Secure tabletop to legs using screws and Apply finish by staining, painting, or
pre-drilled holes. sealing the project.

l Standard Approach -I
Set Up Desk
7 I anize E
Simple Approach Assemble and organize the desk for

optimal functionality.

Complex Approach This is the standard approach to complete the task. It is the most common approach followed

by most videos.

Standing and Adjustable
Desks

pe— | _

Figure 3.1: VideoMix interface on the Overview page for the task “Build a Desk”. (A) Users begin
by selecting the task they want to learn. (B) VideoMix then presents video search results categorized
by outcome types. (C) For each outcome type, users can choose from standard, simple, or complex
approaches. (D) Based on the chosen approach, VideoMix displays the necessary requirements, such as
materials, ingredients, and tools. Finally, (E) users can see a list of steps and a brief description of each

step that makes up the chosen approach.?

name (e.g., ‘make gnocchi’), along with a broader category it belongs (e.g., ‘Food and Entertaining’).

Outcomes

To determine the different outcome types for a task, our pipeline operates in two phases: first,
it extracts descriptions of each video’s outcome and then it clusters these outcome descriptions into
meaningful categories. In the first phase, we utilize both the visual content and transcripts. While
transcripts provide verbal descriptions of the outcome [188], visuals can offer additional descriptive
information that may not be explicitly mentioned. To estimate which video frames show the outcome,
we provide GPT-40 with the full transcript and prompt it to extract only the segments that describe
the outcome. We pick the video frames that correspond to these transcript segments as outcome frames,
selecting one frame per second. We then input these outcome frames and the entire transcript into
GPT-40 and prompt it to generate an outcome description. This phase yields an outcome description for

each video in the task set.

2Screenshots of the outcome search results are from: youtu.be/ChJtZFXwxKY, youtu.be/FnllOwAAvEo,

youtu.be/Z7x_Rvb_yje, youtu.be/ vOfXgwerpY (Creative Commons licensed).
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Modern and Sleek Designs 1. Prepare Wooden Parts - Using a Table Saw

Standard Approach

« Overview Details

Prepare Wooden Parts

Cut and prepara wooden parts to
specified dimensions,

[ Using & Table Saw ﬂ i

Using a Jigsaw

(00:30 - 02:28) Prepare the slab,
flatten it, and cut to size

- E

Using a Miter Box

Ciis Tips and Notes E

Assemble Desk Frame

@ Auach desk frame components Double-check measurements Use a cut list to take the Adjust divider positioning
using screws, glue, and brackets. before cutting to avoid guesswork out of breaking based on your specific build
mistakes. down plywood. requirements.

Attach Tabletop and Legs

Secure tabletop to legs using
screws and pre-drilled holes.

. BELY FiniSY

Figure 3.2: VideoMix interface on the Details page for the task “Build a Desk”. (A) The interface
displays the list of steps for the chosen approach. (B) For each step, users can explore different methods,
such as tools or techniques, to complete the step. (C) When a method is selected, VideoMix presents
video snippets relevant to that method. (D) Users can easily switch between different videos for the
selected method, with the corresponding time frame playing automatically. (E) Additionally, users can

view tips and notes extracted from the videos.*

In the second phase, we cluster similar outcome descriptions together by outcome types. To extract
the outcome type, we first prompt GPT-40 to identify two to four of the most salient themes from the
list of video outcome descriptions. Each theme becomes an outcome type. We then cluster the videos
around these outcome types by prompting GPT-40 to assign each video to exactly one outcome type
using the video’s outcome description. To provide representative images for each outcome type (Figure
3.1B), we randomly select two videos assigned to that type. We retrieve the outcome frame segments

(identified in phase one) for each video and choose the middle frame of the last segment.

Steps and Approaches

To aggregate information from multiple videos sharing the same outcome, it is essential to understand
possible sequences of steps that may vary across different videos [81]. We introduce a Dynamic Approach
Identification (DATI) module, which iteratively identifies key steps across a set of videos, accounting for
variations in the procedure. Instead of relying on a fixed taxonomy of steps for a task, our module adapts
to a specific video pool (in our case, based on the outcome types of the task), and captures procedural
differences within the set, ensuring comprehensive coverage of the task.

The DAT module, which is illustrated in Figure 3.3, begins by extracting steps directly from a video
transcript and grounding each step in the corresponding transcript sentence indices using GPT-40. Note

that prior work [29] has demonstrated the feasibility and accuracy of using LLMs for step extraction with

4Source video: youtu.be/fvibqBehcBe (Creative Commons licensed)
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extract Design Desk

> > _ Design Desk > Prepare Wooden Parts
 Measure Space ey D
apply Prepare Wooden Parts
— — Build Frame Design Desk
> H > Build Frame
G Final Apply Finish Standard Approach
refine Step Ina
Taxonomy Step Simple Approach
Taxonomy
e ey Complex Approach
— _ Manage Cables Design Desk —
> / Build Frame
L — — > Apply Finish
@D Test Setup
(a) Step Taxonomy Construction (b) Step Selection and Alignment (c) Approach Identification

Figure 3.3: Illustration of our Dynamic Approach Identification (DAT) module, which captures a variety
of approaches to accomplish a task. (a) The process begins by extracting step information from the first
video using GPT-40. This initial step taxonomy is then applied to the next video, where additional steps
are identified, refining the taxonomy. This iterative process continues for all videos, progressively refining
the step taxonomy with each comparison. (b) Once the final step taxonomy is established, it is reapplied
to each video to detect relevant steps and align segments accordingly. Note that not all steps may be
present in each video. (c) After extracting step information from each video using the common taxonomy,
the system identifies standard, simple, and complex approaches based on the number of videos that follow

each approach and the number of steps within each approach.

timestamps. The extracted step information is then applied to the next video to identify any previously
unrecognized steps, adding those new steps to the set. This process is repeated iteratively, refining
the step set until the entire video collection is covered. Once the final set of steps (i.e., the final step
taxonomy) is derived, the system applies it to each video, selecting the steps present in the video with
timestamp information for when each step occurs. This method allows us to capture each video’s unique
sequence of steps, which may or may not overlap with others.

Once the step information for each video is identified, our pipeline uses the information to determine
three approaches: Standard, Simple, and Complex. The Standard approach refers to the typical
sequence of steps most commonly followed across videos. The Simple approach refers to the sequence that
involves the fewest steps, while the Complex approach consists of the largest number of steps. While there
could be other ways to measure the complexity of an approach, we followed Merrill’s suggestion [117] and
used the number of steps as a measure, since it provides a quantifiable way to assess the effort required to
complete the task. We execute the process of identifying steps and approaches for each outcome cluster,
and the requirements are extracted per each approach. The standard approach is always captured, while
the simplest and most complex approaches may not be, particularly if they overlap with the standard
approach or if the number of videos following the simplest or most complex approaches is too low. In
Section 3.4, we demonstrate how the DAT module effectively captures diverse and accurate approaches

compared to existing baselines.
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Object Requirements

Our pipeline also extracts the required objects (i.e., the materials, ingredients, and tools used) across
all the videos belonging to the same approach. TutoAl [29] demonstrated that using LLMs to extract
objects from transcripts is the most effective method for identifying items used in tutorial videos. To
create a comprehensive list, we also capture visual frames at 5-second intervals from the entire video, and
together with the entire transcript, prompt GPT-40 to extract the materials, ingredients, and tools used.
After gathering this information for each video, we aggregate the results and calculate the frequency
of each item across all the videos. To streamline the merging process, we instruct GPT-4o to exclude

specific quantities or descriptors (e.g., stripping “pinch of salt” to be just “salt”).

Methods and Details

Finally, our pipeline detects variations in the methods used for each step of an approach. For each
step, we get the corresponding transcript segments from all the videos containing that step. We then
prompt GPT-40 to identify the different variations in the methods described by transcript segments.
To identify which of these method variations a video uses, we prompt GPT-40 with the video’s step
transcript and the method variations and ask it to pick which variation the step transcript describes.
Finally, for each method, we prompt GPT-40 to extract useful tips or key information by providing a

collection of transcript sentences specific to that method.

3.3.3 Implementation

The interface for VideoMix was developed using TypeScript, ReactJS, and CSS. The backend was
implemented with Python scripts for video preprocessing. OpenAI’s API was used for VLM components,
specifically the GPT-40-2024-05-13 model [135] with a temperature setting of 0 for all components. To
generate structured outputs, we employed Function Calling [134] in OpenAI’s API. Note that we used
GPT-4o0 to process video frames and transcripts for a robust and scalable solution for handling long-form
videos. We did not use video foundation models due to their limited context windows, which make
processing lengthy videos challenging without losing details. Future improvements in video foundation
models, such as larger context windows and lower costs, could make long-form video processing more

efficient and practical for our pipeline.

3.4 Technical Evaluation

We evaluated the Dynamic Approach Identification (DAI) module primarily, as it is the core
component of our pipeline for identifying diverse approaches and methods across multiple videos. We
aimed to test two hypotheses: 1) Our pipeline-generated step taxonomy will provide as accurate step
information as predefined taxonomies; 2) Our pipeline-generated step taxonomy will better capture the

diversity and variation within a task compared to predefined taxonomies.

3.4.1 Task Selection

To evaluate our hypotheses, we selected six tasks from the HowTol00M dataset, with two from the
‘Hobbies and Crafts’ category and four from the ‘Food and Entertaining’ category. The chosen tasks are:
Build a Desk (95 videos), Build a Bookshelf (58 videos), Make Chicken Cacciatore (92 videos), Make
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Accuracy (1-7)

) Coverage (0-10)
Relevancy  Logical Flow Completeness

Baseline 5.88 £ 1.19 5.58 £ 1.56 4.50 £+ 1.67 5.80 £ 2.24

(1) 7.05 & 2.13 (*)
(2) 7.96 & 1.83 (*¥)

VideoMix 5.42 £ 1.36 5.52 £+ 1.38 4.42 + 1.53

Table 3.1: Results of the technical evaluation of our DAI module. Our pipeline maintained step accuracy
across Relevancy, Logical Flow, and Completeness (with no statistically significant differences), while
capturing a significantly more diverse range of possible approaches, both (1) when considering only the

approaches and (2) across all outcome types (*: pj0.05, **: p;0.01).

Jambalaya (66 videos), Make Shrimp Cocktail (86 videos), and Make Bannock (90 videos). The tasks
were selected based on the following criteria: 1) We focused on physical tasks with tangible outcomes,
rather than fixing or using products [188]. This was to ensure diversity in information, such as outcome
types and requirements. 2) The task must have a predefined step taxonomy available in existing datasets
(e.g., HT-Step [2], CrossTask [208]) to allow for comparison. 3) The task must include at least 50 videos
to ensure diversity. For comparison, we used HT-Step and CrossTask as baseline datasets, since both are
also based on HowTol00M. The step taxonomies in these datasets are human-annotated, grounded in

WikiHow [176], a popular website for how-to instructional articles.

3.4.2 Method

We recruited external evaluators through Prolific [150], who are familiar with the selected tasks. In
total, 24 evaluators were recruited, with 4 evaluators assigned to evaluate each of the 6 tasks. To ensure
expertise, we required evaluators to self-report having performed the task at least once and to know at
least two approaches to completing it. Evaluators were asked to rate the step information derived from
both the baseline predefined step taxonomies and our pipeline-generated steps for the same video tasks,
where the order of the condition was counterbalanced.

The evaluation focused on two main criteria following our hypotheses: accuracy and coverage. For
accuracy, evaluators rated the step information based on the following criteria using a 7-point Likert

scale:
e Relevancy: How relevant is each step to achieving the overall task goal?
e Logical Flow: How logical and coherent is the progression of steps in the sequence?
e Completeness: How complete is the sequence in covering all necessary steps to achieve the task?

For the baseline, evaluators were presented with the predefined step taxonomies, but we summarized
each step into a concise step name to ensure consistency with the format of our pipeline-generated steps.
For our pipeline-generated taxonomies, evaluators were provided with the ‘standard’ approach for each
outcome type. For coverage, evaluators answered the following question on a scale of 0 to 10 where 0

indicates no coverage and 10 means a full, 100% coverage:

e To what extent does this sequence represent or cover all the possible ways to achieve the task?
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In this case, evaluators were provided not only with the standard approach but also with simple and
complex approaches for each cluster, if available, in the pipeline-generated taxonomies. Evaluators were

compensated $5 USD for each task they evaluated, which took approximately 15 minutes.

3.4.3 Results

Overall, our pipeline maintained step accuracy while capturing a more diverse range (80%) of
possible approaches compared to the baseline (58%). For accuracy, when evaluated on three key aspects—
Relevancy, Logical Flow, and Completeness—using a 7-point Likert scale, there were no statistically
significant differences between the steps generated by our pipeline and those annotated by humans.
(Table 3.1, Relevancy: u=5.88, 0=1.19 vs. u=5.42, 0=1.36; Z=1.5, p=0.13, Logical Flow: u=5.58,
0=1.56 vs. u=5.52, 0=1.38; Z=0.37, p=0.71, Completeness: pu=4.5, c0=1.67 vs. u=4.42, 0=1.53; Z=0.47,
p=0.64). Note that each condition was evaluated according to its intended outcome. The baseline involved
the general task (e.g., building a desk), while our pipeline was tested on specific outcomes (e.g., building
a standing adjustable desk). These results indicate that our pipeline can generate steps with a level of
quality comparable to human-annotated steps, even when addressing more specific tasks.

In terms of coverage, the steps generated by our pipeline captured a significantly greater range
of possible approaches to completing the task, as rated on a scale from 0 to 10, (0 being 0% and 10
being 100%). Compared to the baseline steps, our pipeline captured a more diverse range of approaches,
even when considering only the approaches (i.e., Standard, Simple, and Complex) for each intended
outcome type. (Table 3.1, u=5.8, 0=2.24 vs. u=7.05, 0=2.13; Z=-2.16, pj0.05). When aggregating
these approaches across all outcome types, the coverage increased significantly from 58% to 80%, with an
average of 3.5 outcome types per task (Table 3.1, u=5.8, 0=2.24 vs. u=7.96, 0=1.83; Z=-3.37, p;0.01).
These results demonstrate that our pipeline, which detects step information across various outcome types
and approaches, captures significantly more diverse ways to achieve a task. All statistical significance was

measured using the Wilcoxon Rank-Sum Test.

3.5 User Study

We conducted a within-subjects user study to evaluate VideoMix against a baseline YouTube-like
system, a platform most users are familiar with for watching how-to videos. The primary goal of the
study was to assess the effectiveness of VideoMix in enhancing users’ overall understanding of tasks, and

to explore how users would use VideoMix and how it impacts their learning experience.

3.5.1 Participants and Apparatus

We recruited 12 participants (4 male, 8 female, mean age=25.3, median=25.5) through an online
community at our academic institution, those who regularly watch how-to videos and often watch multiple
videos to learn a specific task. For the study, we selected 4 tasks from those used in our pipeline evaluation:
two from the ‘Hobbies and Crafts’ category (Build a Desk, Build a Bookshelf), and two from the ‘Food
and Entertaining’ category (Make Chicken Cacciatore, Make Jambalaya). We randomly selected two
tasks for each participant, one for VideoMix and the other for a baseline system. Since our study involved
learning tasks, we ensured that none of the participants had prior experience with the tasks they would

be learning during the session.
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For a fair comparison between VideoMix and baseline, we built a baseline system similar to YouTube,
but with a limited set of videos available in VideoMix. Participants were provided with a list of videos in
the main feed, where they could click to watch each video along with its title and description sourced

from the original YouTube video.

3.5.2 Study Procedure

The study was conducted online through a Zoom meeting. Participants were first given an overview
of the study, including the two tasks they would be learning during the study. They were then instructed
to use either VideoMix or the baseline system to learn about an assigned task. Participants were asked to
imagine they would later be performing the task on their own, and that their current goal was to study
the task, gather as much information as possible to prepare for it.

We provided a brief tutorial on how the assigned system worked, and participants were given 15-20
minutes to explore and learn about the task using the system. They were encouraged to think aloud,
sharing their thoughts and decision-making process as they use the systems. After completing one
session, participants switched to the other system, and the same process was repeated. The order of
tasks and systems used were counterbalanced across participants. Following each session, we conducted a
questionnaire to assess participants’ perceived understanding of the task, perceived usefulness of each
feature (in the VideoMix condition only), and cognitive load using measures from NASA-TLX (Mental
Demand, Frustration, Effort, Performance) [66]. All responses were on a 7-point Likert scale. Finally,
we conducted semi-structured interviews to understand their strategies used in each system and gather
qualitative feedback on VideoMix. The study lasted 1 hour, and participants were compensated with a
$30 USD Amazon gift card.

3.5.3 Results

Overall, participants found VideoMix to be more helpful in understanding the task compared to the
baseline. Below, we provide a detailed report of the study’s findings. For all measures, we first conducted
a Shapiro-Wilk test to determine data normality, and then used a paired t-test (if parametric) and a

Wilcoxon signed-rank test (if non-parametric).

Enhanced Overall Understanding

Participants reported a significantly better understanding of the tasks when using VideoMix compared
to the baseline (Figure 3.4). They felt more successful in learning about the task (p=4.83, 0=1.4 vs.
u=5.75, 0=0.83; t=-2.42, p;0.05) and more efficient in the learning process (u=4.17, 0=1.9 vs. u=5.75,
0=0.92; W=7.0, pj0.05). Participants appreciated how VideoMix provided a comprehensive overview of
the task, allowing them to grasp the entire scope at a glance. For instance, P2 noted, “With VideoMiz, I
could see the overall process involved in the task and get a general understanding immediately. I could
figure out possible outcomes, required materials, and overall process, which would have taken a long time
to find on YouTube, where videos are scattered.”

VideoMix significantly streamlined the process of acquiring task-related information compared to
the baseline. With the baseline, participants typically relied on thumbnails to identify the outcome or
titles to see the approach they wanted (e.g., ‘simple recipe’). After selecting a video, they would check
the description box in hopes of finding a list of ingredients or basic step-by-step instructions, but this

information was not always available. In contrast, VideoMix offered organized information upfront, saving
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Figure 3.4: Participants felt they were more successful and efficient with VideoMix, and found VideoMix
to be more useful when learning about the task compared to the baseline. There were no statistically

significant differences in mental demand, effort, and frustration (*: pj0.05).

participants considerable time. For example, P6 selected the standard approach in VideoMix because he
wanted to learn something basic, whereas on the baseline, he had to watch multiple videos and compare
processes to identify the original standard recipe. He also mentioned, “It’s nice because the ingredients are
written out, so you can just look at them and prepare everything right away.” While VideoMix presented
information from an average of 77.8 videos per task, participants watched only 2.6 videos on average
using the baseline system within the given study time.

Overall, participants rated VideoMix to be significantly more useful for gaining an overall under-
standing of the task compared to the baseline system (u=>5.08, 0=1.16 vs. u=6.08, 0=0.49; t=-2.87,
pj0.05 ). 10 out of 12 participants mentioned they would prefer VideoMix to baseline when understanding
a task. However, there were no statistically significant differences in mental load, frustration, or effort

during the learning process.

Tailored Learning Experience

VideoMix organizes instructional content from multiple videos into a hierarchical structure based on
outcome, approach, and method employed. This allowed participants to efficiently focus on instructions
that best suited their specific needs and context.

First, the outcome types helped participants narrow their focus to what they were most interested in
learning. After exploring various outcome choices, participants developed a clear preference based on
either personal tastes (e.g., Jambalaya with Chicken and Sausage vs. Vegan or Low-Carb Jambalaya) or
estimated proficiency level (e.g., Modern and Sleek Design Desk vs. Functional and Multi-purpose Design
Desk).

Next, the different approaches enabled participants to choose learning pathways that matched their

experience level. Most participants, being new to the task, looked for simple or standard methods. P8
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(1) Seeing the outcome types was helpful for understanding the task

(2) Seeing the required materialsf/ingredients/tools was helpful [...]

(3) Seeing different approaches for achieving each outcome was helpful |..]
(4) Seeing the step information was helpful [..]

(5) Seeing different methods for achieving each step was helpful [..]

(6) Seeing the tips/notes was helpful [..]

Figure 3.5: Participants’ ratings on the usefulness of each information piece in understanding the task.
Overall, they found the information provided by VideoMix—including outcome types, requirements,
different approaches, step details, methods, and tips and notes—to be helpful in gaining a better

understanding of the task.

remarked, “It was easy to have a clear criterion, whereas on YouTube, I had to guess content from
thumbnails and titles. Even if the first video I watched had a unique approach, I might have assumed it
was the original recipe for Jambalaya. I would have spent much more time than I did with VideoMix to
find a recipe that fit my situation.” P8 only realized that one of the three videos she watched on YouTube
matched her beginner level after viewing all three.

Finally, the variety of methods allowed participants to focus on instructions that aligned with their
available tools and ingredients. For example, P3 said, “It was helpful to see different methods because I
don’t have an oven, so I looked at the Using Stove or Using Pot methods instead of Using Oven.” In
contrast, finding a video that fit their context on YouTube was often more challenging. P7 noted, “As I
watched the video, I was concerned that I didn’t have the right equipment or materials used in the video,
and thought I'd probably need to search for another one.” In summary, VideoMix enabled participants
to learn more effectively by providing clear, relevant options that could be tailored to their specific

preferences and resources.

Knowledge Acquisition By Multi-Video Comparison

VideoMix allows users to easily navigate between videos showcasing the same method within a
step (Figure 3.2D). By comparing multiple segments, participants gained a deeper understanding of
the methods. For example, P4 said, “Fven though both video segments I watched were all about using
wood glue, one video showed how to apply it while the other explained when to use it. This helped me
understand the step better.” Similarly, P1 initially didn’t know what Leger Boards were in Building a
Bookshelf when only watched a single video segment, but learned what they are after watching multiple
segments using them.

Participants also picked up key information about requirements and techniques. For example, P8
said, “I saw that celery and garlic were used across all standard approaches of different outcomes, so 1
realized they are key ingredients.” P9 highlighted how different methods offered contrasting tips, saying,
“For the Instant Pot, tips suggested adding vegetables first, while for the rice cooker, they recommended
adding meat first. The order seems important based on the tool you’re using.” The ability to compare
multiple perspectives within the same task participants’ understanding, offering a more comprehensive

learning experience.
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Further Improvements for VideoMix

While participants found VideoMix to be an effective tool for learning new tasks through videos, they
noted suggestions on how VideoMix can be further improved. First, they mentioned the discontinuous
nature of the segmented videos throughout the steps could hinder the learning process. For example,
P1 said, “When I clicked a next step and a segment from a mew video was shown, it took me a while to
understand the context of the video.” Participants expressed a desire to see a continuous video, while
having the information VideoMix offers. P2 said, “It would be great if I could select one main video, and
see additional details not covered in that video through VideoMiz.” A potential improvement could be a
hybrid format, where users first watch a full video, and what VideoMix currently provides is organized
around that primary video.

Participants also suggested ideas on how methods are presented. For example, P10 suggested sorting
the methods by commonness, similar to how requirements are organized or how VideoMix shows the
‘Standard Approach’ (as we do for the approaches). P12 wished to see the outcome of each video segment
to better choose which method to follow, similar to how VideoMix shows different outcome types for
the task on the overview page. This feedback suggests that the hierarchical structure VideoMix uses to

organize task-level information could be re-applied at the step level, providing more detailed information.

3.6 Discussion and Future Work

In this paper, we present VideoMix, a system that aggregates multiple how-to videos to provide
a comprehensive understanding of a task. We discuss how it supports task learning, considerations
for designing multi-video systems, the incorporation of the hierarchical nature of tasks, and potential

directions for future work.

Supporting Task Learning: from Understanding to Following

VideoMix is designed to facilitate task learning by helping users synthesize multiple videos, enabling
a better understanding of the task. This aligns with a key search intention in Information Retrieval [155],
which emphasizes learning domain knowledge. While VideoMix is primarily intended to assist users in the
understanding phase before they move on to task execution, 7 out of 12 participants expressed interest in
using it throughout the task-following phase as well.

Participants highlighted several benefits of VideoMix in task following: it presents various methods
together, allowing users to choose their preferred approach as they follow the task without searching
through multiple videos (P2); its mixed-media format with text makes following instructions easier (P6);
and the segmented steps enable users to quickly revisit specific parts of the process (P11).

However, other participants preferred YouTube for task following, citing the importance of consistency
and flow. As P9 noted, “Mizing two different recipes is generally not a good idea.” While a few participants
could identify the same video across different steps by recognizing the background or demonstrator, it
remains important to support the tracking of a cohesive procedure within a single video, especially in the
following phase.

To better support the full learning cycle—from understanding to following—we envision a system
that allows users to explore various methods (as VideoMix currently does), then select specific videos for
following, while maintaining easy access to overview information [81]. To better support the following

phase, we suggest features like real-time prompting or interactive search to address the users’ more specific
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needs as they progress through the task. Additionally, while VideoMix offers some customization by
providing a list of tools for each approach and outcome type, or methods specifying tool usage, allowing
users to retrieve videos based on selected tools or choose the level of detail they want to explore could

further improve the customization experience.

Designing Multi-Video Systems

VideoMix organizes information from multiple videos to provide a comprehensive understanding of
tasks. Instead of treating videos as the primary object, VideoMix treats the task itself as the first-class
object, with multiple videos structured around it. Thus, the basic unit is a video segment (i.e., part of a
video), which is then organized around a task.

Designing a multi-video interface around video segments has both advantages and challenges. On
the positive side, splitting content by steps made it easier to digest, and multiple demonstrations for
each step enhanced learning (Section 3.5.3). However, users could feel a sense of discontinuity between
segments and sometimes lack the broader context of the full video (Section 3.5.3). To address this, a
multi-video interface should ensure that enough context is provided and consider strategies to maintain
continuity, such as using a common voice-over, visual connectors, or a consistent theme across videos.

Another challenge is managing the extensive amount of information drawn from multiple videos,
which may feel overwhelming to some users. Two out of 12 participants who preferred YouTube over
VideoMix appreciated its ability to present diverse methods at a glance but found the overall information
density to be excessive. While VideoMix aims to reduce the time required to learn viable methods through
structured presentation—particularly for tasks with high variability—this comes with trade-offs. Curating
information may limit certain details as well, and it is essential to balance organization with user agency
in the exploratory search process.

Lastly, it would be interesting to explore how a multi-video interface might reshape user engagement,
especially in interactions typically supported by traditional video-centered platforms, such as commenting,
liking, or sharing. Investigating how these interactions can be adapted to a multi-video interface, as
well as identifying potential new interactions unique to this interface, would be an interesting avenue for

future research.

Incorporating Hierarchical Nature of Tasks

How-to videos naturally contain hierarchical information [196]. Tasks often consist of multiple
sub-tasks or steps, each of which could be a task on its own. For example, in the task of making an Eggs
Benedict, one of the steps might involve poaching an egg, where there could be videos solely about it.

This hierarchical structure presents an opportunity for VideoMix to further enhance learning by
extending its current task-level organization to a more granular, step-level structure. Just as VideoMix
organizes information by outcome, requirements, and approaches at the task level, the same principle
could be applied recursively at the step level (as briefly discussed in Section 3.5.3). For instance, the
step of poaching an egg could be broken down into sub-steps such as preparing water, cracking the egg,
and cooking the egg, where there could be multiple variations within each sub-step. This approach
would allow users to delve deeper into specific areas of interest, fostering a more flexible and personalized
learning experience. By supporting this recursive exploration, users could not only learn how to complete
a task like making an Eggs Benedict but also master individual skills, like poaching eggs, that could be

applied in a wide range of other contexts, supporting a flexible and infinite journey of learning.
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Limitations and Future Work

Our pipeline only requires videos to have narration, as it relies on spoken content to extract task
steps and details. As long as videos are accessible and can be transcribed using ASR, our approach
remains applicable. However, a key limitation of VideoMix is its dependence on the quality and quantity
of the source videos. Since the system compiles content from various videos, the clarity of the presenter’s
instructions and the logical flow of the content can significantly affect its performance. In particular,
VideoMix relies heavily on transcripts for extracting steps and methods, making clear and well-structured
narration essential. If a video lacks coherence or clarity, the system may struggle to extract accurate and
meaningful information.

In terms of quantity, our system may not provide as comprehensive an overview when the available
videos are limited (e.g., only 10 videos on a given task). In such cases, we could consider expanding
the search to include more videos (e.g., similar methods used in different tasks) or incorporating other
tutorial resources, such as text-based materials. Similarly, while we demonstrated VideoMix based on
videos selected from the HowTol00M dataset [120], expanding the video pool through additional crawling
would allow VideoMix to offer a richer and more diverse set of instructions. By refining search queries to
capture more hierarchical videos (e.g., searching for specific outcome clusters or individual methods), the
system could provide a broader range of instructional content. We believe that as VideoMix processes
more videos, its comprehensiveness and ability to support users will improve.

Additionally, VideoMix has primarily been tested on tasks involving the creation of physical objects,
which typically feature well-defined steps and clear visual and verbal cues. However, extending VideoMix
to other types of tasks—such as digital tasks like Photoshop editing or guitar tutorials—may introduce
new challenges. For example, tasks like guitar tutorials may require a different structure that emphasizes
progressive skill building rather than multiple methods to achieve the same step. They may also rely
more heavily on subtle nuances such as hand placement, tone, or timing, which are difficult to capture
solely through transcripts. Beyond how-to tasks, there is potential for VideoMix to be applied to other
domains, such as organizing interview videos by specific questions or themes. By structuring interviews
around common topics across multiple videos, the system could provide users with a comprehensive view
of diverse perspectives. This approach could also be extended to educational content, where VideoMix

could organize lectures by subtopics, offering a clearer, more structured learning path for users.

3.7 Conclusion

This paper presents VideoMix, a system that helps users gain a comprehensive understanding of
how-to tasks by aggregating information from multiple tutorial videos. We demonstrated that VideoMix
enables users to explore different methods, materials, and outcomes more easily, leading to a better
understanding of a task. Our work highlights the potential of a task-oriented, multi-video approach
to support users in task learning. As online tutorials and video content continue to grow, our system

provides an important step forward in improving how people learn from them.
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Chapter 4. Beyond Instructions: A Taxonomy of Information
Types in How-to Videos

This chapter focuses on the second phase, the Comprehension phase, where learners begin narrowing
down to a specific video. In this stage, information types such as justifications and tips serve as useful
contextual units. This chapter has adapted and revised content from a paper at CHI 2023 [188]. All uses

of “we”, “our”, and “us” in this chapter refer to the coauthors of the aforementioned paper.

4.1 Motivation and Contributions

How-to videos provide procedural information about performing tasks such as cooking, makeup, and
crafting. They explain how to perform a task by visually demonstrating workflows while providing verbal
explanations. Due to their detailed explanations, how-to videos have been a popular source of help when
performing a task [80, 34].

There is diverse information beyond instructions intertwined in how-to videos. In addition to
instructional information about how to perform each step, instructors share their strategies for choosing
supplies [35] or give additional commentary [167]. They also share their personal tips or pitfalls [32], or
even ideas not directly related to the task, such as greetings or jokes [119].

From the sea of information, each user requires different information that caters to their specific
purpose or situation of watching videos. Depending on their needs, users might want to see only relevant
instructions [80], ingredients or tools used, or check the final outcome of a video [127]. To help users find
the content of interest, the most common approach has been to enable chapter-based navigation where it
segments the video into coherent subtopics [192, 167, 175, 56, 84, 149, 127, 141, 34]. It allows users to
navigate videos based on subtopics in videos and locate a section of interest.

However, the diverse information within a video is scattered throughout, making it difficult for users
to identify information that meets their needs. Even a chapter contains various types of information.
Moreover, the diverse kinds of information are intertwined in no particular order. The author may proceed
to offer their rationale, describe intermediate outcomes, or even promote their channels in the middle of
giving instructions at any part of the video. The unpredictability of a video’s structure makes it even
more difficult for users to retrieve the information they need.

We propose that a comprehensive taxonomy that identifies and categorizes the types of information
shared in how-to videos can serve as a foundation for supporting users in navigating videos. It provides
a structural basis for analyzing and understanding users’ navigational behavior. It facilitates the
understanding of useful information types for different user needs arising from distinct settings such as
the purpose of watching or the domain of the video. Understanding how users leverage information types
to navigate videos will ultimately lead to better designs of video navigation systems that suit users’ needs.

To this end, we investigated verbal utterances from how-to videos to identify and organize information
types in how-to videos. We focused on verbal utterances as the primary source of information because
they often contain explicit explanations of what instructors demonstrate [35, 120], sometimes giving
additional information that is not visually available. Thus, we presume that verbal information would
cover a wide range of information delivered in how-to videos.

To construct the taxonomy, we selected 120 videos from the HowTolOOM dataset, a large-scale
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dataset of narrated how-to videos that covers 12 different genres (e.g., Cooking, Arts, Sports) [120]. We
performed an iterative open coding of 4k sentences from 48 videos to generate a taxonomy of information
types in how-to videos. From the analysis, 21 information types emerged under 8 categories: Greeting,
Overview, Method, Supplementary, Explanation, Description, Conclusion, and Miscellaneous.

To validate the taxonomy, we applied the taxonomy to a total of 120 how-to videos containing 9.9k
sentences which we contribute as a dataset, HTM-Type!. From the analysis of the dataset, we found that
Method, the core information required to complete the task, makes up 47.5% of the video time on average.
We also found that the task type (i.e., Creating, Fixing, or Using) and narration style (i.e., Real-time
or Dubbing) affect the distribution of information types, and that certain categories have a temporal
tendency.

After creating and validating the taxonomy, we demonstrate the utility of the taxonomy in both
analyzing users’ navigational behavior and supporting their navigation in how-to videos. We first show
how our taxonomy can serve as an analytical framework for existing video systems that were built to
support video navigation. We observed that the systems utilized different information types to meet users’
specific needs. To further investigate how users leverage information types in various navigation tasks,
we built a research probe that enables users to navigate using the information types within the video.
Through a user study with nine participants, we observed that the participants effectively used different
information types for finding specific information needed to perform each of the Search, Summarize,
and Follow tasks. We further discuss how our taxonomy can enable a number of applications in video
authoring, viewing, and analysis.

This paper makes the following main contributions:
e A taxonomy of information types in how-to videos
e HTM-Type, a dataset of 9.9k sentences from 120 videos labeled according to the taxonomy

e Empirical findings on how people use information types in navigating videos

4.2 Taxonomy of Information Types in How-to Videos

To examine the diverse information types present in how-to videos, we conducted a content analysis
on how-to videos. The goal of our analysis was to identify information types, which are the intent behind
the units of content in videos. We chose verbal utterances as the primary source of information in our
research scope. This is because instructors often explicitly describe the visual content such as what they
are doing or what is happening [35, 120], sometimes giving additional information that is not visually
available. However, we also considered visual information as an additional factor to take context into
account, because sometimes it is hard to identify the type of information the instructor is delivering just
from the textual description. For example, when the instructor uses pronouns such as ”it” or "this”, it is
hard to know what they are referring to (e.g., tool, method, or situation). Also, it is hard to tell if a
sentence is a joke or an instruction without watching the actual situation (e.g., ”What do you do with
the half you have leftover? Dip it in some hummus, of course.”). Below we describe our approach to

generating the taxonomy and present the results.

1videomap.kixlab.org
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4.2.1 Methods

Data Collection

We selected videos from the HowTol00M dataset, a large-scale dataset of narrated how-to videos [120].
The dataset covers 12 different genres of how-to videos, organized according to the categories in Wiki-
How [176]: Arts and Entertainment, Cars and Other Vehicles, Computers and Electronics, Education and
Communications, Food and Entertaining, Health, Hobbies and Crafts, Holidays and Traditions, Home and
Garden, Personal Care and Style, Pets and Animals, and Sports and Fitness. To ensure that we cover a
wide range of topics, we selected 10 videos from each of the 12 genres, resulting in 120 videos in total.

We first filtered for videos that were longer than 5 minutes to ensure a sufficient amount of content
and that were produced within the last five years (that is, 2017 or later) to reflect the most recent and
relevant production trends in how-to videos. To acquire the duration and publication date of the videos,
we used youtube-dl [195], open-source software for downloading videos and the related metadata. Then,
we went through each of the filtered videos and selected 10 videos from each of the 12 genres that 1) are
narrated in English, 2) have one person demonstrating, and 3) are in the scope of “how-to videos”, namely
explaining how to get a task done?. After selecting the videos, we transcribed them using Microsoft Azure
Speech-to-text API [10], which transcribes the spoken language in videos with timestamps of each word
using Automatic Speech Recognition. Then, we used a BERT-based punctuation model [133] to split the

transcripts into sentences.

Constructing the Taxonomy

After selecting the videos, three of the authors performed an iterative open coding for the content
analysis of the videos. We individually coded each sentence based on the type they believed it to be
conveying. We watched the videos while identifying the types to make sure we incorporated the exact
context of each sentence and clarify any errors in the transcript. Also, we split a sentence if it contained
two or more information types so that each sentence only contains one information type. The total
number of split sentences was around 1% of all sentences. Then, we resolved each conflict through a
discussion between the three authors and merged the codes every six videos.

To ensure the validity of our taxonomy, we set two criteria for its construction following the practice
in taxonomy development [130]: (1) All elements in the taxonomy should be mutually exclusive (i.e.,
no overlapping between elements) and (2) the taxonomy should be collectively exhaustive (i.e. cover
everything). First, to verify that all elements are mutually exclusive, we convened every session to discuss
the discovered information types and whether they were mutually exclusive or could be divided into
smaller parts or merged. If there were any ambiguous sentences that could be interpreted as multiple
types, we handled those cases by figuring out what factors caused the ambiguity. We divided the types
into smaller components when the types covered multiple intents or merged if the types were redundant.

To make sure the taxonomy covered all information in how-to videos, we checked if any sentence
contained information that could not be covered by the existing taxonomy. If so, we added additional
types that encompassed the sentence and other similar content. After resolving conflicts and defining new
information types, the new taxonomy would be used to reexamine the entire dataset.

Among the entire dataset of 120 videos, we started from an initial set of six videos and repeated the

process until convergence was reached; (1) no new types were added and (2) no types were merged or

2HowTol00M dataset occasionally contains videos that are not exactly instructional, such as playing with toys or

comparing two products.
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split in the last iteration [130]. If these conditions were not met, we added six additional videos to the

investigation. This resulted in an analysis of 48 videos to create the taxonomy.

4.2.2 Taxonomy

Through the iterative open coding, 21 types of information were identified. We further grouped the
types into eight categories based on what function the types perform in a video. Below we explain the
eight categories and the information types under each category in detail. For ease of reading, we denote

the various hierarchies as follows: Category, and Type.

Greeting

Greeting category offers statements to start and end the video, such as hellos, channel introductions,
Intro and Outro, with Opening and Closing, respectively. Opening includes beginning remarks and
instructor/channel introductions, such as ”Welcome back to my channel!” On the other hand, Closing
gives parting remarks and wrap-up sentences, such as ”I hope you guys enjoyed this video, see you guys

next time!”

Overview

Overview category discusses the overall structure and information about the video. Goal is the main
purpose of the video and its descriptions. For example, Goal of a cooking video may be, ”Today, we’ll be
making potato soup.” Overview also includes Motivation, which is the reasons or background information
on why the video was created, such as ”Because everyone is getting a cold these days!”. Finally, Briefing
covers a quick rundown of how the goal will be achieved, such as ”I'll be doing a two-step process in this

demonstration”.

Method

Method provides core information required to complete the task. Subgoal outlines the objective
of a subsection of the video, such as "Now, let’s prepare all our vegetables.”, without detailing specific
directions that the user can follow. Rather, Instruction is the action that the instructor performs to
complete the task that directly informs the user what they must do, such as "Now, cut this rubber sleeve
off.” Tool includes sentences that introduce or show the materials, ingredients, and equipment that will

be used during the task, such as ”What we get usually is some cooking aluminum foil.”

Supplementary

Supplementary information suggests additional instructions or knowledge that aid the core instructions.
Tip is information given to make the instructions easier, faster, or more efficient, such as ”This step is
easiest to complete if you lower the headrest all the way down.” They are typically optional, but helpful
advice that arises from the instructor’s experience or knowledge. Meanwhile, Warning alerts the user
on actions that should be avoided to prevent negative consequences, such as "Don’t get too wild with a

hammer on there.”
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Category Type Definition Example from Dataset
) Opening Starting remarks and introductions ”Hey, what’s up you guys, Chef here.”
Greeting Closing Parting remarks and wrap-up ?Stay tuned, we’ll catch you all later.”
Goal Main purpose of the video and its de- | ”Today, I'll show you a special technique
Overview scriptions which is about image pressing.”
Motivation Reasons or background information on | ”[...] Someone is making a very special
why the video was created valentine’s day meal for another certain
special someone.”
Briefing Rundown of how the goal will be | "I'm pretty sure that just taking a pencil
achieved and putting it over the front and then
[-..] that’s going to do it.”
Subgoal Objective of a subsection "Now for the intricate layer that will
Method give me the final webbing look.”
Instruction Actions that the instructor performs to | ”We’re going to pour that into our sili-
complete the task cone baking cups.”
Tool Introduction of the materials, ingredi- | “I'm also going to use a pair of scissors,
ents, and equipment a glue stick, some fancy or reqular tape.”
Tip Additional instructions or information | I find that it’s easier to do just a couple
Supplementary . .
that makes instructions easier, faster, or | of layers at a time instead of all four
more efficient layers at a time.”
Warning Actions that should be avoided ”I don’t know but I would say avoid us-
ing bleach if you can.”
Justification Reasons why the instruction was per- | ”Because every time we wear our contact
Explanation
formed lenses, makeup and even dirt particles
might harm our eyes directly.”
Effect Consequences of the instruction ”And these will overhang a little to help
hide the gap.”
Status Descriptions of the current state of the | ”Something sticky and dirty all through
Description target object the back seat.”
Context Descriptions of the method or the set- | ”[...] The process of putting on a tip by
ting hand [...] takes a lot of patience but it
can be done if you’re in a pinch.”
Tool Specification | Descriptions of the tools and equipment | ”These are awesome beans, creamy tex-
ture, slightly nutty loaded with flavor.”
Outcome Descriptions of the final results of the | "And now we have a dinosaur taggy
Conclusion
procedure blanket that wrinkles, so a fun gift for
any baby on your gift giving list.”
Reflection Summary, evaluation, and suggestions | ”"However, I am still concerned about
for the future about the overall proce- | how safe rubbing alcohol actually is to
dure use so maybe next time, I will give vodka
a try.”
Side Note Personal stories, jokes, user engagement, | ”Tristan is back from basketball. He
Miscellancous and advertisements made it on the team so it’s pretty ex-

citing.”

Self-promotion

Promotion of the instructor of the chan-
nel (i.e. likes, subscription, notification,

or donations)

”So if you like this video, please give it a

thumbs up and remember to subscribe.”

Bridge Meaningless phrases or expressions that | "And we’re going to go ahead and get
connect different sections started.”
Filler Conventional filler words ”Whoops.”

Table 4.1: Definition and examples of information types in our taxonomy.

Text results in example sentences are corrected. 35
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Explanation

Ezplanation elaborates on the reasons or consequences of the instruction to help users understand
it more clearly. Justification is the reason why the instruction was performed. For example, the
instructor may decide to use chicken breast because ”it has less fat than chicken thighs.” Effect refers
to statements that explain the consequences of an action, such as ”"Adding this activator will make the

slime harden.”

Description

Description adds descriptions regarding the information relevant to the task, such as the state of
the objects or the context of an action. Status describes the current state of the object or the target
of the task. Sentences such as “The car is making less noise.” is reporting on how the car is behaving
currently and is thus Status. Context is the description of the method or the setting. For the method,
the instructor may point out how arduous a task may be or explain how long it might take, such as
"It will take a while to come up.” For the setting, the instructor could mention, ”The room was really
humid, so it took a while to dry.” Lastly, Tool Specification adds details and descriptions about the
materials, ingredients, and equipment that may be mentioned in Tool or other parts of the video. The
difference between the two types is that Tool merely establishes the usage of a tool (”We’ll be using some
resin.”) while Tool Specification supplies other information or characteristics about the tool (”This

resin emits a lot of fumes.” or 7I'll leave a link of where I got it below.”).

Conclusion

Conclusion wraps up the video by showing the final outcome of the task and reflecting on the
overall procedure. Outcome describes the final results of the procedure, such as ”Look how beautiful our
cake turned out.” Reflection focuses on the summary, evaluation, and suggestions for the future. The
following sentences, ”We made the batter, baked and iced it, and finally decorated it with some fruit.”,
”The process was so easy that even kids can do it.”, ”"Next time, let’s try using some honey instead of

sugar.”, all fall under Reflection.

Miscellaneous

Miscellaneous refers to trivial information or phrases devoid of relevant information to the task.
Side Note includes any sentences that mention personal stories, jokes, and advertisements or try to
engage and communicate with the user, such as ”Comment down below what you think about this new
look.” Self-promotion is the promotion of the instructor or the channel through the encouragement of
likes, subscription, notification, or donation features common on creator-based video-streaming platforms,
such as ”Please give it a thumbs up.” Bridge is meaningless phrases or expressions that connect different
sections or phrases, such as ”Let’s move onto the next part.” Finally, Filler is the conventional filler

words prevalent in spoken language, such as "um”, "uh”, or "well.”

4.3 Dataset

To validate the taxonomy, we applied the taxonomy to the remaining 72 videos and contribute the
type-labeled 120 videos as a dataset. The dataset can be used to model automatic type detection pipelines

or be leveraged to explore various system design opportunities that apply our taxonomy. This section
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describes the dataset and the following section describes the analysis we performed on the dataset to

investigate how videos are structured.

4.3.1 Method

We applied the taxonomy to the remaining 72 videos (5.9k sentences) to validate the taxonomy
and contribute a dataset. Two external fluent English-speaking annotators coded 72 videos based on
the taxonomy (6 videos each from 12 genres), where they independently coded the sentences with their
types and merged the labels into agreed-upon final labels. Similar to the taxonomy construction process,
the annotators watched the videos while labeling the type of each sentence to understand the context
behind each sentence and to clarify any errors in the transcript. The annotators were asked to split the
sentence if they thought it contained more than one information type. The total number of split sentences
was around 1% of all sentences. The two annotators and one of the authors met regularly to discuss
ambiguous cases and resolve conflicts. For the last 42 videos (3.4k sentences, with the remaining videos
used for training), the two annotators had Cohen’s Kappa score of 0.78, which shows a satisfactory level
of agreement [4]. After the score was calculated, conflicts were resolved by a discussion between the two

annotators and one of the authors. The coding process took approximately 70 hours per coder.

4.3.2 Dataset: HTM-Type

We release a dataset, HTM-Type?®, which contains a total of 9,918 type-labeled sentences (mean==82.65,
SD=21.8) from 120 videos selected from the HowTol00M dataset [120]. It consists of 10 videos from each
of the 12 genres identified by HowTol00M. All videos are longer than 5 minutes and published within the
last five years (2017 and onward). The average length of the videos is 7 minutes 3 seconds (SD=1 min 35
sec, min=>5 min 1 sec, max=14 min 49 sec), totaling 14.1 hours. The average portion of spoken language
is 82.4%, representing the average portion of the entire video in which the author talks (min=50.5%,
max=97.6%). The dataset denotes for each sentence the id, publication date, duration, and genre of its

video, as well as start and end time stamps, and type and category categorization.

4.4 Analysis

To understand the structure of how-to videos, we analyzed the HTM-Type dataset in three different
aspects: (1) how each information type is distributed across the dataset, (2) how the video style affects

the type distribution, and (3) how information type distribution relates to time.

4.4.1 Method

For all three analyses, we first identified the proportion of each information type in a video by
calculating the start and end timestamps of each labeled sentence. Afterward, we divided the time portion
of each type by the total time of the video containing narration to obtain the final proportion.

(1) The first analysis aims to observe how the information types are distributed throughout the
how-to videos. We calculated the average distribution of each type across the entire dataset by dividing

the total time proportion of each type by the number of videos.

3 Abbreviated from HowTol00M-Type

37



m Opening Motivation Instruction Warning EE Status Outcome IS Side Note Bridge

| Closing Briefing Tool I Justification I Context Reflection | Self-promo Filler
1 Goal m Subgoal s Tip Effect Tool Spec.
Greeting (2.3) Supplementary (3.4) Conclusion (6.4)
Overview (8.4) Explanation (4.4) Misc (10.0)

I | Method (47.5) | | Description (18.6) | |

25| 32 | |2 398 5.0 5281 78 53 |28 36 | 68 (20

0 : 20 a0 60 80 100
Proportion of Information Type (%)

Figure 4.1: Distribution of Categories and Types of all videos in HTM-Type. Categories are denoted above
the types using group brackets. Only proportions greater than 1.5% are written in text. Instruction
makes up 39.8% of the total video, suggesting that the majority of the video contains information that
does not directly give actions for the user to follow. The results illustrate the large diversity of information

types in how-to videos.

(2) The second analysis examines how the video characteristics affect the information distribution
along two different attributes: task type and narration style. We chose task type and narration style
specifically as the analysis axes as they require different strategies by the instructor in providing the
information. For example, explaining how to fix a car likely attributes a larger portion of the video to
describing the situation in comparison to baking cookies.

To compare whether video characteristics affect the distribution of the information type, we performed
the Kruskal-Wallis test for each of the two attributes with an « value of 0.05 for each category. We
further performed the Kruskal-Wallis test on types within the different categories if the category showed a
significant difference. To confirm which specific video characteristics differed from one another, we further
performed post-hoc Dunn’s test with Bonferroni adjustment on significantly different categories or types.

(3) The third analysis aims to investigate any specific patterns that may appear in the temporal
distribution of each category. To do so, we normalized video time to [0, 1000] seconds to align all the
videos in the dataset. Then, we counted each type occurrence across all 120 videos for every second on the
normalized timeline. As none of the videos in the dataset are longer than 1000 seconds, the normalization
will not drop any labels. Afterward, we calculated the range on the normalized timeline that contains

data points between the 5th and the 95th quantile for category.

4.4.2 Results

Information Distribution in How-To Videos

We first investigated the composition of the dataset to look into how the diverse information is
distributed over how-to videos. The results for categories and types are shown in Figure 4.1. The average
number of types in a video is 7.25 for category and 14.57 for type, signifying that the videos comprise a
wide variety of information. Additionally, the large variance of the types suggests diverse variations in
how the information is composed within instructional videos.

On average, the results show that almost half of the video comprises Method (47.5%, SD=16.9%).
Looking at the type level, Instruction makes up 39.8% of the total video, meaning that the majority of

the video contains information that does not directly give actions for the user to follow. The ratio shows
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a resemblance to the percentage of visually alignable narration as explained by Han et al. [65] (30%),
which is a narration that is visually demonstrated or shown in the video. As instruction usually entails

the majority of the visual information, the similarity may imply some correlation.

Information Distribution Based on Video Characteristics

We then analyzed how the video characteristics (i.e. task type and narration style) affect the
information distribution. Through the analysis, we found that the composition of information types in a

video differed by its characteristics, which we describe below.

Task Type The first aspect examined is the type of task completed. Through an iterative process, we
found three different task types: Creating, Fixing, and Using. Creating refers to tasks whose primary goal
is to craft or make a final product, such as cooking or woodworking. Fixing tasks address a problem and
improve the state of an object or a situation. Using tasks aim to demonstrate how a tool or equipment is
supposed to be used. Our dataset contains 82 videos for Creating, 27 videos for Fixing, and 11 videos for
Using.

The results of the Kruskal-Wallis test show significant differences between the tasks for Description
(H(3)=21.696, pj0.001) and Miscellaneous (H(3)=10.435, p=0.015). Further performing the Kruskal-
Wallis test on the types in the Description and Miscellaneous categories reveals that Status, Context,
and Side Note are significantly different.

Further performing post-hoc Dunn’s test with Bonferroni adjustment showed that Creating-Fixing
and Using-Fixing pairs for Status and Creating-Fixing for Context are significantly distinct in their
distributions ((Z=-2.680, p=0.022), (Z=3.126, p=0.005), and (Z=-2.443, p=0.043) respectively). Fixing
(10.0%) has a greater proportion of Status than Creating (5.7%) and Using (3.3%). For Context, Fixing
(11.6%) is greater than Creating (6.2%) by 5.4%. Such differences can be explained by the tendency
for Fixing tasks to require more descriptions of the target object. Conveying Status in Fixing videos
lays the necessary foundation to communicate the instructions effectively. Likewise, Fixing has more
explanations than Creating about the method and the setting because the user needs to fully grasp the

current circumstances before they can improve upon them.

Narration Style The second aspect is the narration style of the video. Videos were classified by how
the instructor provided verbal information — whether the narration was spoken in real-time with the
action or dubbed afterward. We found 78 videos are real-time narrated and 42 are dubbed videos.

The results of the Kruskal-Wallis test on the categories showed that Method and Description show
significant differences between the narration styles ((H(1)=6.602, p=0.01) and (H(1)=7.036, p=0.008),
respectively). To figure out how each type distribution differs within the two categories (Method,
Description), we further performed the Kruskal-Wallis test for each type in the categories. Instruction
and Tool specification have significant differences in their distributions ((H(1)=7.568, p=0.006) and
(H(1)=4.043, p=0.04), respectively). When comparing the absolute value of each type proportion on
average, for Instruction, dubbed videos (45.0%) contain an 8.1% greater portion than real-time narration
videos (36.9%). On the other hand, for Tool Specification, real-time narration videos (5.9%) have
more than dubbed videos (4.2%).

The differences show that video styles can affect the distribution of information. Real-time narrated

videos contain a larger portion of descriptions such as Tool Specification, Status, and Context. One
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Figure 4.2: The number of labels for the category along normalized time. Greeting, Overview, Conclusion,
and Miscellaneous show clear positional preferences while Method, Supplementary, Exzplanation and

Description are widely distributed.

possible reason may be that the instructor dedicates more time to explaining the current status quo as

they actually perform the task.

Information Distribution Based on Time

We then analyzed the temporal distribution of each category to see if they showed any specific
patterns. We visualized the data with a time-series graph (Figure 4.2).

The results show that certain categories have a positional preference. Greeting shows skewed
distributions towards both ends of the video. Such a trend reflects the tendency for instructors to begin or
end their videos by greeting their audiences. Overview occupies the first (23.8%) of the video, as it covers
the overall structure or encompassing details of the video. Meanwhile, Conclusion lies in the last (28.0%)
of the video. In contrast, Method (11.1% to 85.3%), Supplementary (16.9% to 86.3%), Explanation (16.8%
to 87.2%) and Description (8.5% to 86.9%) are relatively evenly distributed towards the middle of the
video. Finally, Miscellaneous extends throughout the video (4.8% to 98.0%) with a noticeable increase at

the end (Figure 4.2), attributed to the abundance of self-promotion and side notes (e.g., outtakes).

4.5 Taxonomy as Analytical Framework

In this section, we demonstrate how our taxonomy can serve as a conceptual and analytical framework
for understanding existing systems that support video navigation. Existing video navigation systems are
designed to address specific user needs. Our taxonomy provides an opportunity to analyze the information
types that each system focuses on. Such an analysis can be used to identify important information types
that best fit the users’ context and also reveal information types that are underexplored by existing
systems.

For instance, ToolScape [84] and MixT [34] have identified step-by-step information (Subgoal) with

representative images for each step (Status) to allow users to navigate videos based on important
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milestones. To better support navigation in a specific video genre, VideoWhiz [127] has extracted

ingredients (Tool) and intermediate outcomes (Status) in food recipe videos, and Truong et al. [167]

has leveraged makeup tools (Tool) in makeup tutorial videos. To support users navigating videos in a

setting where they use voice commands, RubySlippers [24] has allowed users to refer to objects (Tool)

and actions (Instruction) that appear in the video.

As such, existing systems have leveraged different information types to address specific needs in

video navigation, which we list more in Table 4.2. We can see that the types in the Method category

(i.e. Subgoal, Instruction, and Tool) are commonly used, while Goal, Status and Outcome are also

used to some extent. At the same time, our investigation reveals that the other information types are

underexplored by existing systems, such as Motivation or Context. We believe that future systems can

establish important units based on the identified information types catered to user needs.

System Type

Explanation

ToolScape [84], MixT [34], Subgoal, Status
Fraser et al. [56]

Presenting step-by-step information
(Subgoal) with representative images

for each step (Status)

Truong et al. [167] Tool, Instruction,
other types

Labeling segments as tool introductions
(Tool),
makeup application (Instruction), or

commentary (other types)

VideoWhiz [127] Tool, Subgoal,

Status, Outcome

Presenting ingredients and equipment
used in a recipe (Tool), visual mile-
stones (Status, Subgoal), and the ap-

pearance of the final output (Outcome)

RubySlippers [24] Tool, Instruction

Allowing users to refer to objects (Tool)
and actions (Instruction) that appear

in the video

Pause-and-Play [148], SoftVideo [191] Instruction

Segmenting software tutorial videos into

actionable steps (Instruction)

Weir et al. [175] Goal, Subgoal, A breakdown of a task into the goal
Instruction (Goal), subgoals (Subgoal), and indi-

vidual steps (Instruction)
Yang et al. [187] Tool, Instruction Segmenting recipe videos into actions

(Instruction) and visualizing their de-
pendencies as well as ingredients used
(Tool) throughout the video.

Table 4.2: Example systems that support video navigation and information types associated with each

system.

4.6 Exploratory User Study

From the preliminary analysis presented in Section 4.5, we demonstrate how our taxonomy could

serve as an analytical framework for understanding existing video navigation systems. To further explore
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the potential of the taxonomy, we conducted an exploratory user study. Our study aimed to investigate
how users would leverage the information types for navigating videos, by exposing information types to
users and allowing them to navigate videos using the information types as a control mechanism. Through
the study, we demonstrate the usefulness of the taxonomy both in accessing desired content and as a tool
for observing and analyzing users’ navigational behavior. We chose not to conduct a comparative study
because the purpose was not to evaluate the video interface itself but rather to highlight the potential of
the taxonomy in supporting video navigation, an aspect that has been underexplored in previous research.

Below we explain the research probe used in the study, the study procedure, and the results.

4.6.1 Research Probe

As the apparatus of the study, we built a video interface that supports navigation based on information
types (Figure 4.3). Users can see the video on the left (Figure 4.3a) and transcripts of the video on the
right (Figure 4.3b). In the transcript panel, users can see each sentence of the transcript along with its
timestamp and information type. The type label is color-coded based on the category of the taxonomy.
The timeline also shows the same information below the video (Figure 4.3¢c). Each segment is color-coded
based on its category and users can hover over each segment to see its type (Figure 4.3d). The type of
the current segment is always shown right next to the progress bar. Users can click either on the timeline
or the script to navigate through the video. Finally, users can filter segments based on their type or
category in the Filter panel (Figure 4.3e). Here, we grouped the categories into four high-level sections to
help users better organize the types and categories: Intro, Procedure, Closing, and Miscellaneous*. We
organized the categories based on their temporal positions reflecting our analysis in Section 4.4.2. Once
users select certain types from the Filter panel, only the filtered segments are shown in the transcript

panel and in the timeline. The video player automatically skips unselected portions.

4.6.2 Study Procedure

We recruited nine participants (6 male, 3 female, mean age=24.1, SD=2.26, min=22, max=29)
through an online recruitment posting. All the participants watch how-to videos regularly, at least
once a week. Participants performed three types of tasks: Search, Summarize, and Follow. These
tasks represent real video-watching scenarios and are commonly used in evaluating video navigation
systems [24, 82, 167, 84]. We chose three videos from HTM-Type that cover different tasks: Cooking®,
Slime®, and Illustrator’. The Cooking video teaches how to make soft-boiled eggs. The Slime video
explains how to make cloud slime. The Illustrator video demonstrates how to convert raster images to
vector images. To minimize learning effects, different videos were used in each task. The videos used for

each task were counterbalanced between the participants.

e Search task asked participants to find an answer to a given question from the video. For example,
for the Illustrator video, the task asked: ” To make the image more cartoonish, which feature do you

need to adjust?” There were three search questions for a video.

4In the process of grouping, Opening and Closing, which belong to the Greeting category, were divided into Intro and

Outro, respectively.

Syoutu.be/6CJryveLzvl
6youtu.be/Resy2HRuiy A
7youtu.be/_Yb6xLqvsfO
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Figure 4.3: Our research probe used in the user study. (a) Users can see the video. (b) Each sentence of
the script is shown with its timestamp and information type. Each type label is color-coded based on the
category. (c¢) The same information is shown in the timeline. (d) When users hover over each segment,
they can see the type and (e) its definition in the Filter panel. Users can filter segments based on their
type or category in the Filter panel. Only the filtered segments are shown in the transcript panel and the

timeline.

e Summarize task asked participants to summarize the main points of the video while skimming
through it. We asked participants to assume that they are making written instructions from the

video content. We gave participants freedom in the content and format of the summary.

e Follow task asked participants to follow the task in the video. We prepared the tools used in each
video. For the cooking video, we simulated the cooking environment with hand-made apparatus

such as a stove made of paper.

We first gave a tutorial on the system to the participants. After explaining its features, participants
tried out the system with a video that was not used in the three tasks. Then, we explained the taxonomy
presented in the system. After explaining the definitions and examples of each type, participants watched
a video with our interface from beginning to end to get used to the taxonomy. Participants were
subsequently asked to perform three tasks in the following order: Search, Summarize, and Follow. To
accurately evaluate the role of information types in each task, participants were not allowed to use the
browser’s native search function (i.e., Ctrl+F) in the transcript. After each task, we asked a few questions
about their task strategy. After all the tasks were done, we conducted a semi-structured interview and
survey, asking about their experience and perceptions of the taxonomy. Participants were compensated
with 20,000 KRW (~15 USD) for a 1.5-hour-long study.
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4.7 Results

The participants were able to find and use appropriate types or categories of the taxonomy to
complete the tasks. Below we explain how they used the taxonomy and the information types they
perceived as important in detail. Then, we discuss how the participants perceive the prototype and the

taxonomy.

4.7.1 How Taxonomy Was Used in Each Task

Helpfulness Importance
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Figure 4.4: Helpfulness (left) and Importance score (right) of each category in the Summarize and Follow
task.

Search

The participants’ strategy to search for the answer to questions was to relate a given question to a
type and filter the video according to the type. For example, for a question asking about how the recipe
is different from others (Slime), P3 thought it would be described when the instructor talked about the
goal. Thus, he filtered the video to only see Goal and found the answer. For this task, participants looked
for different information types depending on what each question asked. All the participants were able to
match at least two questions out of three correctly to corresponding types (mean=2.44/3, SD=0.53), and

thus found answers effectively.

Summarize

The participants actively used the information types and found them helpful when summarizing
videos. In response to 5-point Likert scale questions about how helpful each category and type’s
existence was (including the removal of them), participants indicated that the existence of all of the
categories (mean=4.61/5) and types (mean=4.66/5) were useful, when asked about each category and

type individually (Figure 4.4-left).

44



When asked about the importance of each category in summarizing videos, they rated Method and
Overview as the top two categories that contain the most important information (Figure 4.4-right, 4.89
and 4.11/5, respectively). Not surprisingly, all the participants looked for the Method category, as they
are the main points of videos. Regarding Overview, P3 said, ”I looked for Overview because I felt it is
necessary to include the purpose of the task when summarizing the video content.”

From the per-type evaluation, the participants rated Instruction, Subgoal, Tool, and Goal as
the top four important types (4.89, 4.78, 4.78, and 3.89/5, respectively). Regarding Instruction, all
the participants included instructions in their summaries (n=9) as they are the essential information
in how-to videos. Interestingly, participants not only used the Subgoal information to organize their
summary by subgoal unit (P7) but also to check and see if they have missed anything at the end (P3,
P4). Participants also included the tools used in the video (n=>5) and the goal of a video (n=6) in their
summaries, along with a description of the goal (n=2) and warning (n=1). Additionally, some participants
(P1, P6) looked for Reflection, expecting the part to provide a summary, although the video did not
include any summary information and thus rated low (2.67/5). All the types under the Greeting and
Miscellaneous categories are rated the lowest (mean=1.61/5), as they do not include any task-relevant

information.

Follow

In following the task performed in the videos, the participants perceived the information types to
be helpful. In response to 5-point Likert scale questions about how helpful each category and type’s
existence was (including the removal of them), participants indicated that the existence of all of the
categories (mean=4.35/5) and types (mean=4.32/5) were useful, when asked about each category and
type individually (Figure 4.4-left).

When asked about the importance of each category in following the videos, they rated Method,
Supplementary, and Ezplanation to be the top categories that contain important information (Figure 4.4-
right, 5, 4.11, 4.11/5, respectively). Not surprisingly, participants thought Method contained most
of the information they should follow. After Method, the participants perceived Supplementary and
Explanation to be important, which was different from the Summarize task. The participants thought
the Supplementary category which includes Tips and Warnings to be important. P4 said, ”I thought tips
and warnings are too detailed information for the Summarize task. However, they were necessary when
following the video as they might contain tmportant notes.” They also found the Explanation category
which includes Justification and Effect to be helpful. P3 said, "It was helpful to know the reasons
behind instructions because then I can apply instructions to my context adaptively. For example, if 1
understand that the reason instructor boils eggs for six minutes is that it’s the medium part of being too
runny and firm, I can adjust the duration according to my taste.”

From the per-type evaluation, participants rated Instruction, Subgoal, and Tool as the top
three important types (4.89, 4.78, and 4.45/5, respectively), followed by Effect, Tip, Warning, and
Justification, and Status (4.11, 3.89, 3.89, 3.67, and 3.67/5, respectively). The participants used
Effect and Status to make sure they are following correctly. P7 said, "I considered Effect to be important
because I wanted to check that the consequences of an action explained in the video are actually shown
in my context.” Similarly, P8 said, "I looked for Status to see if there is a desired state, and if so, I
would have liked to refer to it when following.” We could see that the participants mainly focused on

instructions while looking for additional information when following videos.
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4.7.2 Effect of Taxonomy on Video-watching Experience

All the participants appreciated that the system enabled selective watching of videos. P8 said, ”When
watching how-to videos, I usually watch the video at twice speed or skip parts because there is a lot of
unrelated information. It was nice to be able to get rid of useless information.” Selective watching can
also be helpful in repeated watches. P5 said, ”I think the system will be helpful especially when you watch
a video again and again. For complex tasks like repairing, it is hard to perform the task at once. If you
know where to watch repeatedly, it will be efficient.”

Some participants compared the selective watching feature to YouTube’s Chapter where it segments
a video into meaningful sections [194]. P2 and P4 appreciated that our system offers more details. P2
said, "In YouTube, we can also skip some parts but it’s based on topics. We still have to search within a
topic by trial and error, to see the exact part I want.” However, other participants mentioned that the
amount of higher-level information they could perceive for each section was limiting. P5 said, "I could
skip parts with the prototype, but YouTube chapters indicate subgoals better with a concise title, which
makes it easier to access desired parts.”

The information type was helpful in grasping the overall content. P6 said, "By looking at the timeline,
I was able to quickly understand how the whole video is composed of. For example, from the timeline,
I was able to figure out the style of the video, such as whether this video has a lot of intro or outro, or
whether it has a lot of unrelated miscellaneous information.” It also allowed the participants to grasp the
main points quickly. P8 said, ”I was able to understand the flow of the video quickly, by looking at the
instructions only.” Participants also thought that it highlights important information for them. P5 said,
"Warnings are important information but they can be unnoticed easily. The prototype helped me identify

them.”

4.7.3 Perception Toward Taxonomy

Overall, the participants were able to understand the meaning of each category and type well
(Category mean=4.86, Type mean=4.75). They mentioned that the types were intuitive (P3), and they
were able to see the reasoning behind the categorization (P9). All the participants mentioned that each
sentence was well-matched with appropriate types, except for a few that were subjective. One feedback
that many participants had in common was that the categories would be enough for filtering the video
content (P1, P3, P4, P9). While types allowed for more precise control (P6), it was burdensome to recall
the meaning of each type and click them one by one due to the large number of types (P9). In the same
context, several participants also suggested indicating whether a type exists in the video so that they
do not have to manually click to see if it is in the video. As such, when designing systems that display

taxonomic information, we need to consider ways to reduce users’ cognitive burden.

4.8 Discussion

In this paper, we present a taxonomy of information types in how-to videos. We first demonstrated
how our taxonomy can serve as an analytical framework for existing video navigation systems. We then
investigated the utility of the taxonomy in video navigation through a user study. In this section, we
first reflect on the user study and discuss findings. We then discuss how the taxonomy enables various

video-related tasks and support the learning experience, and suggest opportunities for future work.
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Information Type That Fits the User’s Needs

While the essence of how-to videos is information that explains how to perform a step (i.e.
Instruction), our taxonomy identifies a total of 21 information types that span instructions and
beyond. From our user study, we could see that the participants used different information types for
each task. In the Search task, they were able to actively match the corresponding information types to
each question, finding answers effectively. In the Summarize task, Method and Overview were considered
important — the participants used Overview to summarize the goal and overall approach. In the Follow
task, in addition to Method that provides core information required to complete the task, the participants
also considered Supplementary and Fxplanation important in getting additional information needed in
following the video.

Just as important types vary depending on the task, our study also suggested that meaningful
information types can depend on various factors such as the topic of the video or the user’s level of
expertise. P6 said, ”In wvideos teaching how to play tennis, justification or effect might be more important
than just instructions. It is tmportant to understand WHY a certain movement is needed to actually
understand and follow the movement.” It also echoes Semeraro et al.’s finding on instructional videos
for physical training, where having verbal cues helped users contextualize the movement [153]. Users’
familiarity with the topic also affects which information types they focus on. For example, P8 was
unfamiliar with Adobe Illustrator so she checked Overview for goal descriptions when following the video.
She said, ”I would have skipped the part if I were familiar with the program.” Future work will need to
investigate relevant information types depending on the topic and user context.

Moreover, some participants suggested further specification of instructions based on their importance.
In how-to videos, there are optional or conditional instructions that users can choose to follow or not
according to their preferences or environment. P6 mentioned that ”I thought all the instructions are
necessary, but there were some instructions that I didn’t need to follow. It would have been nice if it had
been marked.” In fact, four participants additionally marked optional or conditional instructions in their
summary when performing the Summarize task, which implies the importance of such information. As
such, future work can specify the instruction types to support users’ detailed needs.

In summary, our findings suggest that 1) information types other than Method can also play an
important role in accessing desired information, which opens up opportunities for future systems to take
into account a variety of information types. Our findings also suggest that 2) relevant information types
can be different depending on the task, topic, and user context, which future work can investigate more
in depth to support users’ different needs. We hope that our taxonomy can serve as a starting point for

such investigations.

Applications of Taxonomy in Video Tasks

The taxonomy can accelerate the design process of multiple applications if videos were labeled
by information types. We examine possible applications in three of the most commonly performed
video-related tasks: Authoring, Viewing, and Analysis. The creator first produces a video (Authoring),
and then viewers watch it (Viewing). The creator can analyze the video content or viewership to improve
the original video and make decisions about upcoming content (Analysis). We discuss how our taxonomy

enables various applications in each of these tasks.
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Application

Explanation

Example

. Editing Removing or fast-forwarding Cut out irrelevant parts of the
Authoring . .
parts of the video video (Side Note)
Annotation Adding visual effects or captions Highlight important parts of the
to the video video (Tip, Warning)
Navigation Supporting users to find relevant Repeat an instruction segment
o portions of the video or jump to the next instruction
Viewing
(Instruction)
Summarization Providing a summary of the main See an outline of how the
points of the video goal is achieved (Subgoal,
Instruction)
Search and Selection Supporting users to make a deci- See if one has required tools to
sion on which video to watch follow the video (Tool)
Analysis Feedback Providing feedback to the author Inform the author about how
of the video about the content structured the video is (Subgoal)
Comparison Comparing content between mul- Compare how approaches to-

tiple videos ward a same goal are different

(Instruction)

Table 4.3: Possible applications of the taxonomy in video authoring, viewing, and analysis.

Authoring

Having a video labeled by the taxonomy can foster the video editing process. For example, instructors
can find fillers or side notes that they have made, thus removing or fast-forwarding the parts if necessary.
They can also add visual effects to parts that need extra attention, such as tips or warnings, or make
transition effects when moving to the next step introduced by a subgoal. They can also add subtitles
or textual descriptions and style them differently, depending on what and how much they want to
emphasize [100].

Our taxonomy also aligns with the components that facilitate video editing found in previous papers.
DemoCut [35], a video editing system designed for how-to videos of physical demonstrations, supports
five types of markers to assist in video editing: Step, Action, Closeup, Supply, and Cut-out. The
system segments a video and applies editing effects based on the markers. Our taxonomy aligns with
several types of the markers, such as Step (Subgoal), Action (Instruction), Supply (Tool), or Cut-out

(Miscellaneous).

Viewing

Our study revealed that the taxonomy can improve users’ viewing experiences by enabling them to
quickly find and skip irrelevant information based on the category and the type. Our findings echoes
with Chang et al.’s finding on the types of jumping in how-to videos: Reference Jump (reminding users
of past content), Replay Jump (re-watching a segment of the video), Skip Jump (skipping less interesting
content), and Peek Jump (skipping ahead to see what to expect) [26]. Reference and Replay Jumps can
happen around Instruction, to clarify any confusion and better understand the instruction. Skip Jump

can happen around Greeting or Side Note, where a user wants to skip task-irrelevant parts. Lastly, Peek
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Jump can happen around Status or Outcome, where a user wants to see intermediate or final outcomes.

Our taxonomy can further support video navigation by segmenting a video into meaningful sections,
by leveraging Subgoal, Status, or Bridge information. P9 said, ”If we have the Goal and Subgoal
information, I think the video can be divided by each section like a table of contents. I would have liked it.”
P8 mentioned the possibility of using Status. She said, ”If Subgoal remarks the start of a step, I thought
Status remarks the end of a step. It showed intermediate outcomes.” One can also leverage Bridge as it
may signal transition to next chapter. As such, we can leverage meaningful information types to make
navigation easier.

The taxonomy can also be useful when summarizing a video. As observed from our user study, users
could choose the relevant information such as Goal, Tool, or Instruction to summarize the main points.
They can also see a succinct summary explained by the author with Briefing or Reflection or an
outline of how the goal is achieved with Subgoal. We can also make the summary generation process
interactive by allowing the users to choose the information type that they want to see in a summary. In
this way, we can give users more control over the summarization process beyond the time budget [76].

Lastly, our taxonomy can help users make an informed decision when selecting videos to watch.
Users can use certain information types to assist their decision. P3 said, "I would check Overview, Tool,
and Conclusion first when deciding on whether to watch the video or not. I would check Overview and
Conclusion to see if I like the method and outcome, and I would check Tool to see if I have all the required
tools.” They can also see the proportion of information types to make a decision. P8 said, "I don’t
really like videos that have a lot of irrelevant information. I would filter out videos that have a high
portion of Miscellaneous information.” The taxonomy can also be used to recommend videos, providing
explanations of recommendations such as conciseness or required tools. As in Inel et al.’s work which
provides explanations of a video summary [73], it will help users understand the video with transparency.

Different users can rely on different information types based on their navigational or learning needs.
With our taxonomy, we believe that users will have more control and agency in navigating, summarizing,

and selecting videos with more informed decisions.

Analysis

Our taxonomy can provide a systematic way to help instructors reflect on their videos by analyzing
content, viewership, and watching patterns. Receiving feedback on a video is key for authors in improving
their videos [140]. Researchers have proposed several systems for providing feedback on videos, such as a
script-based review system [140] or a system that analyzes accessible factors of a video [143, 109]. By
applying our taxonomy to their videos, the author can see how focused the video is (e.g., Do I have too
many Side Notes?) or how structured the video is (e.g., Do I mention enough Subgoals?). It can also
give feedback on its accessibility, by looking at how descriptive the video is (e.g., Are there an adequate
number of Descriptions?) [109]. Authors can also see which information type received more attention
from viewers, and make informed decisions about the content revision and production.

The taxonomy can also enable comparison between multiple videos. With an increasing number of
videos, many systems have been proposed to enable the exploration and analysis of large collections of
videos [114, 59, 42]. However, one of the challenges in comparing videos is the complexity of the size
and items to be compared. Tharatipyakul et al. proposed video abstraction as a way to reduce such
complexity [163]. Our taxonomy enables abstracting a video such as by taking Instructions, thereby
enabling efficient comparison between videos. It will allow identifying commonalities and differences in

approaches toward the same goal [23, 25] or classify workflows at scale [170].
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Supporting the Learning Experience

Understanding the information types in videos can help users in organizing the information. Mayer’s
multimedia learning theory suggests that learning material should have an understandable structure and
guide the learner in making a mental model (Active processing principle) [115]. He suggests that it is
helpful to know how information models can be structured. We believe that our taxonomy can contribute
to structuring information in videos by organizing the information based on their kind, and thereby help
the learning process of users.

Our taxonomy also includes information types that are critical to effective instructional content.
According to Morain and Swarts [123], successful tutorial videos begin with an overview of what is to be
accomplished (Goal, Briefing), explain what is accomplished (Subgoal) and reasons for performing a
step (Justification), and describe details such as the tool selection (Tool), the settings (Context), and
the outcomes (Outcome). Identifying meaningful information types for learners can ultimately extend
their learning experiences beyond following along.

Furthermore, our taxonomy shares several components with the taxonomy of information types in
lecture videos. Although how-to videos and lecture videos differ in the type of knowledge they convey
(e.g. procedural vs. declarative), they share the commonality of conveying instructional information.
Comparing our taxonomy to Espino’s investigation on the taxonomy of verbal information in MOOC
videos, there are several common components: ‘Opening/closing shot’ (Opening, Closing), ‘Overview
of the contents’ (Briefing), ‘announce following section’ (Subgoal), and ‘Justify/motivate content’
(Justification, Motivation) [50]. We can see that our taxonomy identifies major components that aid

learners in their learning process.

Technical Pipeline

To foster leveraging our taxonomy and developing applications discussed in Section 4.8, it is essential
to develop a technical pipeline that classifies segments of a video into the information types of the
taxonomy. As one of the approaches, we can leverage the few-shot learning technique on transcripts of a
video with large language models such as GPT-3 [19]. However, since our taxonomy is not only based
on verbal information but verbal information that considers visual information, multimodal learning
that takes visual information into account might yield better accuracy. The hierarchy of our taxonomy
(Category and Type) enables Hierarchical Classification as well. We hope our dataset containing 9.9k
sentences labeled according to the taxonomy can be served as a useful starting point to build such

technical pipelines.

Limitations and Future Work

In our study, we chose verbal utterances as a primary source of information. This is because how-to
videos usually have content creators explaining verbally how to perform a task [35], with an explicit
intention of explaining the visual content [120]. They also give additional information that is difficult to
be delivered visually. Due to the unique and extensive role of verbal information in how-to videos, we
presumed that it would cover a wide range of information and thus chose it as our scope.

However, videos are multimodal and visual information also plays an important role [123]. Although
we considered visual information when annotating each sentence to understand context, it does not cover
information types that only visuals can convey. For example, visual information can describe instructions

in more detail, sometimes accompanied with annotations that describe emphasis on objects or provide

50



more detailed information of a tool used [35]. It would be interesting to investigate videos that deliver
information only through a visual channel to understand the capacity of information types that visuals
convey. Furthermore, verbal and visual information might not always align with each other [65, 35]. For
example, an instructor can verbally share instructions first and then visually demonstrate them later. As
such, future work can incorporate visual information in how-to videos for a more comprehensive taxonomy
and analysis.

Also, while our taxonomy is based on diverse videos in terms of topics, styles, and production
methods, they were YouTube videos whose lengths are between 5 minutes and 15 minutes. It may be that
some types in the taxonomy are specific to YouTube videos (e.g., Self-promotion), and longer videos
(e.g., live streams) or shorter videos (e.g., TikTok videos [164]) may have introduced additional types of
information. Further research should explore a wider range of how-to videos, which could build upon our

taxonomy.

4.9 Conclusion

We present a taxonomy of information types in how-to videos. Our taxonomy identifies 21 types of
information under 8 categories: Greeting, Overview, Method, Supplementary, Fxplanation, Description,
Conclusion, and Miscellaneous. We demonstrate the utility of the taxonomy in both analyzing users’
navigational behavior and supporting their navigation in how-to videos. We first show how our taxonomy
can serve as an analytical framework for understanding existing video navigation systems. Then, we further
investigate how the information type can assist people watching how-to videos. An explorative user study
with nine participants showed that type-based navigation enabled participants to find specific information
and perform tasks effectively. We further discuss how the taxonomy enables multiple applications in
video authoring, viewing, and analysis. Finally, we release a dataset, HTM-Type, which contains 120
videos containing 9.9k sentences with each sentence labeled according to the taxonomy. We hope that

our work builds a foundation for understanding how-to videos in a more systematic way.
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Chapter 5. SoftVideo: Improving the Learning Experience of
Software Tutorial Videos with Collective Interaction Data

This chapter focuses on the third phase, the Following phase, where learners attempt to follow
instructions in the video step by step. In this stage, contextual units such as step difficulty and relevancy
help guide the following process. This chapter has adapted and revised content from a paper at TUI

2022 [191]. All uses of “we”, “our”, and “us” in this chapter refer to the coauthors of the aforementioned

paper.

5.1 Motivation and Contributions

Tutorial videos provide step-by-step instructions of complex tasks for feature-rich software such as
Photoshop [147] and AutoCAD [9]. People watch a tutorial video and try to apply the techniques from
the video to their software when learning new techniques [?]. For example, they search for a video about
”removing background from an image” and learn the skill by applying it to their own image.

When following a tutorial video, people often watch instructions and apply them to their own work
(e.g., image editing, document editing, video authoring, programming, etc.) by alternating between the
video and the software. Commonly, they first watch a step in the video and apply it to their application.
If the application results an error or an unintended outcome, users often adjust the pace of the video and
rewatch the step, trying to find what they did differently. Most people go through multiple trial-and-error
cycles, which could be cumbersome.

Also, when applying instructions from a tutorial video to their software, users need to constantly
compare the two to see if they are following correctly. Users can easily miss important details when a
demonstration in a video moves too quickly [80], or subtle visual changes are presented in the video [186].
This process is cognitively demanding with constant context switching and is prone to mistakes.

In this research, we propose SoftVideo, a prototype system that helps users plan ahead before
watching each step in tutorial videos, gives feedback to users on their progress, and provides help to
overcome confusing moments. Users can see step information such as the name of an action or the duration
and difficulty of each step to anticipate what is upcoming and prepare, which reduces context-switching
overhead. Users also get informed about whether they completed a step or not so that they can be aware
of any missed steps. Lastly, users struggling at a particular step can get help suggestions such as slowing
down the pace, replaying the step, or seeing relevant steps. SoftVideo detects users’ confusing moments
automatically and presents help suggestions at appropriate moments.

To build SoftVideo, we leverage previous learners who had watched the same tutorial and worked
toward the same end goal. Collective interaction logs of the video and the software from previous learners
can reveal patterns of how people learn from the tutorial. For example, analyzing the logs can detect
the steps people frequently struggle in or miss. It can also identify when the user is facing difficulties by
comparing their progress to previous learners. Furthermore, it can reveal how people overcome confusing
moments, such as by looking at which steps they referred to when completing a step.

We chose Adobe Photoshop as an instance of the software. We collected interaction logs composed
of video interactions (i.e., pause, play, jump) in synchronization with Photoshop usages (i.e., actions

performed in the software). Collecting interaction data of both sources in a synchronized manner is
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essential as it captures the actual interaction between the two sources. This allows for more accurate
estimations of the user’s current task state, enabling SoftVideo to provide appropriate help to people
facing the back-and-forth challenges.

We collected 120 complete interaction logs with two tutorial videos (60 logs for each) with 74
participants of varying levels of expertise in Photoshop. Our data analysis pipeline then analyzed the
collected data to 1) estimate the difficulty of each step by analyzing how users behaved on each step and
2) identify the relevancy of each step. For 1), we define six measures that portray the difficulty of each
step: Execution Time Index, Repetition Time Index, Backjump Frequency, Pause Frequency, Miss Rate,
and Re-follow Rate. For 2), we identify the ”Relevant steps” of each step, which are the steps that are
performed again in order to complete a particular step.

We evaluated our tool with the two Photoshop tutorial videos with which we collected interaction
data. We recruited 30 participants (23 novices, 7 experienced) and asked them to follow a tutorial
video with SoftVideo. Results show that participants were able to proactively and effectively plan their
pauses and playback speed, and vary their concentration level before watching a step by looking at
the presented step information. The difficulty visualization also made them feel relieved when they
encountered confusing moments. They were also able to identify and recover from errors with the help
SoftVideo provided. Relevant step information helped them overcome confusing moments and acquire
contextual Photoshop knowledge.

The primary contributions of this paper are as follows:

e A publicly available dataset of 120 interaction logs across the tutorial videos and Photoshop in use
1

e SoftVideo, an interface powered by previous users’ interaction data that provides step information

and real-time feedback to users.

e Results from a study showing that participants used the system to efficiently plan their action and

recover from errors in Photoshop tasks.

5.2 Data collection study

1) Logo 2) Geometry
Outcome r ..3‘._- 1
Effect Galaxy-style logo design | Geometric Shape Effect
Length 9m 35s Tm 34s
Number of Actions 27 45
URL youtu.be/ifG1SDxqpAQ | youtu.be/vcLjyGbF40Y

Table 5.1: Tutorial videos used in the data collection study.

In our approach, we leverage interaction logs from previous learners who had watched the same

tutorial and worked toward the same end goal. Collective interaction logs of video and the software can

Lsoftvideo.kixlab.org
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provide useful insights into patterns of how people learn from the tutorial. It can reveal meaningful
information of videos, such as where users struggle a lot and thus need to pay attention to. We recruited
participants to collect interaction data of both the tutorial video and the software in synchronization. We
used Adobe Photoshop as the target software, due to its high availability and popularity. Participants

were asked to follow Photoshop tutorial videos and complete image editing tasks.

5.2.1 System for Data Collection

We built a system to collect the interaction data from both the tutorial video and Photoshop
synchronously. The system collects video interaction logs (i.e., play, pause, and jump actions with the
corresponding video timestamp and user timestamp) in synchronization with software interaction logs
(i.e., actions done in Photoshop). In the system, we embedded a Youtube video player for a Photoshop
tutorial video. We logged video interaction data using the YouTube player API [7]. To log software
interaction logs, we used the History Log feature available in Photoshop. Once users enable the History
Log feature in Photoshop, a text file that logs the action history is saved in their local computer. A new
line is appended to the file for every action performed in Photoshop. Once a user uploads the path of the
text file to our system in the beginning, the system reads the changes in the file periodically and logs the
actions in Photoshop, together with the corresponding video timestamp and user timestamp. We stored
the logs in Firebase Realtime Database [41].

5.2.2 Participants

We recruited 75 participants from an academic institution through online recruitment postings (48
male, 27 female, mean age 23). We collected their frequency of Photoshop usage on a 5-point scale (1:
None, 2: Yearly, 3: Monthly—Yearly, 4: Monthly, 5: Weekly). Based on their responses, we grouped
participants who have not used Photoshop or use it 1-2 times a year as novice, and experienced otherwise.
We used the frequency of use for grouping expertise because new features are added to the software
several times a year [67] and to avoid subjective measures (e.g., self-reported expertise). Each participant
completed either one or two tutorials depending on their availability during the given time. The number
of collected logs for each tutorial and participants’ expertise level is shown in Table 5.2. Participants

were compensated with 20,000 KRW (approximately 17 USD) for a 90-minute-long study.

5.2.3 Task

The task was to follow a Photoshop tutorial video about making 1) a galaxy-style logo design (‘Logo’)
or 2) a geometric shape effect (‘Geometry’) (Table 5.1). We chose the videos from YouTube because they
were less than 10 minutes to ensure a feasible study duration, and the tasks were not too trivial (e.g.,

image cropping) nor too advanced (e.g., poster design).

5.2.4 Procedure

Participants were first assigned to one of the two tutorials. After we introduced the effect and the
final outcome of the tutorial, they were asked to prepare images they wanted to use. Participants could
optionally choose one of the images we provided. They were then instructed to open Photoshop and our

system, and follow the tutorial video. If time allowed after completing one, they followed another tutorial.
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Figure 5.1: An example session of the data collection study. A participant is following the tutorial video
(on the left) on their software (on the right).

The study was conducted in either an offline or online setting. The same system was used in both

settings.

o Offline setting: We set up computers with Photoshop installed. We enabled the Photoshop History
Log feature and uploaded the path of the log file to our system. A total of 24 participants joined

offline.

e Online setting: Participants were asked to install Photoshop and either Whale [174] or Min web
browsers [173] before the study to enable real-time tracking of Photoshop usage logs, as other
browsers did not support it due to their security policies. They were asked to enable screen sharing
during the study. We guided them to enable the Photoshop History Log feature and upload the
path of the log file to our system. A total of 51 participants joined online.

5.2.5 Results

With 75 participants, we collected a total of 120 interaction data, 60 for each of the tutorials
(Table 5.2). The interaction data is composed of video interaction logs and software usage logs. Below we

specify the scope of the video interaction logs and the software usage logs we collected.

e Video interaction logs: Play, Pause (duration) and Jump (from, to) on the video and the corre-

sponding user timestamps and video timestamps.

e Software usage logs: Actions done on the software (e.g., Crop, Resize) and the corresponding user

timestamps and video timestamps.

The average time taken to complete the tutorial was 32m 54s and 29m 35s for the Logo and Geometry

tutorials, respectively (Table 5.3).
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Novice (N=59) Exp. (N=16) Novice Exp. Avg.
1) Logo 49 11 1) Logo 35m 24s  21m 46s | 32m 54s
2) Geometry 48 12 2) Geometry | 30m 51s 24m 33s | 29m 35s

Table 5.2: The number of collected logs Table 5.3: Average time taken to complete each tutorial.

for each tutorial.

Measure Definition (video time: a duration of a step in video)

Execution Time Index | Time taken to follow a step / video time

Repetition Time Index | Total time of a step being watched / video time

Backjump Frequency Number of backward jumps

Pause Frequency Number of pauses

Miss Rate The proportion of users who missed a step at first but followed it later

Re-follow Rate The proportion of users who re-followed a step after proceeded to the
next steps

Table 5.4: Definition of six measures that portray the difficulty of each step.

5.3 Data Analysis Pipeline

Our data analysis pipeline analyzes the collected interaction data to identify meaningful information
from the tutorial video. Specifically, we aim to 1) estimate the difficulty of each step so that users can
plan their action before watching each step, and 2) identify the relatedness of steps so that users can
refer to when having difficulties in a particular step. We first describe measures that are used for each of

the two purposes.

5.3.1 Measures

Difficulty of steps

We defined six measures that portray the difficulty of each step: Execution Time, Repetition Index,
Backjump Frequency, Pause Frequency, Miss Rate, and Re-follow Rate. Table 5.4 shows the definitions of

six measures. Below we describe each measure in detail.

e Execution Time Index: (Time taken to follow a step)/(video time). If a user spends much
longer time in a certain step than its length in the video, there is a high chance that the user has
difficulties completing the step. For a fair comparison between the steps, we take relative execution
time, defined as the time taken to follow a step divided by the video length of the corresponding

step. Note that there was no fast-winded or cut parts in the videos we used.

e Repetition Time Index: (Total time of a step being watched)/(video time). Users repeatedly
watch a step if something is unclear from the video or does not work in their context. Similar to
Execution Time Index, we take relative repetition time, defined as the total time of a step being
watched divided by the video length of the corresponding step. If the Repetition Index is 1.5, the

user watched the whole step once, and half of it once more.

e Backjump Frequency: (Number of backward jumps). Users jump backward on the video to

watch the part that is demonstrated quickly or unclearly. We count the number of backward jumps
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Measure Definition

Relevant Steps | Previous steps that users followed after watching the current step to complete

the step

Referring Rate | The proportion of users who followed previous steps again to proceed with the

current step

Continued Rate | The proportion of users who only watched the current step to proceed with the
step
(i.e., 1 - Referred Rate)

Table 5.5: Definition of three measures related to relevancy of each step.

that occurred while watching a step.

e Pause Frequency: (Number of pauses). Users pause the video to transfer the content in the
tutorial to their application if it needs much attention. If there are frequent pauses, it may indicate
that the step is hard to digest and to be transferred to their context at once. We count the number
of pauses that occurred in a step. We do not consider the duration of pauses as it highly overlaps

with the Execution Time Index.

e Miss Rate: (Proportion of users who missed a step at first but followed it later). If a step is not
clearly shown in the video, sometimes users skip the step at first. We define the Miss Rate as the
proportion of users who missed a step at first but followed it later. A high Miss Rate indicates that

users can easily miss the step.

e Re-follow Rate: (Proportion of users who re-followed a step after proceeded to the next steps).
If a step was not completed in the users’ context, they might revisit and perform the action again
even after they moved on to the later steps. We define the Re-follow Rate as the proportion of users
who revisited the step and performed it again. A high Re-follow Rate means many users go back to

the step and follow it again, indicating a high chance where the step could not be properly done.

Step relevancy

We defined three measures about relevancy of each step: Relevant Steps, Referring Rate, and
Continued Rate. Relevant step information can help learners who get stuck in a certain step, by
suggesting they check other related steps again. To help learners decide whether they should check the
relevant steps, we also define Referring Rate and Continued Rate. Below we describe each measure in
detail (Table 5.5).

e Relevant Steps: When users get stuck in a certain step, they sometimes try previous steps again
to help them complete the step. We define the previous steps that are followed after watching the
current step to complete the current step as Relevant Steps. Figure 5.2 shows an example scenario

describing Relevant Steps.

e Referring Rate: Referring Rate means the proportion of users who followed the previous steps
after watching the current step, to complete the current step. In other words, it is the proportion of

users who produced the Relevant Steps. It indicates how relevant the Relevant Steps are.
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e Continued Rate: In contrast to the Referring Rate, the Continued Rate means the proportion
of users who only watched the current step to proceed with the step. In other words, it is (1 -

Referring Rate).

15. Create
Clipping Mask
| | | |
| | | |

22— & S
14

-l

12<
15

Figure 5.2: An example scenario where the relevant step of step 15 is step 12. After a user followed

12. Select Canvas 13. Paste 14. Name Change

the step 12, 13, and 14, he is now on step 15. However, the user was not able to complete it. The user
jumped back to step 12 and then followed it again. Then, he came back to step 15 and followed the step.
(red: followed, gray: watched but not followed, blue: followed again).

5.3.2 Methodology

We describe the methodology we used to compute the above measures for each step from the collected

interaction data.

Removing actions that are unrelated to the task

After collecting interaction data—video interaction logs (play, pause, jump backward /forward) in
synchronization with the software usage logs—we first processed the software usage logs to remove the
actions that are unrelated to tasks. The History Log feature in Photoshop extracts actions done on
Photoshop including actions that are not directly related to the main tasks, such as auto-saving files or

quitting the application. Thus, we removed log entries that are not related to the tasks.

Identifying the followed and skipped steps

To compute the Execution Time Index, Miss Rate, Re-follow Rate, and Relevant Steps, we need
to identify when and which steps were followed or skipped. For example, we need to know when a user
successfully followed a step to compute the Execution Time Index.

To identify if a user followed or skipped a step, we first define baseline actions as actions done
in tutorial videos and baseline timestamps as the starting timestamps in the tutorial video of the
corresponding baseline action (Figure ??). To get the baseline actions, we followed the tutorials exactly
the same on our Photoshop, checking which action is being logged in the History Log feature. For the
baseline timestamp, we manually recorded the timestamp where each action began to be described in the
video by watching the tutorial videos.

After setting up the baseline actions and baseline timestamps, we developed an algorithm that detects
whether a user followed or skipped a step from the interaction logs (Algorithm 2). The algorithm detects

that a user followed a step 1) if they performed a baseline action after passing, 2) but still nearby the
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corresponding baseline timestamp; threshold values in Algorithm 1 determine the range of "nearby”. The
algorithm detects a user skipped a step if they did not follow the step but followed the next step. The
algorithm detects a user added an action if the action does not exist in the video or it exists but is not

considered as followed.

Algorithm 1: IsFollowed

1 Input: A list of baseline timestamps, T' = o, ..., t,
A list of baseline actions, A = ag, ..., a,
A current video timestamp, ¢
An action performed by a user, a
An index of the expecting action that needs to be done, i
An index of the most recent action that a user has watched, w

Output: True if the action is a followed action, False otherwise

N

thresholdPrevious, thresholdA fter < Thresholds of video timestamp offsets
if i < w then

3 threshold Previous < 20 ;

4 thresholdAfter < 20

5 else

6 thresholdPrevious < 5;

7 thresholdAfter < 15;

8 if a = a; then
9 if ( (i <w and a; is unique in A) or (t > t; — thresholdPrevious and
(t < t; + thresholdAfter ori=n)) then

10 L return True

11 return False

Computing the measures for each step

Among the six measures regarding the difficulty of steps, we computed the Execution Time Index,
Repetition Time Index, Backjump Frequency, and Pause Frequency for each user per step. Then, we
averaged the values among users per step and regarded the averaged value as a representative value
of each step. We computed Miss Rate, Re-follow Rate, and the three measures of step relevancy (i.e.,
Relevant Steps, Referring Rate, and Continued Rate) per step.

To estimate the difficulty of each step, for each of the six measures, we identified the steps with a
value higher than the third quartile (i.e., 75%) of all steps. For example, we identified a step with high
Execution Time Index by comparing its value to the third quartile of the Execution Time Index values of
all steps. We apply the quartile method since it is widely used to classify data into subgroups considering
the distribution [18].

Additionally, for the measures that could be computed per user (i.e., Execution Time Index, Repetition
Time Index, Backjump Frequency, and Pause Frequency), we computed the third quartile of each measure
within a step among users in the same group (i.e., Novice or Experienced). This is to set multiple

thresholds to identify if a user is having difficulty. For example, if a novice user’s Execution Time Index
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Algorithm 2: Action State Detection

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Input: A list of baseline timestamps, T = to, ..., t,
A list of baseline actions, A = ag, ..., a,
A current video timestamp, ¢
An action performed by a user, a
An index of the expecting action that needs to be done, i
An index of the most recent action that a user has watched, w

An index of the previous followed action, p

A list of user logs, L = [(statey, actiong), ..., (state,,, action,,)] ; /* state is either
‘followed’, ‘added’, or ‘skipped’ */
Output: L= [(statey, actiong), ..., (state, 11, action,+1)]

if a is not in A then
L L « L + (‘added’, p);

return

; /* Check if a user followed the expecting action or previous actions x/
J
while j > 0 do

if isFollowed(T, A, t, a, i, w) then

L L« L+ (‘followed', j);

return
Ji—1
; /* Check if a user skipped an action and followed a further action x/
j—i+1
while j < len(L) do
if isFollowed(T, A, t, a, i, w) then
for k=1 to j do
| L L+ (‘skipped’ k)
L+ L+ (‘followed , j);

return

| J< i+l
L + L+ (‘added , p);
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of a step is exceeding the third quartile of novice users in the same step, we could assume that the user is

undergoing difficulty in the step.

5.3.3 Results

Through the analysis, we computed 1) the six difficulty-related measures for each step and for each
user per step, and 2) the three step relevancy-related measures for each step. Table 5.6 shows the average
values of the six difficulty-related measures across the step for each tutorial. Except for the Miss Rate, the
difference between novice and expertise group was statistically significant (Mann-Whitney Test, p < 0.01
or p < 0.05), showing the reliability of the measures used (Table 5.6). It indicates that novice users
showed more behavior of having difficulties than the experienced users.

We describe several examples of the results below. Table ?? shows example measures of steps that
exceed the third quartile of all steps, which might indicate that the step is likely to be more difficult.
Table 77 shows the third quartile values of each measure for each step, which serve as threshold values
when detecting users’ confusing moments. Table 7?7 shows examples of Relevant Steps, Referring Rate,
and Continued Rate. We can see that even though steps Move and Select Canvas from the Logo tutorial
all have at least three Relevant Steps, their significance could be different as the Referring Rates differ
substantially (41% vs. 8%).

From the analysis, we could also see that Miss Rate demonstrated steps that have certain properties
that make them easy to miss. For example, 39% of participants missed the Drag Selection on the Logo
tutorial, which was passing fast and not noticeable. Re-follow Rate captured steps that need attention.
For example, 60% of users followed Layer Order again in the Geometry tutorial. Positioning the layers

in the right order was important but many participants did it incorrectly at first.

Measure Expertise Logo Geometry Avg.
Novice 5.4%* 6.3% 5.9
Execution Time Index -
Experienced | 4.0* 5.5% 4.7
Novice 1.82* 1.8% 1.81
Repetition Time Index -
Experienced | 1.43* 1.53* 1.48
. Novice 1.79%* 1.24%* 1.52
Backjump Frequency -
Experienced | 0.76** 1.10%* 0.93
Novice 1.60* 1.07* 1.34
Pause Frequency -
Experienced | 1.27* 0.58% 0.93
) Novice 5.1% 4.5% 4.8%
Miss Rate (%) -
Experienced | 3.2% 5.7% 4.5%
Novice 16.8%* 15.4% 16.1%
Re-follow Rate (%) -
Experienced | 8.3%* 13.0% 10.7%

Table 5.6: Mean values of the six difficulty-related measures among all steps. In general, novice users
show more behavior of having difficulties than experienced users. For each measure, the table shows if
the difference between the novice and experienced groups was statistically significant (*: pj.05, **: p;.01,

Mann-Whitney Test) for each measure.

5.4 SoftVideo

We present SoftVideo, a prototype system that provides step information, gives feedback to learners

on their progress, and provides help to overcome confusing moments (Figure 5.3). SoftVideo provides
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Figure 5.3: Overview of SoftVideo. Along with the software tutorial video, SoftVideo provides (a) a
timeline where users can see the action name, its length, and the estimated difficulty. (b) Users can receive
real-time feedback on their progress. If a user followed a step, the circle will be filled. (c¢) SoftVideo
detects users’ confusing moments. Once detected, it provides users with suggestions such as (d) slowing
down the pace, (e) replaying the step, or (f) seeing relevant steps. Users see customized information

based on (g) the expertise level they enter.

step information such as the name of an action, and the duration and estimated difficulty of each step in
the timeline (Figure 5.3(a)). It gives feedback to users about their progress by letting them know if they
completed or missed a step (Figure 5.3(b)) and detecting when they struggle (Figure 5.3(c)). Finally, it
presents help suggestions such as to slow down the pace, replay the step, or see relevant steps when they
struggle (Figure 5.3(d)-(f)).

There are three components in SoftVideo that are powered by the analyzed data (Section 5.3):
Estimated difficulty of each step, criteria for detecting users’ confusing moments, and relevant steps that
are suggested when they struggle. All the information is determined based on the group the user belongs
to (i.e., Novice or Experienced) so that the system provides customized help. User can enter their level of

experience before they start watching the video (Figure 5.3(g)).

5.4.1 Step Information

SoftVideo provides a timeline that shows step information in the tutorial video (Figure 1.4). The
timeline is segmented into steps and each step is shown with the Photoshop action name and its duration,
which is reflected in its length in the timeline. The timeline display of step descriptions has been introduced

by other systems (e.g., [84]), but we additionally provide characteristics of each step that represent the
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Icons Meanings Measures

Users spent more time in this step compared to other steps. Execution Time Index

Users watched this step repeatedly more than other steps. Repetition Time Index

Users did backward jumps frequently at this step more than other steps. | Backjump Frequency

Users paused frequently at this step more than other steps Pause Frequency
There are relatively many users who missed the step. Miss Rate
There are relatively many users who followed again the step. Re-follow Rate

L=rre:

Table 5.7: Icons that depict the difficulty of each step, and their corresponding meanings and measures.

difficulty of a step. With the six difficulty-related measures (Section 5.3.1), SoftVideo presents icons for
the measures with values that exceed the third quartile of all steps. Table 5.7 shows the icons and their
meanings, and corresponding measures. For example, if a step is shown with the pause icon, it means
that users paused frequently at the step more than other steps. Thus, users can estimate the difficulty or
complexity of a step by skimming through the icons shown in the timeline. We chose to present such
potentially useful indicators rather than a single quantified difficulty level, so that users can have control

over how they leverage the given information.

5.4.2 Real-time Feedback

SoftVideo gives real-time feedback to users on their progress by tracking both the video and the
application logs. First, it lets users know if they completed a step or not with our action detection
algorithm, described in Section 5.3.2. If a user follows a step in their application correctly, then the circle
of the step gets filled. If a user misses a step and proceeds to the next step, the circle remains unfilled
and the user is warned (Figure 1.4(c)). Second, it detects when a user is facing difficulties. If any of the
six measures exceeds its threshold value (Section 29), the system alerts users by asking ” Are you stuck?”

and presents appropriate help suggestions, which are described in the next section (Figure 5.4-right).

5.4.3 Help Suggestions

When SoftVideo detects users undergoing confusing moments, it suggests users to 1) slow down the
pace, 2) replay the step, or 3) go back to relevant steps. Users can slow down the video pace to x0.5
or x0.75 by clicking the button (Figure 5.3(d)), or replay the step by clicking the circle on the timeline
(Figure 5.3(e)). SoftVideo also suggests users to check relevant steps (Figure 5.3(f)). The arrow to a
relevant step is thicker if more users followed the step after watching the current step. To help users
better decide if they should check the relevant steps or not, SoftVideo presents the ratio of users who only
watched the current step to complete it and users who watched and followed previous steps to complete
it (Section 5.3.1). This is to help users with decision making rather than giving pressure to check relevant
steps. If a user moves to other steps, the suggested help gets closed.

Users can also request to see help by clicking the ” I need help!” button (Figure 5.4(a)) or close the
help suggestions by clicking the ” No, I don’t need help” button (Figure 5.4(b)). This is to make sure users
access necessary help suggestions on demand (or dismiss unnecessary information) in case the algorithm

failed to detect their confusing moments.
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Figure 5.4: (Left) A user is following the tutorial video. Once the system detects that the user may be
confused or struggling, (Right) SoftVideo presents action suggestions as help. Users can also proactively

(a) request to see the help (b) or close the help.

5.4.4 Implementation

We implemented SoftVideo using React.js, HTML, and CSS for the front-end web interface, and
Node.js and Firebase for the backend server. The implementation mostly follows the system used in the
data collection study (Section 5.2.1). It additionally runs the action detection algorithm (Algorithm 2)
in real-time to track users’ progress and runs the data analysis pipeline (Section 5.3) in real-time for
computing the Execution Time Index, Repetition Time Index, Backjump Frequency, and Pause Frequency

measures to detect users’ confusing moments.

5.5 User Evaluation

We evaluated the feasibility of using data-driven information and the effectiveness of SoftVideo
through a study. Specifically, the goals of our evaluation were (1) to see how participants think about
and use the step information when performing tasks, and (2) to assess the effect of real-time feedback

and help suggestions on improving the user experience of software tutorial videos.

5.5.1 Participants

We recruited 30 (22 male, 8 female, mean age 23.8) participants from an academic institution through
an online community posting, including 23 novice and 7 experienced users for Photoshop. The level of
Photoshop expertise were determined in the same manner as in Section 5.2.2. People who participated in
the data collection study were excluded from this recruitment. Each participant was assigned to one of
the two tutorial videos used in the data collection study. We assigned the participants equally for each

tutorial; 15 (11 novice, 4 experienced) were assigned to the Logo tutorial while the remaining 15 (12
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novice, 3 experienced) were assigned to the Geometry tutorial. Participants were compensated 20,000

KRW (approximately USD 17) for their participation in a 80-minute-long study.

5.5.2 Study Procedure

The study took place face-to-face, following the COVID-19 guidelines: participants had to wear masks
and sanitize their hands before using computers. Windows and doors were open and an air conditioner
was turned on to keep the room ventilated. We sanitized the utilities after each session.

Participants were first asked to complete a pre-task survey about their experiences in using Photoshop
and how they interpret each of the six message types (Table 5.7) to make sure they become familiar with
the messages. We then introduced a Photoshop tutorial video to participants and asked them to choose
images to be used based on their preference. After explaining how to use SoftVideo, one researcher set
up their expertise level (novice or experienced) in SoftVideo based on the pre-task survey result and
entered the path to the Photoshop History Log file for real-time tracking. Participants were then asked to
follow the given tutorial video using SoftVideo. Once participants completed the main task, we conducted
a survey about their experience and a semi-structured interview to get more detailed feedback. Each
participant was provided with two monitors; one for the tutorial video (SoftVideo) and the other for
Photoshop.

We chose not to do a comparative study as SoftVideo is a complex system with multiple novel
features: a comparative study cannot clearly uncover the source of differences observed, and it is unclear
what a convincing baseline might be. Rather, we focus on observing and analyzing how participants use
SoftVideo in a realistic task. We logged the number and the timestamp of detected confusing moments,

help requests and help dismissals made by participants, and their usage of help suggestions.

5.6 Results

Below we summarize the main findings and usefulness of SoftVideo with respect to each feature.

5.6.1 Step Information

Participants were able to estimate the difficulty of steps with the number of icons shown in the
timeline. In general, they felt that the number of icons implied the difficulty of a step (perceived accuracy
= 3.73/5, std=0.98). Being able to know about the difficulty of steps affected them in a few different

ways, which we report below.

Participants planned their behavior and level of concentration according to the difficulty of

steps.

Participants were able to plan their action and level of concentration by looking at the difficulty of
upcoming steps. They planned their pauses on the video depending on the difficulty (P3, P4, P22, P26).
P22 said, ”I put my fingers on the space bar in advance when facing difficult steps so that I can be ready
to pause.” Similarly, P3 said, "when there were no icons, I tried to watch the step at once until the end
without pauses.” Participants not only planned their pauses but also controlled the speed of the video
playback (P1, P10, P14, P23). P1 said, "I was able to prepare myself for upcoming steps by slowing down
the pace whenever I saw many icons.” Even if they did not perform an explicit action to be prepared, they
adjusted their level of concentration based on the difficulty (P11, P13, P17, P19, P23, P24, P27, P29).
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P13 said, ”When there were no icons, I was relazed and watched the step in a relaring way. However,
when there were many icons, I focused more.”

Participants’ experiences in early steps affected their planning strategy. P14 said, ”I found myself
being able to watch and follow at the same time when there were two or fewer icons. After experiencing
that I pause a lot during steps with three or more icons, I started to slow down the pace of the video right
before such steps came up.” P6 built their own understanding of the icons through the earlier steps which
made them perform certain actions prior to watching steps with particular icons. P6 said, "I learned that
there was a pause icon whenever the step required me to enter in some parameters like width and height.
After experiencing it, I was able to know when similar actions (i.e., setting values) are coming (when I

saw the pause icon) and so I was able to perform them in advance.”

Step-wise difficulty information increased the level of safety and gave hints when they

struggle.

When participants faced confusing moments, they checked to see icons and felt relieved to see many
icons on the step (P4, P5, P8, P12, P16, P18, P19, P27). P27 said, "I felt relicved to see many icons when
I was struggling because I knew it was not only me and the problem is the step itself.” It also happened
when participants came back to a certain step after having done it differently or missed it. P18 said, ”I
didn’t notice the icons at first, but when I revisited a step to do it again, I could see many icons and was
able to know that there were many similar users like me.”

The difficulty level also gave hints on how to overcome confusing moments—whether they should
look into the step in more detail or watch other steps. P7 said, ”When I struggled, I watched the step
more carefully if there were many icons. In contrast, if there were few icons, I realized something went

wrong in previous steps, not the current step, so I watched previous steps.”

Differences in the perceived usefulness between the messages

Although most participants perceived the icon count as an indicator of step difficulty, there were
differences in perceived usefulness between the messages. Participants rated the usefulness of messages as
follows (ordered by score): Pause Frequency (4.03/5), Repeat Index (3.73/5), Revisited Rate (3.73/5),
Execution Time (3.63/5), Backjump Frequency (3.6/5), and Missed Rate (2.7/5). Pause Frequency might
have been the most useful because knowing how to split a step is important in following tutorial videos.
P27 said, "I tended to pause if there was the pause icon when I wasn’t sure about when to pause.” On the
other hand, Missed Rate might have been the least useful because participants might have felt that there
are small chances of missing a step, partially due to SoftVideo’s feature of letting users know if they have

missed a step. In general, participants said it was helpful to see step information (3.7/5, std=1.3).

5.6.2 Real-time Feedback

We report how participants felt about real-time feedback on their progress and automatic detection
of confusing moments.
Letting users know about their progress

With the feedback SoftVideo provides, participants were able to identify missed steps (P4, P6, P9,
P18) as well as steps that they performed differently from the tutorial video (P7, P12, P14). P9 said, "I

noticed a difference between the image on the tutorial and the image on my application. Then I noticed
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that there was a step that I missed due to an alert SoftVideo gave. I was able to go back to the missed
step and follow it.” SoftVideo also let users know about steps that they thought they followed but not
actually because they behaved differently. P7 said, "I thought I followed the step Move but it didn’t appear
to be so, so I checked it again. I realized that I didn’t press ‘Ctrl’ while doing the action.” Participants
mentioned that the real-time feedback on the progress encouraged them to follow the tutorial more
meticulously (P11) and it made following along more enjoyable as it felt like solving a series of quests
(P25). Participants said the feature was helpful in general (3.67/5, std=1.3).

Detecting confusion moments

Overall, participants felt that SoftVideo detected their confusing moments accurately. On a scale of 1
to b, with 1 being early and 5 being late about the timing of SoftVideo’s confusion detection, participants
rated 2.9 (better if closer to 3, std=0.92). P6 said, "I thought it detected quite well. I was struggling
at a step of doing ‘Ctrl+T’ and the system detected it right away.” On average, SoftVideo detected
17.83 confusing moments per user (min: 1, max: 29). Participants closed 2.76% of the suggested help
and requested to see help 0.77 times additionally on average. For about 32% out of 543 detection and

requested cases, participants utilized at least one of the suggested help, which we discuss next.

5.6.3 Help Suggestions

We report the usage of help suggestions by SoftVideo and how participants found information of

relevant steps helpful.

How participants used suggested help

Among the three help suggestions SoftVideo provides (i.e., speed control, repeating a step, and
relevant steps), participants repeated a step most frequently (114), followed by checking the suggested
relevant steps (46) and slowing down the pace (13). Participants might have repeated a step a lot because
it is what most users are familiar with, checking if they have missed anything and figuring out why it
does not work on their application by watching over and over. On the other hand, they rarely slowed
down the pace when faced with difficulties. P25 said, "I didn’t use the speed control because the part that

needs attention only lasted a few seconds. I didn’t want it to be slower for the entire step.”

How seeing relevant steps was helpful

Participants reported that seeing the suggested relevant steps was helpful in overcoming confusing
moments (P2, P5, P7, P9, P11, P14, P16, P19, P23). It helped them by suggesting steps that they
should watch again. P2 said, ”When I knew I made a small mistake, I jumped back to 5 seconds before by
using the left arrow key on the keyboard. However, when I wasn’t sure what caused a problem, seeing the
relevant steps was helpful.” In particular, if one of the relevant steps was pointing to a step that they
have missed, they perceived it as an important step and went back to the step to follow it (P5, P7, P14,
P19). It not only helped participants follow the step they have missed, but also to re-follow the step that
they have followed before. P11 said, ”I was able to catch up right away after watching a relevant step.
Even though I followed the step, there was something I pressed in a wrong way.”

Some participants perceived the relevant steps as ”similar steps”, and transferred the knowledge of
the step to the current step. P8 mentioned ”I was able to relate the information from a relevant step.

I remembered how I completed the step, so I thought I could do this step in a similar way.” Another
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interesting usage was that it helped participants acquire the knowledge of the software, by looking at
which steps are frequently related. P25 said, "It helped me a lot in understanding how to use Photoshop
in general. I was able to know which actions are related and which should be done for other actions to be
done.” Also, with relevant steps participants reported feeling safe because even if they failed to follow a
step, there are alternatives that they could try (P26, P27).

However, unlike our expectations, the Referring Rate and Continued Rate were rarely used. Nearly
all participants mentioned that they did not look at the numbers. P7 said, "I didn’t see the numbers at
all. If there was at least one relevant step, I checked it out no matter how many referred to it.” Although
the Referring Rate and Continued Rate were not used in deciding whether they should watch relevant
steps, some participants used the information to adjust their concentration level on the relevant steps
(P2, P24). P24 said, ”If the Referred rate was about 80%, I watched it normally. If it was higher than
85%, I paid more attention. If it was 92% or higher I paid extra attention and watched it carefully.”

5.6.4 Other Feedback

Participants also appreciated the basic timeline that shows the name and duration of each action.
It helped them learn about the sub-goal of each step (P4, P8, P17) and made it easier to navigate the
video (P1, P9, P13, P29). Seeing the action name was helpful because participants were able to expect
which menu they should click (P29), especially when the same step appears again later (P19). Overall,
participants found SoftVideo helpful in following along the tutorial content (4.17/5, std=0.87). Moreover,
they preferred using SoftVideo compared to the basic video-only interface (‘I’d prefer to use this system
to the basic video-only interface.” (5-point Likert scale): 4.13/5, std=0.97).

5.7 Discussion, Limitations, and Future Work

In this paper, we investigated the feasibility of enhancing software tutorial videos with data-driven
information. In this section, we discuss considerations, limitations, and possible future work of using

collective interaction data.

Utilizing Synchronized Interaction Data of Both Software and Tutorial Video

Synchronized interaction data of how a user uses both the software and the tutorial video possess
much more potential than just two single data sources. It allows for more accurate inference of the
user’s current state and more personalized support. For example, our Execution Time, Missed Rate, and
Revisited Rate measures are induced from (and are only made possible by) synchronized data of both the
software and the tutorial. Using such metrics extracted from synchronized data, in addition to metrics
obtained from video interaction logs (i.e., Repetition Index, Backjump Frequency, and Pause Frequency)
which have been shown to be relevant with video difficulty [98], we were able to detect whether the user
is experiencing difficulty in following the tutorial. Similarly, previous work also showed that utilizing
additional logs such as physiological data collected from smartwatches can significantly improve the video
difficulty detection [38]. Likewise, if we only utilized one data source or if the data was not synchronized,

the impact of SoftVideo could have been less significant.
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Users’ Trust and Interpretations on Data-driven Information

SoftVideo’s data-driven information shows the collective behavior of a number of users who have
worked toward a shared goal. How users perceive the meaning of information might be different from
user to user. Participants from our study built up their trust towards the system and came up with their
own understanding of how to interpret the provided information as they used the system. P26 said, 71
found out that those steps do not have icons because I could easily follow the video while watching at the
same time.” Similarly, P4 said, "It was cool that I actually paused a lot in steps with many icons.” This
shows that their trust towards the system grew as they used the system and their experience aligned with
the presented information. After understanding how the presented information matches their context,
participants built their own techniques to interpret and follow subsequent steps (e.g., to pause the video
at steps with three or more icons). It also shows that giving users control to selectively leverage useful
signals rather than presenting a single answer predicted by the system allowed them to build trust and

make their own interpretations.

Availability of Interaction Data and Its Privacy Implications

In order to utilize synchronized interaction data of both software and tutorial video, it is essential
to first consider how to obtain software interaction data. For example, our work uses Photoshop as an
instance of software, which enables tracking software usage logs through its History Log feature. Modern
software applications such as AutoCAD [9] or Fusion360 [1] also provide history logs so that users can
track their progress and easily revert to a particular action. For software with no history logs or API
for them, accessibility APIs [58, 113] or computer vision techniques [148, 13, 112, 105] could be used to
reverse-engineer the software interactions. Augmenting open-source software such as GIMP [72] could be
another possible solution.

When capturing interaction data, privacy issues should be carefully considered. Unlike videos that
are published publicly on online platforms, the software is often where users work privately. Previous
work suggests that when users acknowledge that there are enough benefits provided, users’ perceived
privacy concerns may be alleviated [85, 146], but still sensitive personal information or assets (e.g., file
names) can be recorded in the software usage logs. Potential solutions include automatically filtering out

such information or giving users control by allowing them to review and filter what gets shared.

Leveraging Richer Interaction Data

In our work, we collected pause, play, and jump as video interaction data and Photoshop action
names as software interaction data. Future work could look into leveraging richer interaction data. For
example, playback speed change or volume control of videos might capture important or non-important
parts of the video. Also, users’ Undo and Redo behavior on the software can be used [126, 49], as it may
imply important moments of the video such as confusing parts or the parts where people explore. With
such data, it may be possible to identify steps that are optional or steps where users can branch out
and be more creative about. As such, more extensive interaction data could improve the accuracy in
revealing important points in tutorial videos. Moreover, analyzing the interaction data with respect to
users’ expertise level or quality of outcome can enable tailored support according to expertise level or

goals.
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More Support for Learners and Authors of Educational Videos

SoftVideo demonstrates how utilizing interaction data can enhance the learning experience of software
tutorial videos. Extending this idea, future systems can provide further support to learners. As people
use the system, the system can give adaptive information to users. The system can control the amount
and the content of the information in a personalized way by identifying what information a user needs.
For example, a certain part of the video can be only shown to users who encounter a certain type of
difficulties. Also, although we set the third quartile as a universal metric when defining the difficulty of a
step or detecting users’ confusion, future work can investigate adaptive techniques for identifying the
user’s state and providing more personalized experiences.

Furthermore, our system could be beneficial for authors of educational videos. For example, an
author of an instructional video can identify where users struggle a lot or which steps users miss frequently
so that they can improve the video or provide additional explanations. Visual analytics tools of how
users learn through instructional videos might give insights into understanding users and improving the
content as well.

With our public dataset of synchronized interaction logs of the tutorial videos and the software, we
expect that it could facilitate a further understanding of how users learn from software tutorial videos.

We expect that it will enable future research in data-driven video-based learning.

5.8 Conclusion

This paper presents SoftVideo, a data-driven interface for improving the learning experience of
software tutorial videos. SoftVideo helps users plan ahead before watching a step, gives feedback on
their progress, and presents help suggestions when they struggle. We analyzed collective interaction
logs of a tutorial video in synchronization with the software to provide the difficulty of each step, detect
users’ confusing moments, and suggest relevant steps. A user study showed that data-driven information
allowed participants to plan their behavior of following the tutorial, feel relieved, and overcome confusing
moments. We believe that leveraging richer interaction data could further enrich the learning experience

of both instructional videos and complex software.
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Chapter 6. GUIDE: A Benchmark for Understanding and
Assisting Users in Open-Ended GUI Tasks

This chapter focuses on the final phase, the Autonomous phase, where users work independently in
their own environment. In this stage, user behavior states and intent serve as useful contextual units for

understanding user demonstration videos and providing appropriate assistance.

6.1 Motivation and Contributions

Graphical User Interface (GUI) agents hold great promise for supporting users in complex workflows,
in mobile [108, 75, 199], web [159, 68, 193, 43, 206], and software application tasks [197, 137]. In creative
and analytical tools such as Photoshop or PowerPoint, these agents can automate repetitive subtasks or
provide guidance to help users achieve their goals more efficiently. Most existing GUI agents, both in
academic research [61, 104, 201] and in commercial services like Microsoft Office Copilot [118] or Figma
Make [52], focus on full automation: given a goal, they either execute a sequence of clicks and keystrokes
to complete the task or directly generate the desired output. While this approach offers convenience,
it overlooks how people actually work with software. In real-world open-ended creative or analytical
workflows, users often prefer to retain control—to experiment, explore alternatives, or iteratively refine
their designs [78]. An agent that takes over the entire interface can undermine the user’s agency and may
even slow down the progress when users must repeatedly revise prompts or undo automated actions.

Recent work on proactive task assistance takes a more balanced approach [177, 111, 183, 198, 184].
Rather than automate tasks for users, proactive assistants infer a user’s context and intent and deliver
timely, relevant help. Studies in programming and productivity tools show higher efficiency and satisfaction
when a system detects a need and intervenes at the right moment [151, 28, 144, 177]. Yet, the ability to
model and track users’ evolving behavioral context remains underexplored in current multimodal systems
that power GUI agents.

To achieve a truly human-assisting GUI agent, a key ability is to comprehend users’ cognitive context
and intentions to provide appropriate support [69]. In real-world scenarios, users rarely articulate their
goals or needs explicitly, making it natural for systems to rely primarily on visual cues from the screen.
These user actions often carry semantic structure, such as hovering, undoing, or repeatedly opening
menus, that signal intent. However, interpretation remains challenging: similar actions may stem from
entirely different intents. For example, repeated undo actions might indicate confusion or deliberate
refinement. As a result, without deeper reasoning, assistance based solely on surface-level actions can
lead to shallow or misaligned responses.

To address this challenge, we present GUIDE (GUI Understanding, Intent, and Help Decision
Evaluation), a benchmark designed to evaluate multimodal models (MLLMs) on their ability to understand
and assist users in complex software workflows. GUIDE introduces a three-stage evaluation framework:
(1) Understanding the user’s behavioral state to identify their current workflow phase; (2) Reasoning
about their underlying intention and what they aim to accomplish; and (3) Assisting by delivering the
appropriate form of help at the right moment.

We collected 67.5 hours of screen recordings from 120 human demonstrations across 10 widely

used applications—including Photoshop, Figma, PowerPoint, Premiere Pro, and Excel-—covering 40
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Domain Video Video . . .
Dataset Video Source Primary Goal Evaluation Focus

# # Duration

Behavior Intent Help

PsTuts [95] 1 - 71.4h Instructional Videos Action Understanding

VideoWebArena [74] 6 74 3.8 h  Human-Recorded Tutorials  Task Automation

VideoGUI [104] 11 178 7.1h Instructional Videos Task Automation v
UI-Vision [128] 83 450 4.8 h  Experts Performing Tasks Task Automation

AssistGUI [61] 9 100 <83h Instructional Videos Task Automation v
WorldGUI [201] 10 611 <30.5h Instructional Videos Task Automation v
GUIDE (Ours) 10 120 67.5 h Novice Demonstrations Behavior Understanding v v v

Table 6.1: Comparison of GUIDE with existing GUI video understanding datasets. GUIDE differs
from existing benchmarks by () collecting screen recordings from novice users, (i) capturing how they
naturally behave in open-ended tasks with a focus on behavior understanding, and (4i) evaluating systems

based on human user needs rather than task automation.

open-ended tasks designed to elicit natural user behavior. Unlike prior work that primarily targets video
understanding from expert-recorded instructional videos on closed-ended tasks [95, 104, 128, 61, 201], our
focus is on novice users working on open-ended tasks, with the goal of building collaborative Al systems
that assist users during exploration, trial-and-error, and learning. Observing novice workflows allows us
to capture authentic moments of confusion, decision-making, and discovery, offering rich opportunities for
AT to provide timely, context-aware support. Each session includes both screen recordings and think-aloud
narrations that surface the user’s underlying intentions and cognitive states.

Building on this dataset, we define three-staged benchmark tasks: First, (i) Behavior State
Detection evaluates whether a model can identify the user’s behavioral state, such as exploration or
confusion, based solely on visual cues. To support this, we developed a taxonomy of nine user states
reflecting diverse cognitive and behavioral phases in open-ended GUI workflows, grouped into four
high-level categories: Planning, Execution, Problem-Solving, and Evaluation (Figure 6.4). This structure
aligns with human cognition and interaction theories [17, 131], while introducing finer distinctions tailored
to GUI-based task behavior. Next, (ii) Intent Prediction targets inference of the user’s immediate
goal—what they are trying to accomplish in the given moment. The final task, (iii) Help Prediction,
assesses whether a model can determine 1) whether the user needs assistance or not, and if so, 2) what type
of help would be most appropriate, such as explaining a feature, suggesting an alternative, or addressing
an error. By leveraging both visual screen recordings and accompanying think-aloud narrations, we
automatically generated data for each task, which was subsequently verified through human review for
accuracy and consistency.

Evaluation across eight state-of-the-art MLLMs reveals that while current models struggle to interpret
user behavior and predict underlying intent and help needed—achieving only 44.6% accuracy on behavior
state detection and 55.0% on help prediction, performance improves significantly when structured user
context is provided. For example, supplying behavioral state and intent information boosted help
prediction accuracy by up to 50.2 percent point for the lowest-performing model.

Our results suggest a promising path forward: providing different layers of human-grounded context,
such as behavioral cues and inferred goals, can lead to more accurate assistance decisions. These findings

indicate that training models on data reflecting users’ behavior, intentions, and help needs may enable
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agents to reason more deeply and assist more effectively. To facilitate future research on collaborative

GUTI agents, we will publicly release the dataset.

6.2 GUIDE Benchmark

(1) User Behavior State Detection (2) Intent Prediction (3) Help Prediction

Which behavior state is the user in? What is the user trying to achieve? Does the user need help? If so, what kind?

i 0] raCOmed T

# - emeBo 8T L. o

’-g “I'm trying to see all the effects we can . “I'm going to duplicate this and make it . “I really don't know how to make use of
explore..” smaller.” any of these texts.”

(3-1) Help Need Does the user need help?

i Frustration
Ta:ﬁdUgriif:::{;géng Sl .° A. Change the color of the rectangular shape 763 No
Ideation and Planning DEENETE B. Adjust the spacing between the form elements (3-2) Help Content What help is needed?
v/ Exploration and Seeking External Help C. Create a sign-up button A. How to color grade the video footage
Decision-aking UelECE L Ol B. Generate automatic captions
Performing Actions Assessment '{ D. Create a progress bar ]

v/ C. Get a guide on how to use text effects ]

D. Apply a special effect to the video clip

Figure 6.1: Overview of the three core tasks in the GUIDE benchmark. (1) User Behavior State
Detection identifies the user’s current behavioral mode (e.g., Exploration and Decision-Making). (2)
Intent Prediction infers what the user is trying to achieve (e.g., Create a progress bar). (3) Help
Prediction determines whether the user needs assistance and, if so, what kind of help is relevant (e.g.,
Get a guide on how to use text effects). Together, these tasks enable a comprehensive understanding of
user behavior and assistance needs in software GUI environments. We evaluate MLLMs on their ability
to infer these solely from the visual input, without access to the demonstrator’s narration — a setting

that closely reflects real-world use.

To develop a benchmark that focuses on understanding and assisting users, we collected demon-
strations from novice users. Unlike existing datasets that focus primarily on expert demonstrations or
polished instructional videos [95, 104, 128, 61, 201], our dataset captures the authentic challenges and
exploratory behaviors that novices exhibit during task completion, serving a crucial role in building
collaborative agents. Building on these demonstrations, we propose a suite of tasks designed to evaluate

models’ capabilities to understand users and provide effective assistance.

6.2.1 Video Collection

We collected 120 demonstrations from novice users across 10 software applications spanning five
categories: Photo Editing (Photoshop, GIMP), Graphic Design (Figma, Canva), Presentation Design
(PowerPoint, Google Slides), Video Editing (Premiere Pro, CapCut), and Data Analysis (Google Sheets,
Microsoft Excel). For each application, we designed four open-ended tasks aimed at eliciting natural and
diverse user behaviors and approaches (Table ?? in supp.).

We chose creative and analytical tools to surface exploratory workflows and variation in problem-

solving strategies. Each task was completed by three different users to capture diverse strategies and
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Variable Value

Video Length Distribution

# Videos 120 il el Hecn 3928
Total Duration 67.5 hours il W 34 1174
Avg. Duration 33 min 44 sec . E Hax: sgn o
Max Duration 1 hour 23 min 50 sec " i
Min Duration 16 min 42 sec 3—.:
Think-Aloud Narration Ratio 78% 3o
Task Samples € Granularity : )
(1) Behavior State Detection 1.8K
Avg. Segment Length 14.16s 2
(2) Intent Prediction 1.3K
Avg. Segment Length 25.40s ° 50
(3) Help Prediction 1K e
Avg. Segment Length 25.56s
Figure 6.3: Distribution of screen recording video
Figure 6.2: Statistics of the GUIDE lengths.
dataset.

behaviors. We ensured that each task was flexible enough, while still incorporating elements of challenge.
Participants were asked to spend at least 20 minutes per task and meet a few minimal requirements (e.g.,
inserting a relevant image) to mark it as complete.

We recruited 54 novice users of software from Prolific and our institution. Participants were screened
based on their self-reported expertise and familiarity with the features in each application to ensure they
were novice users. During the study, participants worked on the assigned task while recording their screen
and keyboard/mouse input events. They were also asked to think aloud and record their voice as they

carried out the task, verbalizing what they were doing and their thought process.

6.2.2 Benchmark Tasks

To evaluate a model’s ability to understand user context and deliver appropriate assistance, we design
our benchmark as a unified three-stage framework: Understanding — Reasoning — Assisting. These
stages progress from interpreting user behavior to inferring intentions and ultimately providing helpful
assistance. Fach task corresponds to a distinct level of cognitive inference required for a human-assisting
GUI agent to effectively support users in open-ended software workflows.

To construct a dataset for task evaluation, we used the Human-AI collaborative method. We first
transcribed the think-aloud narration using WhisperX [11], and used the narration as a main source
of extracting initial annotations in addition to the video. We employed Gemini-2.5-Pro to first create
annotations needed for each task, which were then refined by human annotators. Note that we use
narration only as an annotation source to capture users’ intentions and mental states. The benchmark
evaluates vision-only understanding, testing whether models can infer these states solely from visual cues,

as in real-world settings without access to user speech.

User Behavior State Detection

Description. This task evaluates whether a model can interpret the user’s behavioral context directly
from visual cues. Models are asked to classify a video segment into one of nine behavior states in
our taxonomy (Figure 6.4), which spans the full range of cognitive and behavioral processes observed

in creative and analytical workflows. Grounded in established theories like Norman’s Human Action
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Planning

Task Understanding and
Preparation

Focused on logistics,
interpreting tasks, gathering
assets, and configuring
environment.

Ideation and Planning

High-level conceptual work,
brainstorming ideas, and
outlining structure.

Execution

Exploration and Decision-
Making

Experimenting with options
to understand effects and
decide which to use.

Performing Actions

Confidently using software
with purposeful actions
executed with little hesitation.

Problem-Solving

Frustration

Encountering blockers,
showing signs of being stuck,
confused, or annoyed.
Debugging

Actively investigating
problem causes, forming and
testing hypotheses.

Seeking External Help
Recognizing knowledge gaps

Evaluation

Waiting and Monitoring

Passive state, waiting for
system-controlled processes
to complete.

Assessment

Intentionally pausing to
review and evaluate work
quality and accuracy.

and turning to external
resources for guidance.

Figure 6.4: Our proposed taxonomy of user behavior states in GUI-based software tasks, organized into
four main phases: Planning, Execution, Problem-Solving, and Evaluation. Each phase captures
distinct patterns of user cognition and interaction, from initial goal formulation to iterative action,

troubleshooting, and reflection.

Cycle [131] and Bloom’s Taxonomy [17], our taxonomy provides a structured foundation for understanding
user behavior, from early planning to problem-solving and reflection.

We developed the taxonomy through a multi-stage, human—AT collaborative process [93]. First, three
authors iteratively created and consolidated an initial taxonomy over five sessions based on observations
of online software task videos. Separately, we prompted Gemini-2.5-Pro to generate a taxonomy from
scratch using our collected video dataset, without providing our initial version. We then augmented the
human-generated taxonomy by integrating novel categories identified by the LLM. Finally, the combined
taxonomy was validated against the entire video dataset to ensure comprehensive coverage and reorganized
into the final set of nine distinct states.

Dataset Curation. After constructing the taxonomy, we aligned each video with its corresponding
narration segments. For every segment, we annotated the user’s behavior state using Gemini-2.5-Pro
according to the taxonomy, prompting the model to produce both a predicted label and its reasoning.
Two human annotators recruited from Prolific then verified and refined these annotations, achieving a
96.1% agreement rate. Finally, we uniformly sampled 200 instances from each of the nine classes, resulting

in a balanced dataset of 1.8K annotated segments.

Intent Prediction

Description. This task evaluates whether a model can reason about the user’s short-term, immediate
goal in context. It focuses on identifying what the user aims to achieve within open-ended workflows.

Dataset Curation. Using the narration-aligned video segments, we prompted Gemini-2.5-Pro to infer
users’ intention in each segment. The think-aloud narrations often revealed users’ goals (e.g., “I'm going
to align these objects”, “I’ll try another color”). Leveraging this signal, we prompted the model to
infer the underlying user intention. After collecting and deduplicating the inferred intents, we further
instructed the model to generate three plausible but incorrect alternatives to serve as distractors for the
multiple-choice evaluation. The resulting intent annotations and distractors were then validated by the

authors, with 88.68% of the data retained, yielding a final set of 1.3K instances.
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Help Prediction

Description. The final task evaluates whether a model can progress from understanding and reasoning
to deciding how to assist. Help Prediction consists of two subtasks: (1) Help Need Detection, a binary
classification task that determines whether the user needs help, and (2) Help Content Prediction,
which identifies the specific type of help needed—such as explaining a feature or suggesting an alternative.
Together, these subtasks assess a model’s ability to anticipate user needs and recommend appropriate
assistance, bridging the gap between perception and actionable support.

Dataset Curation. We identified potential help-seeking moments using two complementary signals.
First, explicit help-seeking behaviors, such as switching to external resources (e.g., Google, YouTube,
ChatGPT) indicated direct attempts to seek guidance. Second, implicit help-seeking cues were extracted
from user narration, where they expressed uncertainty or confusion (e.g., “How do I align this?”, “I can’t
find Layer Mask.”). Additionally, we included clear no-help-needed moments, where users demonstrated
confidence through their narration. Using these signals, Gemini-2.5-Pro was prompted to generate
initial annotations for help-need and help-content labels. After deduplication, the model was additionally
prompted to generate three plausible but incorrect options for each instance for multiple-choice question
evaluation. All annotations and distractors were then reviewed by the authors, resulting in 1K validated
instances, with 78.89% of the original data retained. For 12.5% of the retained instances, the segment’s
start or end time was adjusted to exclude explicit visual help signals (e.g., user turning to Google Search)
to ensure fair evaluation. Overall, 66% of the instances were labeled as help-needed, while the remaining

34% required no help.
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Screenshot User Behavior State

Software: Premiere Pro
[————— gy Task: Edit a short instructional video to clearly
guide a process.
Behavior State: Task Understanding and
Preparation

The user is preparing their digital workspace

before starting the editing task. They locate the
DiiElE necessary video file on their desktop and delete a

superfluous ’test’ file to prevent confusion.
“Okay, I downloaded it already. Delete my test, so I don’t

get confused. I have the video.”
Software: Google Slides

e+ 0 Task: Create a product pitch deck highlighting a
- product’s key features.
Behavior State: Exploration and

Click to add title Decision-Making

The user is actively browsing and comparing
different templates, as shown by the scrolling and
hovering behavior. The narration ("This one looks
d’ fi th luati ti t
“I would like to just use this design or the white some good’) confirms they are evaluating options to
ke a final decision.
minimalistic like 10OS design. Oh, this one. This one fuake a fmat decision

looks good. Okay, let’s just...”
Software: CapCut

Task: Design a creative intro using animated text.
Behavior State: Frustration

The user verbally expresses confusion (‘that’s
strange’) after the software behaved in an
unexpected way. They are momentarily paused,

indicating a blocker in their workflow before they

decide on a new course of action.

“Okay, that’s strange. That’s very strange, honestly.”
Software: Google Sheets

Task: Summarize and visualize product sales by
category or region.

Behavior State: Seeking External Help

The user is unable to find a feature and turns to
ChatGPT for assistance. They type a question
clarifying their problem, wait for the response, and

then read the provided instructions.

(no narration)

Table 6.2: Example instances for the (1) User Behavior State Detection task.
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Screenshot Intent

Software: Canva

EEEEEEEE L oy e ._..._.,_,__ Task: Design a mobile sign-up screen for a

fictional app.

— Intent:

A: Rename the design file to reflect the new
project

B: Add the required input fields to the

design

“So mow that I have the frame as a design base, I need to C: Search for a suitable illustration to use as a

include the input field for name, email.” header

D: Resize the canvas to a custom dimension

Software: Excel
Se oS — e Task: Design a Gantt chart for a mini project.
. s - 5 Intent:
5 A: Adjust the end date of the chart’s
horizontal axis

- : B: Adjust the date interval of the chart’s

horizontal axis

C: Reverse the order of the chart’s vertical axis
D: Adjust the start date of the chart’s horizontal
axis

“okay looks perfect, I need to adjust the end date as well”

Software: Premiere Pro

Task: Transform a long video into a short-form
clip.

Intent:

A: Create a new text layer above the existing
video track

B: Add an image to a specific empty slot in

the timeline

C: Apply a transition effect to the end of a video

“When this slot comes, we should put some kind of image clip
”

here. D: Add a video clip to the end of the current

sequence

Software: PowerPoint

Task: Create a product pitch deck highlighting a
product’s key features.

Intent:

A: Align the logos with the main text boxes.

B: Delete the logos from all the slides.

-i C: Duplicate the logos onto the remaining

q slides.

D: Change the color of the logos on all slides.
“Paste, paste, paste, paste. Done. Done.”

Table 6.3: Example instances for the (2) Intent Prediction task.
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6.3 Experiments

6.3.1 Experimental Setup

We evaluate a range of multimodal large language models (MLLMs) on our benchmark to assess their
ability to understand, reason about, and assist users in open-ended software workflows. Our evaluation
includes eight representative MLLMs spanning both proprietary and open-source models: Gemini-
2.5-Flash [62], Gemini-2.5-Pro [62], GPT-40-mini [136], GPT-40 [136], Claude-4.5-Sonnet [6],
Qwen3-VL-8B [162], InternVideo2.5-Chat-8B [172], and InternVL3-8B [207]. All models are
evaluated in a zero-shot setting using publicly available APIs or checkpoints, without any additional
fine-tuning.

For each test instance, we uniformly sample 32 frames from the corresponding video segment,
providing only visual input (excluding narration audio) to simulate perception based solely on visual
cues. To ensure consistency across models, we use standardized prompting templates. We also prompt
models to generate both a predicted label and supporting reasoning, a strategy shown to improve task
performance [87].

Our main experiments are conducted in an offline inference setting, where models are given the full
video segment to solve the task. To approximate real-world proactive assistant scenarios, we additionally
evaluate an online setting, in which the model receives visual input progressively. Specifically, at 25%,
50%, 75%, and 100% of the segment, we uniformly sample 32 frames from the corresponding prefix for

inference.

6.3.2 Evaluation Tasks

(1) Behavior State Detection. This task measures whether a model can identify the user’s behavioral
state from a given video segment. We provide each model with clips and ask it to classify them into one
of nine taxonomy-defined states. Two configurations are tested: (7) using only the current segment and
(i7) with prior history, where the model is given the immediately preceding segment’s behavior state.

This is framed as a multi-class classification problem, and performance is evaluated using accuracy.

N
1
Accuracy = N Z (g = i) (6.1)
i=1

(2) Intent Prediction. This task evaluates a model’s ability to infer the user’s underlying goal within
a given video segment. Models are prompted to predict what the user is trying to accomplish in two
settings: (7) using only the current segment, and (i) with additional context from the detected behavior
state, where the model is also given the state label and its definition. We adopt a multiple-choice question
(MCQ) format, where the model selects the most likely intent from four candidate options. Performance
is measured using accuracy. For the default setting (i), we additionally report multi-binary accuracy
(MBAcc) following prior work [21, 36, 31], which evaluates whether the model correctly identifies the

ground-truth intent in all three pairwise comparisons against incorrect alternatives.

Accuracy. Measures the proportion of instances where the model selects the correct intent option from

the four candidates.

N
1
Accuracy = N Z 1(9; = yi) (6.2)
i=1
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Screenshot Help

Software: GIMP

Task: Create a bakery logo with a warm, friendly
identity.

Help Content:

A: how to add another image as a layer

B: find the tool to add text

C: remove the image background

D: add a background color or shape

“Where could I insert the text? [...] I'm just going to,
because the help function I don’t quite understand, but

can see if I can add it. Find it in Google.”

Software: Google Slides
Task: Create a quiz deck with multiple-choice

= questions testing sustainability facts
e lang ean o singie slastic st Ui T bk dow in

m cean? Help Content:

A: align the answer choice boxes
e e B: how to create a quiz slide template

C: how to fix a self-identified audio related
error

“I think I made a mistake here and I need to rectify this.” ~D: add animation to reveal the correct answer

Software: Photoshop

Task: Create a composite from two images.
Help Content:

A: how to use the perspective or warp transform
tools

B: center the new layer on the canvas

C: how to use layer blend modes

D: maintain aspect ratio while scaling

“Ill scale it. I just want to scale this up. How do I keep
i?”

Software: Canva

Task: Design a custom 404 error page with a
visual and animated element.

Help Need:

A: help needed

B: no help needed

“So I believe this is, this is great. I believe it’s just

simple.”

Table 6.4: Example instances for the (3) Help Prediction task. For the Help Need Detection task, the

top three instances are labeled as help needed.
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Multi-Binary Accuracy (MBAcc). Following prior work [21, 36], we employ MBAcc to evaluate
robustness against distractors. For a given sample %, let y; be the correct option and C;” = {¢;1,¢i.2,¢i 3}
be the set of three incorrect distractor options. The model performs a pairwise comparison function
f(x,opt 4,0ptg) which returns the chosen option between A and B. A prediction is considered correct

under MBAcc only if the model prefers the ground truth y; over every distractor in C; .

N

MBAcc = % ST 1 @inyine) = wi) (6.3)

=1 ceC;”

(3) Help Prediction. The final task evaluates whether models can move beyond understanding and
reasoning to provide actionable assistance. Given a video segment, models are asked to predict whether
the user requires help (Need), and if so, what kind of help would be most appropriate (Content). Help
Need Detection is framed as a binary classification task and evaluated using accuracy, precision, recall,
and Fl-score. Help Content Prediction, similar to Intent Prediction, uses a multiple-choice question
(MCQ) format and is evaluated using accuracy and multi-binary accuracy (MBAcc) for the default setting.
We test three settings for both tasks: (i) video only, (ii) video + behavior state, where the model is given
the behavior label and its definition for the current segment, and (#) video + behavior state + intent,
where the model additionally receives the identified user intention. These settings progressively assess the

model’s ability to leverage layered user context for meaningful, situation-aware assistance.

Help Need Detection

e Accuracy: The ratio of correctly predicted observations to total observations.
TP+TN
TP+TN+FP+FN

Accuracy = (6.4)

e Precision: The ratio of correctly predicted positive observations to the total predicted positives.

TP
Precision = ———— 6.5
recision = - T FP (6.5)
e Recall: The ratio of correctly predicted positive observations to the all observations in the actual
class. TP
l=——— .
Reca TPLFN (6.6)

e F1-Score: The harmonic mean of Precision and Recall.

Fl1—9 Precision - Recall

" Precision + Recall (6.7)

Help Content Prediction Same as the metrics used in (2) Intent Prediction.

6.3.3 Results

Table 6.5 presents the performance of baseline models on GUIDE across the tasks, with accuracies
reported under default and context-augmented settings. Overall, models performed weakest on Behavior
State Detection and Help Prediction, with default-setting accuracies peaking at 44.61% and 55.00% for
Behavior State Detection and Help Content Prediction, respectively, both from Claude-4.5-Sonnet [6].
While Gemini-2.5-Pro [62] reached nearly 70% accuracy on Help Need Detection, most other models
showed substantially lower performance across both Help sub-tasks. Across tasks, we observe that models
generally benefit from added behavioral and intent context, with particularly notable improvements in

help-related predictions. We report the main findings below.
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(1) Behavior Detection (2) Intent Prediction (3) Help Prediction

Model - + Prev. - + Behavior Help Need Detection Help Content Prediction
—  +Bhv. +Bhv.+Itnt. - +Bhv. +Bhv.+Iint.
Gemini-2.5-Flash [62] 36.91 38.19 65.40 66.77 53.64 76.33 78.07 49.53 53.75 78.59
Gemini-2.5-Pro [62] 42.44 43.79 67.80 70.16 69.82 84.73 82.38 52.74 57.03 79.69
GPT-40-mini [136] 17.65 17.07 60.76 62.19 46.05 78.92 82.26 31.32 42.86 79.84
GPT-4o0 [136] 36.32 37.24 61.19 62.58 49.69 87.79 87.91 45.95 48.37 79.78
Claude-4.5-Sonnet [6]  44.61 45.63 71.39 72.62 39.49 58.56 59.43 55.00 62.17 82.79
Qwen3-VL-8B [162] 37.97 38.13 62.70 64.03 52.83 70.39 77.36 46.06 50.63 80.11
InternVideo2.5-8B [172] 21.57 27.02 43.79 45.13 34.36 35.35 35.25 23.67 29.15 73.86
InternVL3-8B [207] 22.57 24.90 46.11 46.97 34.94 43.73 46.82 27.03 32.20 72.97

Table 6.5: Evaluation results on accuracy across (1) Behavior State Detection, (2) Intent Prediction, and
(3) Help Prediction.

Behavior State Detection

Behavior state detection remains highly challenging. All models struggled to accurately infer
the user’s behavioral state from video segments, underscoring the difficulty of the 9-way classification
task. While proprietary models such as Claude-4.5-Sonnet [6] and Gemini-2.5-Pro [62] performed best,

no model surpassed 45% accuracy, and most fell below 40%.

Models often misinterpret signals of struggle. The most common failure was misclassifying
Frustration or Debugging as Performing Actions or Exploration and Decision-Making (Figure 6.5). These
errors reveal a critical limitation in current MLLMs: a systemic bias toward interpreting interactions
as productive execution while failing to recognize signs of struggle or hesitation. While models achieve
reasonable accuracy for visually distinct states like Seeking External Help (0.61) and Performing Actions
(0.57), they show near-zero capability in detecting Frustration (0.07) and Debugging (0.04). Instead, these
negative states are overwhelmingly misclassified as Performing Actions (39% and 43%, respectively) or
Ezxploration and Decision-Making (31% and 29%). This suggests that models perceive the visual activity
of a struggling user—such as repeated clicking or rapid mouse movements—as deliberate progress, lacking

the temporal understanding to distinguish between trial-and-error and confident execution.

Temporal context shows modest potential. Incorporating the prior behavior state led to small but
consistent gains across models. While most improvements were marginal, the largest gain was observed
for InternVideo2.5-8B [172] with 5.45 percentage points, suggesting that temporal context holds value

and may be more effectively utilized with improved temporal reasoning capabilities.

Intent Prediction

Intent prediction is the most tractable task, but still imperfect. Among the three tasks, models
achieved the highest performance on intent prediction, with several surpassing 60% accuracy. However,
performance drops under the stricter MBAcc metric, which requires consistent discrimination across all

answer pairs. This indicates that while models can often select a plausible intent, they still struggle with

82



Confusion Matrix (Normalized)

| 0.6
Task
Understanding 0.01 0.00 0.10 0.01 0.04
Ideation & |
Planning 4 0.12 0.02 0.00 o.08 0.01 016 _
Exploration &
Decision-Making 7 0.03 0.01 0.00 0.02 0.00 0.07
0.4
Performing
Actions 1 0.06 0.01 0.00 0.03 0.01 0.06
=l
3 g
- Frustration - 0.03 0.07 0.01 0.03 0.03 013 038
g =
o
= 3
a
Debugging - 0.04 0.04 0.04 0.04 0.01 0.10
-0.2
Seeking
External Help < 0.08 0.02 0.16 0.09 0.01
Waiting &
Monitoring 1 010 0.01 016 0.15 0.04 01
Assessment- 005 0.00 0.21 0.01
i 1 T 1
a3 @ o £ &
ey o 4 ;
e S S & & $
P I o
& LS & o « <+
N &

Predicted Label

Figure 6.5: Normalized confusion matrix for user behavior state classification. The most common
errors occur when Frustration or Debugging is misclassified as Performing Actions or Exploration and

Decision-Making.

reliably identifying the correct one over all distractors (Table 6.7).

Behavior context helps, but only slightly. Incorporating behavior state context (i.e., the user’s
behavioral label and definition) consistently improved performance, but the gains were relatively modest
across all models. This suggests that while such context may offer useful cues, it does not provide sufficient

information on its own or is not yet effectively leveraged by current models for intent inference.

Help Prediction

High Variance and Missed Help Cases in Need Detection. Table 6.6 shows the full performance
results for Help Need Detection. This subtask exhibited the most variance across models, with F1
scores ranging from 0.31 (InternVideo2.5-8B [172]) to 77.42 (Gemini-2.5-Pro [62]). Notably, recall was
particularly low across most models—except for Gemini-2.5-Pro, all others had recall under 37. This
indicates that many instances where users actually needed help were misclassified as not needing it,
echoing similar trends in Behavior State Detection (Section 6.3.3) where models frequently misinterpreted

signals of struggle.
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Help Need Detection

Model - + Behavior State + Behavior State + Intent
Acc  Prec  Rec F1 Acc  Prec  Rec F1 Acc  Prec  Rec F1
Gemini-2.5-Flash [62] 53.64 83.27 36.62 50.87 76.33 97.67 65.47 7839 78.07 9456 70.62 80.86
Gemini-2.5-Pro [62] 69.82 76.42 78.09 77.42 84.73 93.61 8234 87.61 8238 91.20 80.94 86.76
GPT-40-mini [136] 46.05 83.03 2231 35.17 76.73 97.61 66.23 78.92 79.71 9720 71.29 82.26
GPT-40 [136] 49.69 74.41 35.14 4773 87.79 95.39 85.53 90.19 87.91 95.12 85.95 90.30
Claude-4.5-Sonnet [6] 3949 87.69 892 16.19 5856 99.16 37.09 53.99 59.43 99.19 38.44 5541
Qwen3-VL-8B [162] 52.83 79.86 34.23 4792 7039 9435 5850 7222 7736 95.38 67.56 79.09
InternVideo2.5-8B [172] 34.36 33.33 0.16 0.31 35.35 90.91 1.56 3.07 3525 8333 1.56 3.07
InternVL3-8B [207] 3494 7273 1.25 2.46 43.73 98.88 1577 27.20 46.82 98.40 19.22 32.16

Table 6.6: Results for Help Need Detection on accuracy, precision, recall, and F1l-score across three

conditions (default, with behavior state, with behavior state and intent).

Behavior state context improves Help Need Detection. Providing the user’s behavior state led
to consistent and significant improvements in Help Need Detection across all models, with the largest
gain observed in GPT-4o [136], which achieved a 42.46-point increase in F1 score. This suggests that
context, such as whether a user is exploring, hesitating, or showing signs of frustration, provides strong

cues for determining help needs.

Help Content Prediction remains challenging, but benefits from intent context. Help Content
Prediction proved particularly challenging, with all models struggling and the top accuracy reaching
only 55% from Claude-4.5-Sonnet [6], which further declined to around 50% under the stricter MBAcc
evaluation. However, incorporating intent information, representing what the user is trying to accomplish,
led to substantial improvements across models. The largest gain was observed in InternVideo2.5-8B [172],
with a 50.19 percentage point increase, highlighting the importance of understanding both user state and

intent for providing meaningful, targeted support.

Other Findings

Online vs. Offline Setting: models benefit more from temporal Context. In our online
simulation experiment, where models are given progressively more of the video segment (25%, 50%,
75%, and 100%), we observe consistent performance gains across all four tasks (Figure 6.6). Gemini-2.5-
Flash [62] shows substantial improvements with more visual input, indicating a strong ability to integrate
growing context into more accurate predictions. In contrast, InternVideo2.5-8B [172] displays relatively
minor gains. These findings suggest that gathering appropriate context over time is crucial for proactive
AT assistance, where systems must not only react but also anticipate user needs based on incomplete and

evolving information.
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Figure 6.6: Accuracy trends for Gemini-2.5-Flash [62] and InternVideo2.5-8B [172] across the tasks in
the online setting, where models are given progressively more of the video segment (25%, 50%, 75%, and
100%). Both models show steady performance gains as they see more segments, while Gemini-2.5-Flash

shows larger and more consistent gains.

Intent Prediction Help Prediction

Model

Acc MBAcc Acc MBAcc
Gemini-2.5-Flash [62] 65.40 59.09 49.53 44.69
Gemini-2.5-Pro [62] 67.80 64.34 52.74 45.31
GPT-40-mini [136] 60.76 50.24 31.32 28.59
GPT-4o [136] 61.19 5658 4595  41.25
Claude-4.5-Sonnet [6] 71.39 65.44 55.00 50.78
Qwen3-VL-8B [162] 62.70 58.07 46.06 44.69
InternVideo2.5-8B [172] 43.79 27.98 23.67 18.75
InternVL3-8B [207] 46.11 40.75 27.03 23.75

Table 6.7: Evaluation of Intent Prediction and Help Content Prediction, with Accuracy (Acc) and
Multi-Binary Accuracy (MBAcc).

6.4 Conclusion

We introduced a benchmark for evaluating models in understanding, reasoning about, and assisting
users in open-ended GUI-based workflows. Grounded in real novice user demonstrations, our tasks—
behavior state detection, intent prediction, and help prediction—capture core capabilities needed for
collaborative GUI Agents. Evaluation across state-of-the-art MLLMSs revealed that models struggle to
interpret nuanced user behavior and accurately infer assistance needed in open-ended GUI scenarios.
However, when provided with appropriate user context, such as behavior state and intent, models showed
consistent improvements, highlighting the value of structured user understanding in enhancing model
support capabilities. Unlike prior benchmarks that primarily focus on action recognition, our work
emphasizes user cues related to cognition, behavior, and intent that agents must interpret to collaborate
effectively with people. Overall, our benchmark lays the groundwork for developing user-aware agents

that support human workflows.
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Chapter 7. Discussion

This dissertation set out to bridge the gap between the linear, unstructured nature of procedural
video and the dynamic, non-linear needs of learners. Through the development of structural frameworks
(VideoMix, Beyond Instructions) and assistance systems (SoftVideo, GUIDE), I have demonstrated that
augmenting video with Contextual Units—semantic structures that define the what, how, and why of a
procedure—can effectively scaffold the full Video Learning Cycle.

In this chapter, I synthesize findings across the four projects to discuss the broader implications of
this work. I first examine how the granularity of contextual units should adapt to the user’s learning
phase (Section 7.1). I then discuss design principles for selecting effective contextual units (Section 7.2).
Next, I outline directions for adaptive procedural support through user modeling (Section 7.3). Finally, I

discuss the generalizability of contextual units (Section 7.4).

7.1 The Dynamic Nature of Contextual Units

A central finding of this thesis is that there is no single “atomic unit” of procedural knowledge.
Traditional approaches often rely on static temporal segmentation, such as dividing a video into chrono-
logical steps or chapters. However, the projects in this dissertation show that the most useful unit of
analysis is not fixed. It shifts with the user’s goals and phase within the learning lifecycle. As users move
from exploring a task to executing it, the type of contextual unit that supports their progress changes
accordingly.

In the Exploration phase, users benefit from macro-level units that help them understand what
the procedure consists of and how different tutorials compare. VideoMix [190] showed that users reason
at the level of Outcomes, Approaches, and Methods when forming a mental model of the task landscape.
At this stage, the unit is essentially the “what” of a procedure. High-level structure helps users decide
which strategy fits their needs.

In the Comprehension phase, once users commit to a tutorial, the relevant unit shifts to more fine-
grained semantic content. Beyond Instructions [188] revealed that users attend not only to instructions,
but also to other information types that clarify the “why” or “how” behind a procedure, such as
Justifications, Warnings, or Tool Specifications. These semantic cues help users access and navigate the
content efficiently.

In the Following phase, the salient unit becomes the “how.” As users attempt to carry out the
procedure, they need cues that reflect difficulty, effort, and typical pitfalls. SoftVideo [191] demonstrated
that interaction-derived signals such as Step Difficulty and Step Relevancy provide meaningful guidance
for pacing, identifying struggles, and recovering from errors. These units do not describe the content
of the video alone. They capture how people actually experience the procedure, allowing the system to
support them as they act.

Finally, in the Assistance phase, the contextual unit shifts again toward modeling user cognition.
GUIDE showed that intelligent assistance depends on understanding both why the user is acting (Intent)
and how they are progressing (Behavior State), such as moments of Frustration. They allow assistive
agents to decide when to intervene and what support to offer.

Across the four projects, I demonstrate that contextual units are dynamic and phase-specific. This

86



< How to do layer mask in Photoshop Q)

These are several possible @
methods to do layer mask.
Which one do you like? @

o You should pay attention wher@

‘ 2 ] daing this step.
;, Many people made a mistake!

ﬂ You might want to understand {hj g =
; what effects this create... @ Are you looking for
this option? @

Exploration Comprehension Following Autonomous

Figure 7.1: The same user query can be supported differently depending on the learning phase, with

systems adapting contextual units to the user’s current goal.

progression suggests that future procedural learning interfaces should adapt their level of granularity to the
user’s current phase. Although I presented the task learning cycle linearly as Exploration, Comprehension,
Following, and Autonomous, task learning is inherently iterative. Users move back and forth between
phases rather than progressing in a fixed order. In the GUIDE dataset, I observed many instances of
users transitioning from the Autonomous phase back to earlier phases, such as opening a tutorial video
alongside the software to follow or replicate specific steps. These observations show that any learning
phase can occur at any point in a user’s workflow. As a result, effective user support must be conditioned
on an ongoing inference of the user’s current learning phase, rather than assuming a fixed progression.

Adapting to these shifts is key to supporting real procedural learning in practice.

7.2 Design Principles for Selecting Effective Contextual Units

Based on the findings, I present design principles for selecting contextual units that support task
learning. First, contextual units should be selected according to the learner’s current goal, which is
closely tied to their learning phase. When users seek to understand an underlying concept, they benefit
from informational units such as justifications, which are most relevant during the Comprehension
phase. In contrast, when users attempt to correct an error or replicate an action, they benefit more
from interaction-derived units, such as relevant steps demonstrated by other users, which align with the
Following phase.

This distinction has direct implications for system responses. For example, when a user asks, “How do
I create a layer mask in Photoshop?”, current systems typically provide a single, static answer. However,
the appropriate response depends on the user’s underlying goal (Figure 7.1). If the user’s goal is to explore
available options, the system should present multiple possible approaches. If the goal is to understand
the underlying concept, the system should explain what a layer mask does and why it is useful. When
the goal is to execute or replicate an action, the system can highlight common pitfalls or critical steps
during execution. Finally, when the user’s goal is to work independently but resolve emerging issues, the
system should provide targeted, proactive assistance when difficulty is detected.

Furthermore, contextual units should be chosen to reduce the dominant cognitive burden at the user’s
current moment. During the Exploration phase, the primary challenge lies in searching and comparing

alternatives, so units should focus on reducing discovery and comparison costs. During the Comprehension
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phase, the challenge shifts to extracting relevant segments from long or dense instructional content,
making concise explanatory units particularly useful.

Taken together, these principles emphasize that effective assistance in task learning depends not on
static content delivery, but on dynamically aligning contextual units with the learner’s evolving goals,
phase, and cognitive demands. By selecting units that reflect where users are and what they need at
a given moment, systems can provide support that is timely, relevant, and aligned with real learning

behavior.

7.3 User Modeling for Adaptive Procedural Support

While contextual units such as approaches, information types, and step-level cues can broadly benefit
learners, their effectiveness can be significantly enhanced when grounded in user modeling. Capturing
user-specific context allows systems to select and present contextual units in ways that better align with
individual needs and learning trajectories, rather than offering uniform, static support.

Learners differ in their prior knowledge, preferences, and behavioral patterns, all of which shape how
they interpret instructions and where they may require guidance. Signals such as navigation behavior,
software interaction logs, and other engagement patterns can reveal these differences in a non-intrusive
manner. For example, how a user typically interacts with software when confident versus when struggling
can help a system infer their current progress and determine whether support is needed. By leveraging
such signals, systems can move from static presentation to dynamic recommendation, such as prioritizing
information types a user is likely to value based on prior experience, or identifying moments of difficulty
and offering timely assistance.

Through user modeling, systems can deliver adaptive video experiences that tailor explanations,
highlight relevant information, and adjust the level of detail to the learner’s current needs. They can also
support personalized generation, producing examples or instructions that reflect a user’s specific context,
such as the tools they are using or missing background knowledge. Over longer periods, such systems
can offer longitudinal support by tracking evolving skill profiles, identifying recurring challenges, and
adapting assistance as the learner progresses.

These ideas have important implications for the design of Al agents that assist users during task
learning. First, effective user-assisting agents must be able to infer which stage of the task-learning cycle
a learner is in, so that they can provide appropriate forms of support. Second, they must incorporate
user modeling to understand and adapt to diverse factors, including background knowledge, interests,
preferences, and habitual workflows. Overall, developing user-aware Al agents opens opportunities
for more personalized and adaptive procedural learning. By integrating perception, inference, and
interaction, these systems can respect user agency while providing meaningful support across domains,

from software-based tasks to hands-on physical activities.

7.4 Generalizability of Contextual Units

The systems and frameworks presented in this dissertation are grounded in specific task domains,
which shaped both their design and evaluation. VideoMix and Beyond Instructions focus on tasks with
tangible and physical outcomes, such as cooking or assembly. This setting made it possible to clearly

demonstrate the value of macro-level contextual units such as outcomes, approaches, and methods. At
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the same time, this domain focus raises broader questions about how these findings extend to tasks with
different learning dynamics or less clearly defined outcomes.

Many of the contextual units introduced in this work are likely to generalize across domains. High-
level approaches or alternative methods, for example, are common in a wide range of procedural activities.
However, other domains may rely on distinct, domain-specific contextual signals. For example, in
music learning, tone, rhythm, or expressive variation may play a central role, while in programming,
language-specific constructs, abstractions, or debugging patterns may be more critical. Understanding
which contextual units are broadly shared and which are domain-specific remains an important direction
for future research.

The latter part of this dissertation focuses on software and GUI-based tasks through SoftVideo and
GUIDE, where fine-grained interaction logs and behavioral cues serve as key signals for understanding user
state. These domains benefit from rich, readily available interaction data, such as mouse clicks or cursor
movements. Extending this approach to non-GUI domains presents new challenges and opportunities. In
physical tasks such as cooking or craftwork, cues may instead arise from tool-handling patterns, timing
rhythms, or coordination between actions, which may require alternative sensing modalities such as
wearables, environmental sensors, or computer vision. Together, these directions suggest that while the
specific implementations in this work are domain-bound, the broader concept of contextual units as a
link between video content, user behavior, and adaptive support has the potential to generalize across a

wide range of procedural learning domains.
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Chapter 8. Conclusion and Future Work

This dissertation demonstrated that augmenting procedural videos with granular Contextual Units
can effectively support the full lifecycle of human task learning. This chapter summarizes the main

contributions of the thesis and proposes future directions.

8.1 Summary of Contributions

e Video Understanding: Novel computational pipelines and taxonomies for extracting meaningful

semantic structure from unstructured procedural videos.

e Video Interaction: Interaction techniques that facilitate the sensemaking of procedural content

and bridge the gap between passive viewing and active execution.

e User-Assisting AI: Benchmarks and frameworks for developing intelligent agents and assistive

interfaces that model high-level user states for building context-aware systems.

8.2 Future Directions

8.2.1 Personalized and Adaptive Videos

Learners differ in their prior knowledge, background, navigation patterns, and responses to difficulty.
Through user modeling, future systems could infer a learner profile to tailor recommendations, highlight
relevant information, or adjust the level of detail presented in a video. In addition, videos themselves can
become “live” instructional materials that evolve based on how learners interact with them. By detecting
where users struggle or repeatedly revisit, a system could automatically restructure or annotate videos
by inserting clarifying tips, adding pauses, or surfacing alternative explanations at those timestamps.
Such personalized and self-evolving tutorials would help learners access the most relevant guidance while

continuously improving in response to real usage patterns.

8.2.2 Generative Instructional Media

While this dissertation focuses on structuring and reorganizing existing instructional videos, the
contextual units identified here reveal opportunities for generating pedagogically meaningful learning
materials. Rather than producing arbitrary content, generative systems could use these units as semantic
constraints to create tutorial segments that address specific learner needs. For example, a generative
model could be conditioned to amplify scaffolding for novices by synthesizing additional Justifications
or Tips, or conversely, to enhance visual clarity by generating detailed intermediate Status of the work.
Grounding generative output in structured contextual units would allow future systems to produce

instructional media that support more controllable and effective learning.

90



8.2.3 Collaborative AI Agents for Task Learning

There is a growing opportunity to design collaborative Al agents that assist users while preserving
their sense of control. Rather than relying on full automation, future agents could model user intent,
anticipate upcoming challenges, and intervene in ways that complement the user’s ongoing actions. The
form of assistance should flexibly adapt to the user’s immediate goals. Users who want to maintain
momentum may benefit from explicit help, such as automating a small sub-action or surfacing a highly
relevant tutorial segment, while those aiming for deeper procedural understanding may benefit more
from implicit help, including gentle cues, clarifications, or highlighting relevant prior interactions. Such
scaffolded assistance would help users overcome difficulties without disengaging them from the learning
process. Importantly, this perspective also suggests rethinking how we evaluate Al agents for task learning:
while many current systems emphasize task completion or success rate, a more meaningful measure is
whether the support leads to durable learning, such as whether users can independently resolve similar
challenges when they arise again. By grounding interventions in user modeling and evaluating their
impact on long-term retention rather than short-term completion, collaborative agents can more effectively

support procedural learning.

8.2.4 Longitudinal Support for Skill Development

Future research can also examine procedural learning over longer time horizons. While SoftVideo
showed how collective interaction data reveals meaningful patterns within a single tutorial, an equally
important direction is modeling a single user across many videos to understand their evolving skill profile.
Tracking how learners revisit tutorials, where difficulties persist, and how their reliance on guidance
changes over time would enable more nuanced and personalized support. Longitudinal models could
recommend different tutorial styles as the learner matures, identify recurring weaknesses across tasks,
or gradually adjust the level of assistance to foster greater independence. By combining structured
instructional representations with long-term behavioral insights, future systems can support not only

immediate task completion but also sustained skill development.
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