
석 사 학 위 논 문
Master’s Thesis

학습자와 교사가 스스로 맞춤형 학습 도구를

만들도록 돕는 시스템 설계

Designing Systems for Empowering Learners and Teachers to

Create Adaptive Learning Tools

2025

진 형 욱 (陳炯旭 Jin, Hyoung Wook)

한 국 과 학 기 술 원

Korea Advanced Institute of Science and Technology



석 사 학 위 논 문

학습자와 교사가 스스로 맞춤형 학습 도구를

만들도록 돕는 시스템 설계

2025

진 형 욱

한 국 과 학 기 술 원

전산학부



학습자와 교사가 스스로 맞춤형 학습 도구를

만들도록 돕는 시스템 설계

진 형 욱

위 논문은 한국과학기술원 석사학위논문으로

학위논문 심사위원회의 심사를 통과하였음

2025년 6월 11일

심사위원장 김 주 호 (인)

심 사 위 원 이 의 진 (인)

심 사 위 원 이 탁 연 (인)



Designing Systems for Empowering Learners and

Teachers to Create Adaptive Learning Tools

Hyoung Wook Jin

Advisor: Juho Kim

A dissertation submitted to the faculty of

Korea Advanced Institute of Science and Technology in

partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

Daejeon, Korea

June 11, 2025

Approved by

Juho Kim

Professor of Computer Science

The study was conducted in accordance with Code of Research Ethics1.

1 Declaration of Ethical Conduct in Research: I, as a graduate student of Korea Advanced Institute of Science and

Technology, hereby declare that I have not committed any act that may damage the credibility of my research. This

includes, but is not limited to, falsification, thesis written by someone else, distortion of research findings, and plagiarism.

I confirm that my thesis contains honest conclusions based on my own careful research under the guidance of my advisor.



MCS 진형욱. 학습자와 교사가 스스로 맞춤형 학습 도구를 만들도록 돕는 시스

템 설계. 전산학부 . 2025년. 106+vi 쪽. 지도교수: 김주호. (영문 논문)

Hyoung Wook Jin. Designing Systems for Empowering Learners and Teach-

ers to Create Adaptive Learning Tools. School of Computing . 2025.

106+vi pages. Advisor: Juho Kim. (Text in English)

초 록

온라인 학습은 강의 비디오, 코드 예시, AI 기반 챗봇 등 다양한 디지털 학습 도구와의 지속적인 상호작용을

수반한다. 이러한 교육 기술에 대한 연구는 학습자의 고유한 니즈를 파악하고 적응형 학습 도구를 개발하는

데 중점을 두어왔다. 하지만, 연구자 중심의 하향식 개발 방식은 제한된 인력과 자원 때문에 다양한 학습자

인구 유형, 학습 성향, 학습 상황에 모두 대응하는 데 한계가 있다. 본 논문에서는 학습자와 교사가 컴퓨터

기술의도움을받아스스로적응형학습도구를설계할수있는자족적접근방식을연구했다. 상향식접근이

란 개념 증명을 위해 CodeTree, TeachYou, TeachTune라는 세 가지 웹 기반 시스템을 구축하고 대학

프로그래밍 및 중학교 과학 교육 환경에서 효과를 실험해 보았다. 이러한 시스템에서 공통으로 학습자와

교사는 계층적 표현에 기반한 저작 인터페이스를 사용하여 적응형 학습 도구를 개발할 수 있다. 계층적

표현은 정보를 작은 단위로 나누는 구조를 지칭하며, 학습자 간 협력을 조율하는 중심이 되거나, AI를 세밀

하게 조정하는 인터페이스로 기능하거나, 학습 체계적으로 검토하는 분석 도구로써의 가능성을 살펴보았다.

사용자 및 기술 실험을 진행한 결과, 계층적 표현을 기반으로 하는 저작 인터페이스를 사용하면 학습자와

교사가 적응형 학습 도구를 만들고, 협업하고, 검토할 수 있는 역량을 효과적으로 강화할 수 있다는 것을

확인했다. 이 논문은 사용자를 기술 설계의 중심으로 참여시키는 것을 목표하는 인간-컴퓨터 상호작용의

광범위한 분야 연구에 기여한다.

핵 심 낱 말 인간-컴퓨터 상호작용, 맞춤형 학습 도구, 계층적 표현

Abstract

Online learning involves continuous interaction with diverse digital learning tools, such as lecture videos,

code examples, and AI-based chatbots. Research on these educational technologies has focused on captur-

ing learners’ idiosyncratic needs and developing adaptive learning tools. However, the researcher-driven,

top-down approach for tool development struggles to scale to diverse learner demographics, preferences,

and contexts due to its limited human resources. In this thesis, I explored a user-driven approach in

which learners and teachers design adaptive learning tools independently with the support of computer

technologies. As proofs of concept, I created three web-based systems—CodeTree, TeachYou, and

TeachTune—and studied their efficacy in this approach within the contexts of college programming

and middle school science education. In these systems, learners and teachers create adaptive learning

tools using authoring interfaces based on hierarchical representations. Hierarchical representations refer

to structures that divide information into smaller, more manageable units. We explored their potential

as coordination hubs for collaborative work, as fine-grained interfaces for instructing AI, and as analyt-

ical tools for systematic reviews. User and technical experiments with the systems collectively showed

that authoring interfaces based on hierarchical representations can effectively empower learners and

teachers to create, collaborate on, and review learning tools. The thesis contributes to broader fields of

human-computer interaction that aim to engage users in the design of their educational technologies.

Keywords Human-computer interaction, adaptive learning tools, and hierarchical representations
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Chapter 1. Introduction

The growth of online education has transformed the landscape of learning, making education more

accessible and scalable than ever before. Learners today engage in a variety of digital learning environ-

ments where they interact continuously with learning tools such as lecture videos, code examples, and

AI-based chatbots. These interactions create rich opportunities for adaptive learning experiences, yet

they also pose critical challenges in meeting the heterogeneous needs of learners.

Traditionally, research in educational technologies—particularly in the domains of human-computer

interaction (HCI) and educational technology (EduTech)—has focused on designing adaptive learning

tools from a top-down perspective. Researchers and engineers utilized theoretical insights, data analysis,

and engineering skills to identify learner needs and develop these tools. While this approach has generated

impactful systems, it struggles to scale in a world where learner demographics, preferences, and contexts

are extensively diverse. Manually encoding adaptivity for every emerging need is labor-intensive, and

the top-down approach lacks the scalability to keep pace with the dynamic realities.

To address this challenge, this thesis explores a crowdsourcing-inspired approach to adaptive learning

tools—one that empowers learners and teachers to take an active role in designing and customizing their

learning tools. This approach draws inspiration from participatory design and end-user programming in

HCI, which advocate for involving users in shaping the tools they use. Recent advances in collaborative

computing and artificial intelligence have made it increasingly feasible to expand such user involvement

from ideation to creation.

For instance, this approach can facilitate the dissemination of interactive learning, where learners

interact with a social agent to acquire knowledge and skills. Although interactive learning is known to

be more effective than passive and active forms [1], learning tools for it require considerable effort for

subject-specific programming [2] and customizing for individual classes, limiting their applicability to a

few subjects and students. With a general interface for authoring an effective learning tool, learners and

teachers can create their own downstream versions, thereby increasing the collective scalability of the

tool.

In this thesis, I propose and evaluate systems that enable learners and teachers to create adaptive

learning tools using hierarchical representations. These representations, which break information into

groups of smaller entities, can empower users to collaborate on, compose, and overview the elements of

learning tools. By increasing the accessibility to and controllability in designing educational interactions,

these systems enable more fine-grained and context-sensitive adaptivity.

To demonstrate and evaluate the user-driven approach, I present three web-based systems—CodeTree,

TeachYou, and TeachTune—each situated in a distinct educational context and each leveraging hi-

erarchical representations to facilitate different facets of the approach:

• CodeTree enables learners to create adaptive explanations for programming code examples collab-

oratively. It introduces subgoal hierarchies, a representation that captures the functional structure

of code in a hierarchical form. This structure allows learners to contribute to different parts of the

hierarchy, facilitating collaborative construction while simplifying the integration of fragmented

inputs. A user study showed that this collaborative creation can produce high-quality adaptive

explanations.
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• TeachYou is a learning platform that helps learners review algorithms by teaching an AI chatbot.

Both learners and teachers can customize the chatbot’s knowledge level for their adaptive learning

through a knowledge hierarchy—a representation that separates knowledge into independent skills.

This structure allows learners and teachers to define the chatbot’s multi-faceted knowledge with fine

granularity. A technical evaluation and user study demonstrated that knowledge states effectively

control the chatbot’s knowledge level and that learning-by-teaching with the chatbot can enhance

learning.

• TeachTune is a teacher-facing tool designed to support the creation and review of pedagogical

chatbots adaptive to students in their classes. During the iterative development process, the system

provides simulated students that allow teachers to test and refine their chatbots. These simulated

students are configured through a trait hierarchy, a representation that models student behavior by

specifying levels of individual traits. A user study showed that the representation can help teachers

review their chatbots more systematically, efficiently, and comprehensively.

A central theme across these systems is the use of hierarchical representations—modular structures

that allow for flexible manipulation, reuse, and aggregation of learning components. Whether they are

subgoal hierarchies, knowledge hierarchies, or trait hierarchies, these representations provide a common

language for learners and teachers to articulate and implement their instructional intents.

This thesis thus contributes to the broader field of human-computer interaction by demonstrating

how end-users can be empowered to design adaptive learning experiences with the help of intelligent

and interactive systems. By bridging the gap between research-oriented development and the scale of

individual needs of learners, the proposed user-driven approach offers a path forward for more inclusive,

responsive, and participatory educational technologies.

Thesis statement: Authoring interfaces based on hierarchical representations can empower learn-

ers and teachers to create quality learning tools.
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Chapter 2. CodeTree

This chapter presents the first example of the user-driven approach to adaptive learning: CodeTree,

a system that coordinates programming learners’ collaborative authoring of adaptive explanations of code

examples. This chapter explores how an authoring interface based on subgoal hierarchies affects the

quality and efficiency of learner-driven collaborative authoring. The content in this chapter is adapted,

updated, and rewritten from our prior work published at CSCW 2024 [3]. Throughout this chapter, the

pronouns “we,” “our,” and “us” refer to the coauthors of that publication.

Figure 2.1: Our learnersourcing workflow for generating subgoal hierarchies. For each code example,
learners in the Generation task generate the code groups and subgoal labels that can constitute a
subgoal hierarchy. Our hierarchy generation algorithm aggregates the code groups into a multi-level goal
structure. Learners in the Selection task receive the goal structure and pre-populated subgoal labels to
vote for the best subgoal labels for each subgoal in the hierarchy.

2.1 Motivation and Contribution

Programming is becoming one of the most valuable skills to learn. As the programming population

grows, online resources such as documentation, how-to videos, and Q&A websites have become popular

for learning and help-seeking 1. Code examples are typical materials used in programming learning

resources. Code examples are short code snippets that demonstrate instantiations of code patterns under

specific problem contexts (e.g., calculating the average value of coins in a pocket). Since the exemplified

problem contexts are often different from the diverse problem contexts that programmers face in practice

(e.g., calculating the average of positive values in an array) [4], practitioners and learners need to spot

and modify parts of code examples to adapt them to their problem contexts. Hence, the educational

purpose of code examples is not to have learners simply copy code but to reduce their cognitive load and

provide the means to learn and transfer code patterns to novel problem contexts [5].

Education research has shown that learning subgoals in code examples can effectively scaffold learn-

ers’ transfer to novel problems [6, 7, 8]. Subgoals are functional units that divide code into smaller pieces

1https://insights.stackoverflow.com/survey/2018
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Figure 2.2: A subgoal can group a set of related code lines by their function. The subgoals on the left
of the hierarchy are coarse-grained goals that explain high-level functions that span multiple lower-level
subgoals (or code lines). The subgoals on the right are fine-grained goals that explain the code line by
line.

and help learners navigate code to find the part to modify for different problem contexts. Subgoals often

form a hierarchy with high-level strategic goals and low-level constituent goals comprising the high-level

goals. A subgoal hierarchy refers to a hierarchical organization of subgoals in code and consists of a goal

structure and subgoal labels (Fig. 2.2). Subgoal hierarchies are used to explain the function of each part

of code [9, 10], to create the materials for diverse learning activities [11, 12], and to generate adaptive

explanations [13]. Goal structures are a fundamental component of subgoal hierarchies to facilitate these

learning supports as they set the frameworks for organizing and mapping subgoals to code.

The generation of goal structures has been dependent on expertsourcing and data-driven methods.

Conventionally, instructors and domain experts take an iterative process to generate subgoals [14], but

this is limited in terms of scalability as the process is time-consuming. To overcome the limitation,

data-driven methods have been applied to learning environments where large code datasets are available

(e.g., Scratch) [15, 16, 17]. These methods compare learners’ code submissions for a problem at scale

and identify common code patterns as subgoals of the problem. However, data-driven methods do not

work in learning environments where code data per code example is scarce. For instance, although

StackOverflow has many code examples, more than half of their questions are answered with less than

ten code examples, which is not a feasible scale to adopt data-driven approaches [18].

To support the subgoal learning of code examples in ubiquitous environments, we propose using

learnersourcing to generate goal structures without dedicated experts or large-scale code data. Learner-

sourcing is a scalable crowdsourcing technique that leverages learners’ creativity and knowledge to create

learning resources for future learners [19, 20]. Prior research has shown that learnersourcing could effec-

tively reduce experts’ effort in subgoal label generation by offloading certain tasks to learners [19, 12].

We extend this line of research further by proposing an approach to also offload the effort of generating

goal structures to learners. Compared to learnersourcing of subgoal labels, generating goal structures

is new and challenging because it has to build the structure from scratch while label-sourcing works

on top of a given structure. Despite the challenge, learnersourcing of goal structure is fundamental to

prior subgoal label generation approaches for making the generation of subgoal hierarchies completely

learner-driven and scalable in data-scarce environments.

We built a prototype system, CodeTree, to investigate the feasibility of learnersourcing the gen-
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eration of goal structures without expert intervention. CodeTree is a tool for studying code examples

by carrying out two learning activities that ask learners to either 1) group code lines into subgoals or

2) vote for the best explanations as the subgoal of a given code. These activities elicit self-explanation

of goal structures as learners should make sense of the relationship between code and the subgoals they

make or vote on. CodeTree leverages learners’ responses to these activities to generate and control the

quality of multi-level goal structures and subgoal labels. After enough learners’ responses are populated,

CodeTree algorithmically aggregates learners’ partial but complementary subgoals to generate compre-

hensive multi-level goal structures (Fig. 2.2). Although our main aim is to construct goal structures for

code examples, we added the features for collecting subgoal labels to the system to support end-to-end

subgoal hierarchy generation.

We evaluated the feasibility of CodeTree for learnersourcing subgoal hierarchies. Our evaluation

study with 45 Python novices showed that 1) CodeTree could learnersource correct subgoal hierarchies

for three code examples with just five learners, 2) studying code examples with CodeTree resulted in

a higher learning gain in code tracing skills (with standardized effect sizes of around 0.7) and higher

satisfaction than with explanations of code alone, and 3) the user interfaces and visualizations in Code-

Tree helped learners understand and generate subgoal hierarchies by enhancing the visibility of the

mapping between subgoals and code, and by providing an overview of the subgoal hierarchies.

Our primary contributions are summarized as follows:

• A learnersourcing workflow and algorithm for generating multi-level goal structures of code exam-

ples.

• CodeTree, a system that embeds the workflow and provides user interfaces that visualize subgoal

hierarchies to scaffold generating and learning of subgoals in code examples.

• Empirical evidence that CodeTree can populate high-quality subgoal hierarchies with just five

learners while improving their code tracing skills and learning satisfaction.

2.2 Related Work

This research aims to support the adoption of subgoal learning on code examples at scale. We

use learnersourcing as an approach to generate goal structures needed for subgoal learning in learning

environments where experts and data are scarce. This section reviews previous literature on 1) subgoal

learning and its practices, and 2) learnersourcing systems of different forms.

2.2.1 Subgoal Learning

A subgoal refers to a conceptual action or state that is found in the process of achieving a higher

level (sub)goal in problem-solving [21]. Subgoals organized in hierarchies provide a useful mental model

of task structures for decomposing tasks into subtasks [7]. Subgoal learning is a pedagogy that teaches

learners to discern task structures and constituent subgoals in worked examples so that learners can

modify and apply the task structures to novel problems [22].

Early research on subgoal learning focused on finding effective presentations of subgoals in math-

ematics and physics worked examples. Catrambone showed that subgoal labeling, which adds sub-

goal labels to worked examples, can scaffold learners’ transfer from worked examples to novel prob-

5



lems [21, 7, 22]. Catrambone also tested different variants and found that visual isolation of steps and

problem-independent subgoal labels can elicit the transfer even further [8, 23].

Later subgoal learning research primarily took place in the programming domain and looked into the

different learning effects in depth. Margulieux and Catrambone found that subgoal-oriented instructional

materials in programming improve learners’ problem-solving performance [9, 24]. Margulieux et al.

applied subgoal learning frameworks to introductory programming courses for a semester and found

that subgoal-labeled materials also increase learners’ retention of knowledge and courses [25, 26]. They

also looked into the usefulness of learners’ self-explanations of subgoals during initial problem-solving

and observed that self-explanations are as useful as expert-generated labels [27]. Ericson et al. used

subgoal labels in Parsons problems to make them more effective for testing learners’ performance and

understanding of code structure [28].

Researchers also studied subgoal learning in different activity types. Based on Chi’s active-constructive-

interactive framework of learning [29], the constructive method of subgoal learning, in which learners learn

by creating subgoal labels by themselves, has been proposed and investigated. Compared to the passive

and active methods that give learners expert-generated subgoal labels, the constructive method can help

learners acquire more transferrable knowledge by promoting creative thinking and self-explanation. Ex-

tensive research has shown that the learners who practiced the constructive method outperform learners

with either passive or active methods for basic programming and app inventing tasks [10, 11, 30].

Our work is founded on the findings in the previous research. Since we want our learnersourcing

tasks to be pedagogically meaningful, we followed the constructive and active methods of subgoal learning

to design our tasks. Hence, one of our evaluation metrics is how much our system replicates the previous

pedagogical effects. By learnersourcing goal structures, we envision that our system will enable the

application and investigation of subgoal learning in broader environments.

2.2.2 Active Learnersourcing

Learnersourcing is a type of crowdsourcing that leverages learners’ responses in their learning activ-

ities to generate meaningful data for future learners [31]. Learnersourcing has advantages over expert-

sourcing in terms of scalability because it can draw a workforce from large-scale learning environments,

such as MOOCs and Q&A websites, and learners are often motivated to participate in learning activities

without monetary rewards. In return, learnersourcing requires reliable quality control mechanisms on

learner-generated data because learners are inherently less knowledgeable than experts. For effective

quality control, learnersourcing often accompanies majority voting [32, 33] and automated-methods [34].

There are largely two types of learnersourcing—passive and active—depending on how data are

generated. Passive learnersourcing uses readily acquirable data from natural learning processes, such as

learners’ interaction logs and code submissions [35, 36]. Since the data size is often large, automated

methods are used to analyze and create meaningful learning supports [16, 37]. When target data is not

readily available, active forms of learnersourcing are used. Active learnersourcing adds new learning

activities to conventional learning processes to ask learners to generate specific data [38, 39, 40, 41]. One

of the challenges in active learnersourcing is to design the activities to be pedagogically meaningful and

easy to attempt to encourage the voluntary participation of learners. The activity designs often follow

well-defined pedagogies and microtask workflow to improve the learning experience and reduce learners’

workload.

There has been research on using active learnersourcing to generate subgoal labels for how-to-videos,

mathematics, and algorithmic problem-solving. Crowdy [19] learnersourced subgoal labels for how-to
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videos by periodically asking learners to self-explain the goals of video sections while watching. Crowdy

used a generate-evaluate-proofread workflow to divide the label generation process into manageable

microtasks and to ensure the quality of subgoal labels through multiple checks. SolveDeep [13] gathered

solution graphs of mathematics problems by asking learners to group the steps in their solutions by

subgoals and explain them. Collected solution graphs are then used to generate feedback on subgoals

that future learners make. AlgoSolve [12] used active learnersourcing to collect subgoal labels of code

for algorithmic problem-solving. AlgoSolve used a vote-label workflow to familiarize learners with high-

quality subgoal labels first. Collected subgoal labels are used to scaffold future learners to plan their

solutions.

Our work extends the line of research on learnersourcing subgoals. Previous learnersourcing systems

have focused on generating subgoal labels for goal structures that experts pre-defined. Although these

systems successfully reduce experts’ burden to complete subgoal hierarchies, their scalability depends on

experts creating goal structures because the creation of goal structures needs to precede subgoal labeling.

Our work empowers previous label-sourcing systems to be truly scalable with a learnersourcing workflow

and coordination algorithms for making the generation of subgoal hierarchies fully learner-driven.

2.3 Design Goals

Based on prior work, we set three design goals for learnersourcing goal structures and supporting

subgoal learning of code examples. Our design goals touch upon the type of subgoal hierarchies to

generate, learnersourcing workflow design, and a versatile visualization to help learners generate and

learn subgoal hierarchies.

G1. Generate multi-level goal structures.

Theoretically, a code example can have multiple instances of goal structures. Goal structures may

vary in the granularity of constituent subgoals and depth. Among the many possible instances, we specif-

ically aim to generate multi-level goal structures that are useful for subgoal labeling [24], self-explanation

activities [11, 12], and feedback generation [13]. Having multi-level goal structures is especially useful

for making these use cases more adaptive to learners. For example, learners with prior knowledge can

receive feedback and questions for high-level subgoals, while less-experienced learners can start with

low-level subgoals to understand smaller code patterns. Previous studies also showed that single-leveled

subgoals hardly fit all learners with diverse background knowledge [8, 23, 42, 43]. Hence, to maximize

the sensitivity of the levels and their benefits, we aim to populate subgoals at as many levels as possible

and organize them into multi-level goal structures.

G2. Divide the generation task into microtasks while not compromising the learning ob-

jective.

Generating multi-level subgoal hierarchies from scratch is a complex task that may frustrate indi-

vidual learners. In crowdsourcing literature, dividing a complicated task into manageable microtasks is

shown to reduce cognitive demand and improve crowd workers’ performance [44, 45]. When designing

microtasks in learnersourcing, one of the key considerations is to keep the size of the microtasks small

enough so that learners can easily attempt it, but at a level that does not compromise the learning

objective [20]. For example, one possible microtask design is to assign learners different parts of code

to generate multi-leveled subgoals. However, this may compromise the learning aspect of seeing code

examples, as learners will not get enough chances to understand the entire code. Hence, we aim to break
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the hierarchy generation task into manageable units but ensure that each microtask helps learners skim

and understand entire code examples.

G3. Provide learners with a visualization for an overview of subgoal hierarchies.

Subgoal hierarchies are complex data structures that connect code, goal structures, and subgoal

labels (Fig. 2.2). Learners are not typically familiar with generating such complex subgoal hierarchies.

Previous crowdsourcing research showed that visualizing the overview of worker-generated data improves

their performance and efficiency in complex annotations and graph generation [46, 47, 45]. Visualization

of subgoal hierarchies during subgoal generation tasks can also alleviate learners’ difficulties by raising

awareness of the data they generate and possibly improve. The visualization can also aid in learning the

organization of the goal structures and how each subgoal instantiates to a specific code. Hence, we aim

to add a versatile visualization that can scaffold both generation and learning of subgoal hierarchies to

our interface.

2.4 System

We built CodeTree, a learnersourcing system that generates high-quality subgoal hierarchies while

supporting subgoal learning of code examples. Learners can use CodeTree to enhance their under-

standing of existing code examples by either generating subgoals of the code on their own (Fig. 2.3)

or selecting the best descriptions for given subgoals (Fig. 2.4). After populating enough subgoals from

learners, CodeTree algorithmically aggregates the subgoals into comprehensive subgoal hierarchies.

The following subsections describe the user workflow, interfaces, and our algorithm in detail and explain

how they achieve the three design goals.

2.4.1 Microtasks for subgoal learning

We divided the hierarchy generation task into two microtasks—Generation and Selection—taking

G2 into account (Fig. 2.1). In the Generation task, learners self-explain subgoals of code examples by

grouping code lines into functionally meaningful units and describing each unit. In the Selection task,

learners solve multiple choice questions (MCQs) that ask for selecting the best label for each subgoal. We

chose Generation and Selection tasks as our microtasks because each task follows the constructive and

active methods of subgoal learning [29, 11]. Each task is complete on its own in terms of helping learners

explore the entire code while dividing learners’ workload to generate complete subgoal hierarchies from

scratch.

Microtask 1: Generate code groups and subgoal labels

In the Generation task, learners self-explain the functions of each part of code by generating subgoals

on their own. Learners first read problem statements and code examples to check problem contexts

and solutions. Then, learners use the hierarchy generation interface to generate and organize subgoals.

Learners can generate subgoals by 1) creating an empty subgoal either at the root or below other subgoals

at Fig. 2.3 (C), 2) clicking lines of code at Fig. 2.3 (B) to add to the subgoal as a group, and 3) write a

subgoal label that explains the group at Fig. 2.3 (C). Although learners do not receive feedback on their

subgoals, the Generation task can be helpful as learners explicitly self-explain functions and structures

of code [48, 27].
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Through the Generation task, CodeTree collects diverse code groups (i.e., groupings of code lines)

and subgoal labels. Each learner outputs a list of code groups and subgoal labels. We expect the lists

to reflect learners’ diverse perspectives [42] and contain subgoals at different levels that can serve as the

basis for generating multi-leveled hierarchies (G1).

Figure 2.3: The user interface for the generation task: (A) Instructions and problem statement, (B)
A code example to study. Learners can click and select lines of code to make a code group (currently
selected lines are highlighted in orange). Code lines are dimmed to gray and become unselectable if
they are either already grouped or outside of parent subgoal scopes, (C) Hierarchy generation interface.
Learners can write down subgoal labels for each code group and can add lower-level subgoals.

Microtask 2: Select subgoal labels that best explain constituent code groups

In the Selection task, learners self-explain the function of each code group in a given goal structure

by selecting the best descriptions. Similar to the Generation task, learners first read problem statements

and code examples. Then learners answer a series of (MCQs) given by CodeTree to check their

understanding of the code. Each MCQ has at most three options to choose from, and learners can add

a new one if none looks plausible or if there is a better description. After solving each question, learners

receive corrective feedback on their answers (Fig. 2.4 (C)) to confirm their understanding of the code.

Colored bars (Fig. 2.4 (B)) visualize given subgoal hierarchies and highlight positions of code groups

asked by MCQs (G3).

Each MCQ has two answers and a distractor (wrong answer). CodeTree generates MCQs based on

the learner-generated subgoal labels from the Generation task. The answers are chosen from the subgoal

labels that previous learners created for the code group being asked. The distractor is also chosen

from learner-generated subgoal labels but from another random code group that is mutually exclusive.

CodeTree selects distractors based on our heuristic assumption that previous learners would not write
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interchangeable subgoal labels for two mutually exclusive code groups. We regard choosing two answer

options as a multi-armed dueling bandit problem [49] and use a round-robin and greedy algorithm to

balance the exploration for good labels and the provision of the best labels known so far. The reward of

the problem is defined as whether learners select either of the answer options.

Figure 2.4: The user interface for the selection task: (A) Instructions and problem statement, (B) A
code example to study. Parts of code being asked in the MCQ are highlighted in orange, (C) A MCQ
problem and its options. When learners select options and click the “Next” button, our system provides
corrective feedback on their selection.

2.4.2 Colored bar visualization to overview subgoal hierarchies

Our system also provides a novel visualization of subgoal hierarchies through color-coding of code

scope and labels to overview goal structures and adapt flexibly to different code formats and deeply

nested structures. We adopted the visualization to the user interfaces of both microtasks (Fig. 2.3 (B)

and Fig. 2.4 (B)). Each colored bar beside code examples represents a code group. The vertical position

of a bar indicates the code lines that it groups. For example, the red bar in Fig. 2.3 represent a code

group for line 2 and 3. The horizontal position of a bar indicates the level it belongs to in a hierarchy.

The red bar is at the second level under the green bar that groups line 2 to 8. The color-coding of bars

maps each subgoal to a specific part of code examples and reduces the split-attention effect by serving

as a visual link between the spatially distant code and subgoal labels [50, 51].

Colored bars collectively outline the goal structures and help learners overview them (G3). In

the Generation task, colored bars support learners in coordinating overall goal structure by informing

learners at which position and level they create subgoals. Learners can also check the bars to easily spot

which part of code examples they have not annotated with subgoals. In the Selection task, colored bars

serve as a navigator to traverse goal structures deeply nested with many constituent subgoals. Learners

explore the goal structure by preorder traversal and receive MCQs that ask about increasingly specific

code groups. Learners can also refer to parent or child code groups to select the right level of subgoal

explanations in MCQs.
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The visualization is designed to present complex mapping between subgoal hierarchies and code.

Code examples that are subgoal-labeled at their creation are written in a way that clearly shows goal

structures from code. Inline comments or visual isolation can easily present subgoal hierarchies of such

code examples. However, in order to make our visualization applicable to more general code examples

beyond the pre-formatted code examples, we made the visualization flexible to work for possibly complex

structures and mappings. For instance, lines 4 and 6 in Fig. 2.3 may form a meaningful code group despite

not being contiguous. While the comment-based presentation does not work for these non-contiguous

code groups, our visualization can pinpoint code lines and group them.

Algorithm 1 A hierarchy generation algorithm
Input: I: A list of Tuple(code group, subgoal label)
Step 1: merge tuples with identical code groups
U ← an empty list
for each Tuple(code group G, subgoal label L) in I do
if U has a tuple containing G do
add L to the existing tuple

else do
add Tuple(G, L) to U

end if

Step 2: calculate priority of each code group
for each code group G in U do
PriorityG ← occurrence number of G in I

Step 3: sort code groups by their priority
sort U by Priority

Step 4: populate as many code groups in a hierarchy
H ← an empty hierarchy
for each Tuple(code group G, subgoal labels L) in U do
if G does not conflict with H do
add G and L to H

end if
Output: H

2.4.3 Workflow and algorithm for generating multi-leveled hierarchies

Our learnersourcing workflow is organized by the two microtasks and a hierarchy generation algo-

rithm (Fig. 2.1). Learner-generated subgoals from Generation are the seed for our algorithm to generate

initial subgoal hierarchies. The generated hierarchies are fed to Selection to refine subgoal labels.

The hierarchy generation algorithm (Algorithm 1) is based on two assumptions:

A1. Most learners can identify correct individual subgoals although they may lack the ability to identify

an entire hierarchy.

A2. Learners can recognize complementary levels of subgoals so that their collection will be compre-

hensive enough to make complete subgoal hierarchies.

Based on these assumptions, the algorithm first calculates the priority of each code group by their

submission count. Then, the algorithm uses the priority values to decide which subgoal to add to the

subgoal hierarchy in case of conflicts (see Fig. 2.7). The algorithm keeps adding subgoals without

conflicts until it achieves complete hierarchies.
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Before being fed to the Selection task, generated subgoal hierarchies undergo post-processing. Code-

Tree removes the poor subgoal labels that are too lengthy, that start with non-verbs, or that are textually

similar to other subgoal labels. For measuring textual similarity, we divided texts into morphemes [52]

and computed the Sørensen–Dice coefficient [53] between the morphemes. To make subgoal hierarchies

complete, CodeTree also adds code groups to the leaf positions where subgoals are missing from the

input. In the Selection task, learners generate the labels for these new code groups.

2.5 Study Design

To evaluate the feasibility of CodeTree for the three design goals, we recruited 45 programming

novices to run a between-subjects study with three conditions—Baseline, Generate, and Select. The

conditions differed in the methods of studying code examples. Generate condition participants studied

code examples by doing the Generation task; Select condition participants studied code examples through

the Selection task; Baseline condition participants studied code examples with detailed explanations only.

Through this study, we explored three research questions that link to each design goal.

RQ1. Can CodeTree learnersource correct and comprehensive subgoal hierarchies?

RQ2. Do learners find Generation and Selection tasks helpful for learning and manageable to do?

RQ3. Does the colored bar visualization help understand and generate subgoal hierarchies?

2.5.1 Participants

The target users of CodeTree are programming learners who have learned basic Python syntax

but struggle to write code themselves to solve problems. We recruited 45 participants who 1) took an

introductory Python programming class only, 2) did not score perfectly in our pre-test, and 3) experienced

moderate intrinsic cognitive (below 19 out of 30) during the study. The participants were recruited on

campus and from online communities with a compensation of 20,000 KRW (approximately 17 US dollars)

for a 90-minute session. The participants were randomly assigned to one of the three conditions (Baseline,

Generate, and Select). We confirmed that there was no statistically significant difference in participants’

initial knowledge (pre-test scores) between conditions (one-way ANOVA, F=0.89, and p=0.42).

Table 2.1: Demographic averages for 45 participants and the correlation of each characteristic with
participants’ performance score.

Mean/
proportion

Std.
deviation

Pearson’s correlation
with performance score
r p

Gender 19 female - 0.14 0.30
Age 21.73 3.84 -0.29 0.15

Year in college 2.82 3.84 0.31 0.13
Comfort with programming
(1:Not comfortable at all -

7: Very comfortable)
3.69 1.13 0.01 0.48

Expected difficulty
for learning programming

(1: Very difficult - 7: Very easy)
3.44 1.02 0.33 0.11
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Table 2.2: The outline of the study and the time allotted to each step.

Step (min.)
Baseline

(15 participants)
Generate

(15 participants)
Select

(15 participants)
1 (8) Introduction + Informed consent
2 (3) Demographic questionnaire
3 (5) Pre test
4 (10) Analogy training Subgoal training

5 (30)
Study 3 code examples

with explanations
+ Practice 3 problems

Generation tasks on
3 code examples

+ Practice 3 problems

Selection tasks on
3 code examples

+ Practice 3 problems
6 (3) Cognitive load measurement
7 (20) 4 Assessment problems
8 (5) 1 Parsons problem
9 (5) Post-test (identical to pre-test)
10 (-) Post survey

2.5.2 Procedure and Materials

Throughout the sessions, participants learned the usage of while-loops in Python through three code

examples and practice problems isomorphic to the examples. We referred to the study procedures and

materials from previous studies on subgoal learning [10, 11]. The code examples, the problems for pre-

& post-tests, practice, and assessment were identical to the materials used in the between-subjects study

of Margulieux et al. [11], except that the materials were rewritten in Python. We chose Python for

our programming language because Python was the most popular among our recruitment targets. All

participants had access to review materials that briefly explained basic syntax and concepts of Python.

The instructions and the user interface were localized into Korean to avoid confusion or unnecessary

difficulties.

The example learning steps (steps 4 and 5 in Table 2.2) were different by conditions. Participants

in Generate and Select conditions received tutorials about subgoal learning and usage of each feature

of our user interface. The tutorial included the learning benefits of subgoal learning, exemplar subgoal

labels on simple math equation solving, and subgoal-making exercises with answer labels at the end as

corrective feedback (Fig. 2.5 Right). The example subgoal labels were all problem-independent, implicitly

guiding participants to write problem-independent subgoal labels. Baseline participants received analogy

training, which exerts cognitive load comparable to the subgoal training in other conditions [10]. Generate

and Select participants used respective interfaces in Fig. 2.3 and Fig. 2.4 to study code examples. Baseline

participants used another interface that removed subgoal-related features (Fig. 2.5 Left).

The code examples in all three conditions were presented with line-level explanations of the code. We

added the explanations to help participants understand the code and to simulate typical Q&A websites

and documentation where explanations of code are present. We used the latest Codex AI model [54] to

generate the explanations, considering that it is the most readily available method for providing detailed

explanations of code at scale [55]. The first author checked the quality of the explanations.

The transfer distances of the practice problems and assessment problems to code examples were

set differently. Right after studying each code example, participants solved a practice problem, which

solution was isomorphic [10] to the code example. Participants could run their code and receive feedback

on whether they were correct. We chose isomorphic problems so that participants could try out the same

code structure they had just studied. For the assessment problems, we chose contextual transfer [10]

problems to test how each condition affects participants’ performance in modifying learned code examples
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and transferring them to novel problems. Participants could not run their code during the assessment

nor receive feedback.

We conducted all sessions with Generate participants before any Select participants to populate

subgoal hierarchies for the Selection task. The hierarchy algorithm generated subgoal hierarchies with

the Generate participants’ code groups.

Figure 2.5: Left: the user interface for Baseline condition. Participants studied the worked example
with line-level explanations of the code only, and they could proceed to the next step at any time without
requisites. Right: the instruction and practice activities for the subgoal training. Participants grouped
and subgoal-labeled math equation-solving steps as practice and then checked the answer.

2.5.3 Measurements

Our measurements are two-fold. The evaluation of the quality and variety of the subgoals created by

participants was taken after the study with external evaluators. The assessment of participants’ learning

gain and experience was conducted sequentially during the study (Table 2.2).

Code group quality. The quality of code groups made by Generate participants was classified into three

types—incorrect, meaningful, and core (see Table. 2.3). A code group is meaningful if its constituent

code lines collectively represent any useful subgoal. A code group is core if it is meaningful and represents

one of the subgoals essential to solving a problem. Code groups that are not meaningful nor core are

considered incorrect. We recruited two evaluators with four semesters of TA experience in CS courses.

The evaluators assessed the first 30 code groups together and the remaining 39 code groups independently.

The inter-rater reliability for the independent assessment was substantial (Cohen’s kappa, κ=0.63).

Subgoal label quality. The quality of subgoal labels made by Generate participants was classified

into three types—incorrect, problem-specific, and problem-independent [11] (see Table. 2.4). A label is

incorrect if it simply describes the execution of code or is wrong. A label is problem-specific if it correctly

describes the function of code but contains information specific to the current problem and cannot be

generalized to other isomorphic problems. A label is problem-independent if it is correct and generalizable

to other isomorphic problems. We recruited two other evaluators with two semesters of TA experience in

CS courses. Likewise, they assessed the labels from the first 30 code groups together and the remaining

72 labels independently. The inter-rater reliability for the independent assessment was high (Cohen’s

kappa, κ=0.68).
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Table 2.3: The code groups that the evaluators assessed as incorrect, meaningful, and core respectively.
The entire code example is in Fig. 2.2.

Code group quality Example

Incorrect
L1: tips = [15, 5.50, 6.75, 10, 12, 18.50, 11.75, 9]
L2: sum = 0
L5: sum = sum + tips[lcv]

Meaningful
L6: lcv = lcv + 1
L4: while (lcv <len(tips)):

Core
L4: while (lcv <len(tips)):
L6: lcv = lcv + 1
L7: average = sum / len(tips)
L8: print(average)

Table 2.4: Subgoal labels that evaluators assessed as incorrect, problem-specific, and problem-
independent. The labels described the subgoal for code “sum = sum + tips[lcv]” in Fig. 2.2.

Subgoal label quality Example
Incorrect Add tuple[lcv] to sum

Problem-specific Add a tip value to total sum
Problem-independent Add a value to get the total sum

Diversity index and conflict ratio of code groups. One of our assumptions (A2) in algorithm de-

sign is that learners will generate diverse code groups that can complement each other. Hence, diversity

and complementarity in code groups are important properties that make our learnersourcing workflow

effective. We used Simpson’s diversity index [56] to measure the diversity of code groups. For the cal-

culation of the index, we treated each code group as an entity and the number of its submissions by

participants as its population. We measured the complementarity of code groups by the ratio of conflict-

ing code group pairs in all possible pairs (1.0 is a total conflict). Two code groups are complementary

if one is the subset of the other or there are no intersecting code lines; otherwise, they conflict and

cannot coexist in the same hierarchy (see Fig. 2.7). However, there will be existential conflicts between

code groups because there can be multiple correct instances of subgoal hierarchies. We measured the

existential conflict ratio by the same calculation but with only core code groups.

Holistic evaluation on subgoal hierarchies. Holistic evaluation is meaningful apart from the pre-

vious measurements. A hierarchy may not be effective for learning, even though its constituent code

groups and labels are correct individually. For example, a subgoal hierarchy may have an imbalanced

goal structure or inconsistent subgoal labels for denoting parts of code. The holistic evaluation aims to

evaluate code groups and labels as a whole beyond their individual qualities. The assessment focused

on 1) the composition of code groups in each layer in hierarchies and 2) the consistency among subgoal

labels (see Fig. 2.6). We assessed the composition by evaluating whether each parent code group is

split in a logically even manner by its child code groups. We quantified consistency by the size of the

largest set of labels that do not conflict with each other in denoting variables or concepts. The evaluators

who assessed the code groups worked together to evaluate the composition and consistency of the three

subgoal hierarchies generated for each code example.

Score increase. Participants’ code-tracing skills were measured with the multiple-choice questions in

pre and post-tests (Step 3 and 9 in Table 2.2). Pre and post-tests were composed of questions that

asked about execution outputs of while loops or the code to print desired outcomes. The questions for

both tests were identical, but the order of questions and options was randomized. The score differences

between pre and post-tests were calculated for each participant to measure individuals’ learning gain in
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code-tracing skills.

Performance score. Participants’ code-writing skills were measured with four assessment problems

and a Parsons problem (Step 7 in Table 2.2). Two external evaluators graded the participants’ answers to

the assessment problems. The evaluators had two and four semesters of TA experience in an introductory

Python programming class. The evaluators followed the grading guidelines from the previous work [11],

and the total score for the four problems was 36. For each assessment problem, the two evaluators graded

the first 20 participants’ answers together to make a specific grading scheme. They graded the remaining

25 answers independently. The inter-rater reliability of the independent grading was high (Pearson’s

correlation, r=0.94). Participants’ answers to the Parsons problem were auto-graded and scored out of

10. Each participant’s performance score is the sum of the assessment score and the Parsons problem

score.

Cognitive load. The cognitive load of participants was measured right after the example learning

steps to evaluate how each intervention imposes a burden on learners (Step 6 in Table 2.2). We used

ten 10-point Likert-scale questions designed to measure cognitive load for programming tasks [57]. The

questions asked about three types of cognitive load—intrinsic, extrinsic, and germane. Participants’

ratings for each question were summed up by the types, resulting in a maximum of 30 for intrinsic and

extrinsic, and 40 for germane.

Post-survey questions. After the post-test, the participants received survey questions on their learning

experience and system usability (Step 10 in Table 2.2). The survey is composed of two parts. The first

part (Fig. 2.10) had questions about their experience studying code examples and were common to all

conditions. The second part (Fig. 2.11) had questions about the system’s usability and helpfulness for

conducting condition-specific tasks and were different by condition. Each question had two sub-questions

in which participants rate a 7-point Likert scale for a given statement and leave text comments to explain

their rating.

2.6 Results

We report the quantitative results and participants’ comments on the evaluation study and answer

the three research questions. We organized this section by each research question.

RQ1. Can CodeTree learnersource correct and comprehensive subgoal hierarchies?

Learnersourced subgoal hierarchies were correct and complete. The ratios of correct (meaningful +

core) code groups in total code groups in respective subgoal hierarchies were 13/13, 13/14, and 20/21.

Moreover, the subgoal hierarchies contained all the core code groups identified by the evaluators. Noting

that the average ratios of core code groups in each participant’s submission were 65%, this result shows

that the participants could collectively populate most of the core code groups, although a participant

alone could not. In terms of label quality, the ratios of correct (problem-specific + problem-independent)

subgoal labels in total labels were 12/13, 11/14, and 18/21 in each subgoal hierarchy. Among them, 8, 8,

and 10 subgoal labels were problem-independent. In the holistic evaluation, most compositions of the code

groups were correct, and the consistencies between subgoal labels were also high. The ratios of correct

parent-child code group relations were 6/6, 5/7, and 8/10. The sizes of the largest consistent subgoal

label set were 11/13, 12/14, and 21/21. Hence, we conclude that each generated subgoal hierarchy is

correct and consistent as a whole. Detailed evaluation results of subgoal hierarchies for the first and

second code examples are presented in Fig. 2.6.
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Figure 2.6: The subgoal hierarchy generated for code examples 1 and 2 and their evaluation results.
We presented the most selected subgoal labels only. The participants wrote subgoal labels in Korean
to avoid language barriers in describing good labels, and we translated them into the figure. The labels
that are inconsistent with others are bolded. The evaluators judged these labels to be inconsistent in
that they use exact variable names (e.g., rolls and lcv) for reference while others explain in words.

The participants generated meaningful code groups and labels. Almost all of the code groups that

Generate participants made were correct (meaningful + core). On average, 95% of the code groups from

a participant were correct (SD = 6%). On the other hand, the ratios for core code groups were only 65%

(SD = 17%). For MCQ responses, the participants chose better or equal quality labels most of the time

(M = 98%, SD = 3%). These observations collectively verify our assumption A1 to a certain extent

that the majority of individual learners can identify correct subgoals but struggle to generate complete

hierarchies with all core code groups.

The participants generated diverse but somewhat conflicting code groups. The Simpson’s diversity

indexes of code groups for the three code examples were 0.93, 0.91, and 0.96. Their conflict ratios were

0.54, 0.54, and 0.55, and their existential conflict ratios were 0.53, 0.57, and 0.57. High diversity indexes

and moderate conflict ratios indicate that participants recognized diverse subgoals but from different

instances of subgoal hierarchies. Although this does not align with our assumption A2 that learners will

make complementary subgoals, the quality evaluation showed that the algorithm filtered conflicting code

groups and generated hierarchies correctly. We expect that there is room for guiding learners to generate

subgoals of specific instances to reduce conflicts and make our workflow more efficient.

Just a few learner contributions could help generate high-quality subgoal hierarchies. To estimate

the number of learners needed for achieving high-quality subgoal hierarchies, we measured the quality of

code groups and subgoal labels under a simulation. We simulated 1) the hierarchy generation algorithm

and 2) the Selection task, each with n number of simulated learners.

To simulate the algorithm with n participants, we randomly sampled n Generate participants. We

then used the algorithm to generate subgoal hierarchies from the sampled participants’ code groups. The
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Figure 2.7: The code groups that the Generate participants generated for code example 1. The number
in a code group indicates the number of participants who submitted it. To measure conflicts between
code groups, we counted the ratio of conflict relations (colored in red) in all pairs of code groups.

random sampling was repeated 15 times for each n. We report their average. We calculated the ratio of

correct (meaningful + core) code groups and the number of core code groups in the generated hierarchies

and plotted them against the number of simulated learners in Fig. 2.8 (A) and (B). The ratios of correct

code groups at the end (n=15) were 0.93, 0.87, and 0.95 for the subgoal hierarchies of each code example.

The numbers of core code groups at the end were 6.33, 5.00, and 10.00. Both estimates saturate around

n=5, albeit the third subgoal hierarchy continued to improve and populated all the core code groups at

n=15.

To observe how the quality of subgoal labels changes throughout the Selection task, we simulated

n successive learner’s responses in the Selection task with a probability that a participant will choose a

better subgoal label in an MCQ. We set the probability as 0.98 based on our empirical result. A simulated

learner votes for one of the best subgoal labels in given MCQ options or other options according to the

probability. For each n, we repeated the simulation 15 times. We report the average ratio of correct

(problem-specific + problem-independent) and problem-independent labels among the labels that received

the most votes. Fig. 2.8 (C) and (D) plot these against the number of simulated learners. All hierarchies

achieved high correctness at the end (1.00, 0.93, and 0.90) and reached the maximum achievable with

the given data. All hierarchies also had high populations of problem-independent labels (0.82, 0.77, and

0.66) close to their achievable maximums (0.92, 0.79, and 0.71). Both estimates saturated around n=5.

The result implies that just five learners can successfully populate a goal structure and subgoal

labels for a code example. Such learner-to-code example ratio (five to one) shows that the generation

of subgoal hierarchies for all code examples in typical Q&A websites and MOOCs is feasible with just

existing learners in the learning environments. For instance, a question on StackOverflow is viewed by

30 people on average in a month 2. If five of them are motivated to understand code examples in depth

and contribute subgoals to CodeTree, the system will be able to populate subgoal hierarchies for all

newly created and old code examples on StackOverflow. However, we also clearly note that our study

participants may have a higher level of prior knowledge in programming than typical learners in the

environments, and we may not replicate such high efficiency (i.e., five to one) in the wild where the

level of code complexity and knowledge of learners vary a lot. Nevertheless, our finding suggests that

learnersourcing is a scalable approach for collecting subgoals online. We discuss how we can concretize

this finding in future research in Section 8.

2https://data.stackexchange.com/stackoverflow/query/213319/average-views-per-question-by-month
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Figure 2.8: Each color line denotes subgoal hierarchies for different code examples: green for code
example 1, blue for code example 2, and red for code example 3. (A, B) The average ratios of (cor-
rect/core) code groups in hierarchies that were generated with the code groups of randomly sampled n
participants. The dashed line denotes the total number of core code groups. (C, D) The average ratio of
correct/problem-independent labels at the end of the selection task simulation with n participants. The
dashed lines denote the maximum achievable ratios for given datasets. For example, if the subgoal labels
for a code group are all incorrect, there is no way to improve.

RQ2. Do learners find Generation and Selection tasks helpful for learning and manageable

to do?

The generation task improved code tracing skills. All except one participant scored equal or higher

in their post-test. The score increases ( Fig. 2.9 (A)) in Generate condition were statistically significantly

higher than in Baseline condition (one-tailed t-test, p = 0.03, d = 0.72). The score increases in Select

condition were higher than in Baseline but not statistically significant (one-tailed t-test, p = 0.15,

d = 0.38). The performance scores (see Fig. 2.9 (B)) in both Generate and Select conditions were higher

than in Baseline condition but not statistically significant (one-tailed t-test, p = 0.15, d = 0.38 between

Baseline and Generate, p = 0.07, d = 0.40 between Baseline and Select).

Our results and previous studies on subgoal learning [11, 10] complement each other to a certain

extent. The score increases and performance scores measure participants’ code tracing and writing skills

respectively. Previous studies observed significant improvement in code-writing skills for the active and

constructive forms of subgoal learning but weak significance in code-tracing skills. On the other hand, we

observed significant improvements in participants’ code-tracing skills only. In theory, both code-tracing

and writing skills should have improved because code-tracing is a precursor to code writing [58]. We

speculate that the difference in the tools for subgoal generation might have elicited different aspects of

learning more prominent. Nevertheless, they accord closely with the positive effect of subgoal learning

in improving transfer distance.
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Figure 2.9: (A) Average score increases between pre and post-test scores across conditions, (B) Aver-
age performance scores across conditions, (C) Average self-reported ratings of intrinsic (red), extrinsic
(green), germane (blue) cognitive load across conditions.

Generation and Selection tasks were manageable microtasks. There were no significant differences

between conditions for the three types of cognitive load (one-way ANOVA, intrinsic: F = 0.07, p = 0.94,

extrinsic: F = 0.68, p = 0.61, germane: F = 0.50, p = 0.52). Little differences among the conditions

indicate that our microtasks did not impose additional cognitive load despite being more active than

Baseline. P26 commented that subgoal learning tasks were manageable because top-down exploration of

subgoals helped him digest the code easily: “I could understand long code examples faster by dividing

them into smaller units.”

Figure 2.10: Likert scale responses for the post-survey questions regarding learning experience. Note
that words in parenthesis were changed depending on the answerers’ conditions. The survey questions
were: Q1. How much did (seeing code and explanations/subgoal learning tasks) help to understand the
usage of while loops? / Q2. How much did (seeing code and explanations/subgoal learning tasks) help
to understand code examples? / Q3. How much did (seeing code and explanations/subgoal learning
tasks) help to understand hierarchical structures of code examples? / Q4. How often do you want to
use (code examples/subgoal learning tasks) in future programming learning?

Generation and Selection tasks helped improve learners’ satisfaction. The learning condition did not

affect participants’ Q1: understanding the usage of while loops and Q2: comprehension of code examples

(one-way ANOVA, F = 0.65, p = 0.52 for Q1, F = 2.56, p = 0.09 for Q2 ). However, the Generate

and Select participants perceived that they Q3: understood the hierarchical structure of code examples

significantly better than the Baseline participants (one-tailed t-test, p = 0.02, d = 0.79 between Baseline

and Generate, p = 0.04, d = 0.69 between Baseline and Select). Subgoal learning tasks were preferred
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for Q4: future reuse over the Baseline task, but not statistically significantly (one-tailed t-test, p = 0.06,

d = 0.58 between Baseline and Generate, p = 0.31, d = 0.31 between Baseline and Select).

The participants in Generate condition liked the process of explicitly identifying the functions of each

part of the code even without corrective feedback. P24 commented, “Subgoal learning would be helpful

to learn not only the solution specific to example problems but also the general strategies for solving

other problems.” Another participant P30 said, “[the Generation task] greatly helped to organize code

into small pieces. I used to think programming was difficult, but I could gain confidence by doing the

task and solving problems.” We speculate that the statistical insignificance resulted from the relatively

high satisfaction of Baseline participants. Baseline participants liked the simplicity of the interface and

felt more familiar to use. P3 in the Baseline condition noted “the UI was so simple that I could inspect

and understand code example well.” We may observe a more significant preference between conditions

if the study is designed to be within-subjects or more longitudinal to reduce the effect of their initial

burden to familiarize novel interfaces.

The participants also perceived the corrective feedback in the Selection task as correct and helpful

for a check (see Fig. 2.11 Q4 and Q5 ). More than half of the Select participants rated over 5 for Q4

and Q5. P40 said that the feedback was useful to confirm his understanding of code examples: “I was

unsure of my answers many times, but the correct signs helped me confirm that I was doing right.” P33

commented the immediacy of feedback also helped: “[the corrective feedback] trained me to self-explain

the code with more general and purposeful terms, rather than simply explaining the execution of the

code.” P44 pointed out that the feedback would be more effective with supplementary explanations for

answers. Although most participants thought the answers given by CodeTree were reasonable, some

participants doubted the accuracy of the feedback, especially when their responses all turned out to be

correct.

RQ3. Does the colored bar visualization help understanding and generation of subgoal

hierarchies?

The bar visualization helped the generation of subgoals. The Generate participants were asked two

questions regarding the hierarchy generation interface and the colored bar visualization (see Fig. 2.11,

Q1 and Q2 ). Both questions were rated over 5 by more than half of the participants. P25 thought the

hierarchy generation interface was intuitive, easy to map between code and subgoals, and effective for

representing complex goal structures: “The interface was easy to use and grasp [what I was creating]

because subgoals were indented like code in a familiar style.” P24 commented, “The interface helped to

understand code systematically. I first defined strategies [(i.e., subgoals)] of problems, and then I selected

corresponding parts in the actual code.” P20, P25, and P29 understood visual notations correctly and

liked the idea of using bar lengths and positions to present complex goal structures. P20 noted “the

lower-level bars were drawn to the right of, and only within, the upper-level ones. It was intuitive and

pleasant to look at with colors.”

The bar visualization in the Selection task is unnoticeable but is helpful once noticed. The Select

participants had mixed perceptions of the helpfulness of the bar visualization (see Fig. 2.11, Q3 ). Half

of the participants commented that they did not notice the visualization because its visual changes were

too subtle. P31 said “I did not notice the visualization until answering this question. However, if I had

looked at it carefully, it would have been helpful to understand the overall hierarchical structures.” For

those who noticed the visualization, it helped to overview entire hierarchies and check the hierarchical

relations between the code asked by MCQs. P41 commented, “I especially liked the area highlighted in

orange and the bar on the left showing the structure and scope. I think it helped a lot to understand the
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overall structure visually. It was also good to show larger scopes of goals first and move to more detailed

goals. It would have been better if the bars also showed chosen subgoal labels.”

Figure 2.11: Likert scale responses for the post-survey questions regarding user interface and the colored
bar visualization, and system-generated feedback. Q1-Q3 were asked to the Generate participants, and
Q4-Q5 were asked to the Select participants. Images of system features were attached to each question
in the survey to indicate each feature clearly.

2.7 Discussion

In the following subsections, we discuss the implication of our results for generating subgoal hierar-

chies at scale and generalizing our system design to other relevant domains.

2.7.1 Efficiency of our workflow for generating hierarchies

One of our notable findings is that just a few learners are needed to generate high-quality goal

structures. CodeTree generated correct goal structures with just five programming novices. The

participants in the study spent about 9 minutes completing each Generation and Selection task (6

minutes for Baseline task). Considering that the Generation tasks can run in parallel as they are

independent of each other, CodeTree can generate a multi-level goal structure of a code example

within 10 minutes in an ideal case. Previous crowdsourcing systems [59, 60] required hundreds of human

intelligence tasks (HITs) for generating taxonomy hierarchies of size 10-20 nodes, a size comparable to

our goal structures. Compared with these hierarchy generation methods, our learnersourcing workflow

can be deployed in even small classrooms.

We argue that learnersourcing may shed light on reducing the number of workers and time needed

for crowdsourcing hierarchically structured data (e.g., concept maps and evaluation criteria). Previous

systems that used paid crowdworkers (e.g., MTurk) focused on making each task small so that crowd-

workers could contribute without knowing a global hierarchy. However, using fragmented microtasks

increased the number of total HITs. In our study, we observed that learners tend to have a good un-

derstanding of global hierarchies. For instance, more than half of the Generate participants submitted

multi-leveled subgoals. Because learners have a good sense of global hierarchies, crowdsourcing systems

may empower learners to engage more in the global process of hierarchy generation. Learners may be

empowered to directly edit and fix global hierarchies to complement algorithmic coordination.

Indeed, we observed the benefit of empowering learners for higher engagement in our system design
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iterations. Early Generation interface constrained learners from making multi-level subgoals (i.e. adding

a subgoal below another subgoal). We designed the system this way because we thought allowing the

creation of multi-level subgoals would increase task complexity, and learners would not want to exert

additional effort on making more subgoals. However, learners in pilot studies commented that making

multi-level subgoals would lower the task complexity as they could make goal structures more flexible and

closer to what they picture. After redesigning theGeneration task to accept multi-level subgoals, we could

observe higher learner satisfaction and less confusion for making subgoals. The change also improved

our system by collecting more subgoals at different levels with fewer learners. These observations align

with previous study [61] in that providing learners a choice to engage in tasks rather than forcing them

can improve motivation and the quality of collective output. Although this needs a more thorough

investigation in real class settings, it will be worth designing future learnersourcing systems with more

flexibility and room for higher learner engagement so that learners can contribute more and better if

they want to.

2.7.2 Generalization of the workflow and interfaces

Hierarchical summaries of videos and articles are often effective for navigation, overviewing, and

learning the contents [62, 45, 63, 64]. These hierarchical summaries are conceptually similar to subgoal

hierarchies, as they divide contents into meaningful units and have labels that summarize each unit.

Ideally, content creators can provide hierarchical summaries at their creation time, but there are millions

of content already existing on the web without such summaries. The generation of hierarchical summaries

at scale can improve the overall web experience. However, generating hierarchical summaries through

current data and expert-driven methods share common challenges with subgoal hierarchy generation.

Automatic generation requires large datasets specific to each domain to train models, and domain experts

who can generate them are scarce compared to the number of videos.

We argue that our learnersourcing approach can be a viable option for generating hierarchical

summaries at scale. Our interface and algorithm can work for diverse content types. The core user

interface for grouping contents into meaningful units may apply to other content types. For instance, for

videos, viewers can interact with a timeline bar to group sections of videos and label them. Then, our

algorithm can identify how the timeline needs to be structured. Since videos are a popular medium of

online learning (like how-to’s and MOOCs), the tasks can also be designed into pedagogical activities [19].

2.7.3 Comparison to previous studies on subgoal learning

Despite having many similarities with the settings of previous studies [10, 11, 30], our study did not

replicate some of their findings. Our study’s three conditions (Baseline, Generate and Select) are com-

parable to No subgoal labels, Subgoal labels given and Subgoal labels generated conditions in Morrison et

al.’s study [30]. We adopted their apparatus for quantitative measurements, instructional materials, and

study procedures. However, we observed significant improvement in code-tracing skills in our Generate

condition and a mediocre change in code-writing, contrary to Morrison et al.’s study.

Our learning interventions had several differences from that of Morrison et al.’s study. First, we asked

participants to group code lines by themselves and make labels, while Morrison et al.’s participants had to

make subgoal labels only. Second, the units of subgoal were different between the studies. The subgoals

in our study grouped code lines; Morrison’s subgoals grouped code writing steps (e.g., 1. determine the

termination condition of a loop. 2. invert the termination condition into a continuation condition.).

23



These differences in learning interventions might have elicited different skills (code-tracing vs. code-

writing). For example, the grouping activity and code-line-based subgoals might make participants stick

to code and self-explain code in detail, improving their code-tracing skills. On the other hand, the

subgoals that group code writing steps might have helped learners remember the procedure to write

code from scratch.

Our study also did not replicate the findings of Margulieux and Catrambone [11] to a certain

extent. Margulieux and Catrambone showed that constructive subgoal learning requires either guidance

or corrective feedback to elicit a learning effect. In our study, although Generate participants did not

receive guidance or feedback, they excelled in the post-test. Our result may suggest that 1) constructive

subgoal learning is still better than passive learning even without feedback or 2) participants in our study

had high prior knowledge and were less dependent on feedback as they can correct themselves within

the constructive activity. In future studies, it will be worth looking into how the learner-driven grouping

activity affects the learning experience and how different levels of learners’ prior knowledge correlate to

the necessity of guidance and feedback in subgoal learning.

2.8 Limitations and Future Work

We discuss the limitations of our work. First, although our controlled study helped observe the

learning benefits of using CodeTree, large-scale studies and deployments can provide stronger empirical

evidence in our simulated results for both the algorithm and the Selection task. Second, we should test

code examples with more variety in complexity (e.g., code length and depth of loops) and language

to see if our workflow and interface work regardless of these variations. For instance, the number of

tasks and learners needed for generating high-quality subgoal hierarchies may not linearly scale with

code complexity, or code examples with complex structures might overwhelm learners even with our

microtasks. Future research may assess the efficiency of the workflow and interface for generating the

subgoals of large code bases (e.g., public repositories on GitHub) that span dozens of lines across different

files and complex algorithm code (e.g., solution code on LeetCode) that require high-order skills to

understand and decompose steps. It will also be interesting to see how far learners’ proficiency in

programming affects the number of learners needed for generating high-quality subgoals and whether the

contribution from poor learners hurts the quality of code groups in our algorithm.

There is also room for improving CodeTree in the future. Generative AI models have the potential

to solve cold start problems by offloading the initial burden of learners [65]. We did not look deeply into

the possibility of using Codex for generating goal structures and subgoal labels because learner-driven

subgoal generation has pedagogical value on its own, and Codex often gave incorrect outputs in our

attempts. Although we used Codex only for generating explanations of code in this work, it is promising

to investigate fine-tuned prompts for goal structure generation.

Although this work puts more weight on generating goal structures, the Selection task also has room

for improvement. While the multi-armed bandit algorithm was used to provide good answers, simple

random selection was used to generate distractors. More sophisticated methods to generate pedagogically

meaningful distractors [66, 67] will improve the learning gain of the Selection task. It will also be worth

exploring different ordering of MCQs. We design CodeTree to traverse goal structures in preorder

and ask MCQs, considering the top-down approach is better for reading code examples. Postorder or

BFS-like traversal of goal structures may give a better learning experience and preferences for learners.

In addition to refining CodeTree, future research can focus on deploying CodeTree in the wild to
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benefit learners and instructors in the real world by leveraging its scalability. One good example is to add

CodeTree to Q&A websites so that when learners refer to the code examples, they naturally experience

subgoal labeling and voluntarily engage in subgoal learning without an instructor’s request in the long

run. To that end, CodeTree needs to deal with code examples written for more diverse purposes,

such as debugging and improving code styles [68], and we need to reimplement CodeTree with a more

general purpose and platform-agnostic technology such as Chrome extension.

Besides, it is necessary to inform instructors of the advantages and teaching methods of subgoal

learning so that CodeTree can take root in actual classes and disseminate from them. An immediate

actionable item is to adopt CodeTree to the introductory Python class in our institution. Since most

study participants took the class, we can expect a replication of significant learning effects from the

students. We can ask students to use CodeTree for self-explaining the subgoals of code in their lab

sessions, in which students solve practice problems after the lecture. The class deployment will allow us

to examine the long-term dynamics of subgoal learning [69] and help students utilize subgoal learning in

daily practices with metacognition. Instructors of the class can also use the student-generated subgoal

labels as a source to check and evaluate students’ understanding.

Despite the difficulty in deploying education systems to real-world learning environments, we believe

there is room for spreading subgoal learning with our system as the awareness and trials of new technology

adoption increase.
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Chapter 3. TeachYou

This chapter presents the second example of the user-driven approach to adaptive learning: TeachYou,

a learning platform that enables learners and teachers to customize teachable agents for learning-by-

teaching. This chapter explores the pedagogical potential of LLM-based teachable agents that use natu-

ral language knowledge states. The content in this chapter is adapted, updated, and rewritten from our

prior work published at CHI 2024 [70]. Throughout this chapter, the pronouns “we,” “our,” and “us”

refer to the coauthors of that publication.

Figure 3.1: An overview of the core components of AlgoBo and TeachYou. The Reflect-Respond
pipeline enables AlgoBo to create responses following its evolving knowledge state while Mode-shifting
guides LBT conversations through knowledge-building questions that ask “why” and “how”. The Teach-
ing Helper in TeachYou analyzes conversations in real-time and gives metacognitive feedback and
suggestions on teaching methods.

3.1 Motivation and Contribution

Interactive learning activities involve learners actively collaborating with peers or engaging with

computer systems to deepen their comprehension of a specific topic [71, 72]. Compared to passive

learning activities (e.g., reading text passages without doing anything else), interactive learning activities

(e.g., pair programming, peer teaching) can elicit the deepest level of understanding by encouraging

learners to elaborate their explanations and construct new knowledge on top of each other through

conversations [73, 74, 75, 76, 77, 78]. One form of interactive learning is Learning by Teaching (LBT),

where learners tutor a peer learner and exchange questions to reorganize their knowledge and identify

knowledge gaps.
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LBT with teachable AI agents (i.e., virtual tutees) can offer many advantages over LBT with humans.

Teachable agents can bring scalability to LBT with their around-the-clock availability and motivate

learners’ participation in LBT by reducing psychological barriers, such as the fear of making mistakes

while teaching and the pressure of responding in real-time [79, 80]. However, despite these benefits,

disseminating teachable agents to diverse subjects is challenging in practice due to the effort-intensive

authoring of the agents’ knowledge model [2] and sophisticated behaviors [81] to elicit desired learning

experiences beyond a tutoring simulation. Conventional authoring methods require extensive mapping

of agents’ knowledge states and high programming skills, precluding teachers and education researchers

from tweaking teachable agents for their needs and context.

In this chapter, rather than constructing teachable agents from the ground up, we propose a top-

down methodology in which we use versatile Large Language Models (LLMs) to simulate tutees. Re-

cent advances in LLMs show their remarkable capabilities in making contextual dialogues [82, 83], role

mimicry [84, 85], and learning from demonstrations [86, 87]. Teachable agents equipped with the LLM

capabilities can perform more believable and natural tutoring interactions (e.g., writing and explaining

arbitrary code on request), compared to prior non-LLM LBT systems that adopted pre-scripted and lim-

ited interaction channels [88, 89, 90, 91]. The flexible interaction allows learners to formulate free-form

questions and try diverse teaching methods, improving their knowledge construction and metacogni-

tion [92, 93, 94, 95]. We explore using LLMs to lower the cost and barriers of building teachable agents

and to make LBT more engaging and pedagogically effective.

In our formative study, we asked 15 programming novices to conduct LBT with ChatGPT prompted

to perform the role of a tutee. We found that there are needs for 1) confining the knowledge level of

LLM agents, 2) agent-initiated “why” and “how” questions, and 3) in-conversation feedback on learners’

teaching methods. Our dialogue analysis revealed that role-playing led learners to self-explain their

knowledge but was limited to knowledge-telling, achieving only the rudimentary benefits of doing LBT.

Participants struggled to build new knowledge because the teachable agent excelled in writing code even

without being taught and did not ask questions that could prompt elaboration and knowledge-building.

The participants also commented about the lack of metacognitive guidance and reflection for effective

LBT.

To address these issues, we built a teachable agent, “AlgoBo”, that can exhibit prescribed misconcep-

tions and knowledge level and “TeachYou”, an LBT environment for introductory algorithm learning

(Fig. 3.1). In TeachYou, learners solve programming problems on algorithms (e.g., binary search) and

reflect on them by teaching AlgoBo. As learners correctly teach AlgoBo, our Reflect-Respond prompting

pipeline instructs AlgoBo to fix its misconceptions and write code based on what it is taught. We also

added Mode-shifting, in which AlgoBo periodically shifts to a questioner mode and asks questions to

prompt learners’ elaboration and sense-making. Lastly, TeachYou has a Teaching Helper that pro-

vides metacognitive feedback and suggestions to learners on their teaching method in real-time through

dialogue analysis.

We conducted a technical evaluation of our Reflect-Respond prompting pipeline to check if AlgoBo

can simulate a tutee with a prescribed knowledge level on different algorithm topics. We found that

the pipeline can effectively configure, persist, and adapt AlgoBo’s knowledge level within a conversation.

We also conducted a between-subjects study with 40 algorithm novices, where the participants studied

binary search with either TeachYou or a baseline system without Mode-shifting and Teaching Helper.

Our analysis of LBT dialogues and survey results showed that Mode-shifting improved the density of

knowledge-building messages in the conversations significantly (p = 0.03) with an effect size (Cohen’s d)
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of 0.71. Teaching Helper also helped participants reflect on their teaching methods and sequence their

questions strategically, but we could not observe significant improvement in participants’ metacognition.

This chapter is structured in the following order. After a discussion of related work, we describe

our formative study settings and preliminary findings. We then reorganize the findings into three design

goals and introduce our system and pipeline for achieving the goals. With that, we present our technical

and user-study evaluation results. Lastly, based on our results and observations, we discuss the design

considerations for teachable agents, the benefits of using LLMs, promising directions for personalizing

teachable agents, and interaction guidelines for better LBT with teachable agents.

This chapter makes the following contributions:

• AlgoBo, an LLM-based teachable agent that uses the Reflect-Respond prompting pipeline to sim-

ulate prescribed learning behaviors and Mode-shifting to scaffold knowledge-building of learners

through “why” and “how” questions.

• TeachYou, a web-based algorithm learning system that supports LBT with AlgoBo and provides

metacognitive feedback on teaching based on real-time conversation analysis.

• A technical evaluation of the Reflect-Respond prompting pipeline and an empirical user study

results with 40 participants showing that TeachYou improved knowledge-building in LBT.

3.2 Related Work

We outline past studies on stimulating effective LBT among humans and using teachable agents.

Previous research connects to our work in improving the quality and scalability of LBT using virtual

agents.

3.2.1 Learning by Teaching

Learning by Teaching (LBT) is a teaching method in which learners not only articulate and re-

structure their existing knowledge but also engage in reflective knowledge-building. Knowledge-building

refers to extending knowledge beyond provided materials to craft deeper explanations, analogies, and

inferential connections [96, 79, 73, 97], leading to the deliberate creation and improvement of knowledge

useful for a community in a broader context [98]. However, LBT alone does not elicit knowledge-building

naturally [99, 100]; learners tend to end up in knowledge-telling, in which they verbalize what they al-

ready know [96]. Previous research investigated support for eliciting knowledge-building responses from

learners. King et al. found that training learners to ask reviewing, proving, and thinking questions in

sequence to peers during LBT can promote higher-order thinking and learning [101]. Roscoe and Chi’s

analysis of LBT dialogues showed the importance of the tutee’s role in knowledge-building; the deep

questions from the tutee encourage tutors to make self-reflective responses and create inferences between

new and prior knowledge [102]. Shahriar and Matsuda also confirmed that tutees’ follow-up questions

drew the knowledge-building of tutors with low prior knowledge in particular [81]. Matsuda et al. found

that LBT with metacognitive guidance for planning and conducting teaching is as effective as being

tutored by experts regardless of learners’ prior competency [103]. Our primary goal is to build an inter-

active system that draws knowledge-building from learners in LBT. To do so, we adapt the interventions

mentioned above in human tutor-tutee interactions to the conversational interactions between virtual

agents and learners.
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3.2.2 Teachable Agents for LBT

A core component of LBT is the presence of a peer learner. However, as human learners cannot

always be present, past research introduced teachable agents—virtual agents that can learn declara-

tive and procedural knowledge from learners’ explanations and demonstrations, taking the role of peer

learners in LBT [104]. Teachable agents showed promising results in improving students’ performance,

self-explanation, and acceptance of constructive feedback [105, 106, 107, 79, 89]. LBT with early teach-

able agents was non-conversational; agents revealed their knowledge states as concept maps, and learners

taught the agents by directly editing their knowledge states [108, 109]. Recent teachable agents conceal

their states and simulate more authentic learning behaviors; agents can learn from the tutors’ demon-

strations [110], mimic the behaviors of learners (e.g., making arithmetic mistakes) [111, 91], improve

with correct instructions [106], and ask questions [112]. However, implementing these natural and highly

interactive teachable agents requires significant manual efforts and programming skills to specify and

model the knowledge of agents [113]. For example, implementing an agent in SimStudent required more

than a thousand lines of Java code for simple algebra equation solving [110]; the cost may increase ex-

ponentially for more complicated topics (e.g., algorithm learning, advanced equation solving). In this

chapter, we investigate using LLMs for building conversational teachable agents with low manual effort

and programming barriers to support educators and researchers in adopting LBT in diverse classes and

experiments.

3.2.3 LLM-powered Simulation of Tutoring

While the development cost and skill barrier have limited teachable agents to few learning activities

in the past, LLMs can provide a more affordable method to simulate virtual students and coaches and

to diversify their interactions [114, 84, 115]. GPTeach by Markel et al. [84] simulates role-plays between

a teaching trainee and virtual students who come for office hours by leveraging persona and context

setting in prompts. LLM-simulated students allow trainees to practice teaching with diverse students

and to interact through conversations, perhaps the most familiar and open-ended form of teaching

others. Likewise, LLM-based teachable agents can enrich tutor-tutee interaction and activities in LBT

as learners can formulate free-form questions by themselves and try out different teaching strategies, as

opposed to non-LLM LBT systems that permit only predefined methods to assess agents’ knowledge (e.g.,

multiple choice questions) [103, 88, 89, 91]. Nevertheless, challenges remain in making these LLM-based

agents suitable for LBT, where the agents should not only simulate tutoring but also proactively elicit

learners’ knowledge-building. Beyond the roles set by prompts, we need precise control of the teachable

agents’ cognitive behaviors (e.g., knowledge levels and question-asking) to facilitate the intended learning

experience. Prior research has proposed LLM agent architectures and pipelines to grant and scope

cognitive capabilities to LLM, such as memory [116, 117], role-playing [118, 119], and reasoning [120,

121, 122]. We extend the control on LLMs’ cognitive capabilities by proposing an LLM prompting

pipeline that restrains the knowledge level of LLM-based agents.

3.3 Formative Study

We ran a formative study to explore the difficulties of using an LLM as a teachable agent. We

recruited 15 Python novices and asked them to teach the binary search algorithm to an LLM chatbot.

We surveyed their learning experience and analyzed the quality of their dialogues with the chatbot by
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annotating the types of messages.

3.3.1 Participants and Procedure

We recruited 15 participants on campus who could read and write short (about 15 lines) Python

programs containing if and while statements and who were not familiar with binary search and LBT.

Eleven were from non-CS engineering departments.

The study consisted of three stages. In the first stage, the participants went through learning

materials on the binary search from Khan Academy1 and solved two Parsons problems, a coding exercise

on reordering code fragments [123]. In the second stage, the participants received an introduction to

the concepts of LBT, its expected learning benefits, and its procedures. Then, they were given a brief

overview of the LBT activity they would be performing next. In the final stage, learners tutored the

chatbot on how to write code for the two binary search problems from the prior stage. After the LBT

activity, the participants completed an exit survey composed of questions on three themes: the perception

of the chatbot as a learner, the self-perceived learning effects, and the familiarity with teaching a chatbot.

The participants interacted with a baseline LLM chatbot, AlgoBo, performing the role of a teachable

agent. We used GPT-4 [124] as a backbone for AlgoBo and provided a system prompt that set a persona

of a student and added predefined learning challenges it was running into to provide a more convincing

teachable agent [84, 118]. Since we use the name “AlgoBo” again in our main system and evaluation, we

use “AlgoBo-Basic” throughout this section to distinguish the two teachable agents we developed.

3.3.2 Dialogue Analysis

In addition to the comments from the exit survey, we also looked into the quality and conversational

patterns of the dialogues between participants and AlgoBo-Basic by classifying messages into knowledge-

telling and knowledge-building types.

Since previous taxonomies that categorize LBT dialogues [125, 96, 101] were not contextualized

enough to programming tutoring, we decided to adapt the taxonomies and create a new taxonomy

(Table 3.1) specific to LBT in programming. We created our initial set of message types based on the prior

taxonomies for general LBT dialogues [125, 96, 101] and categorizations of programming QA [126, 127].

Three authors took three iterations to annotate dialogues, resolve conflicts, and refine the taxonomy [128,

129]. The authors finalized the taxonomy in the 2nd iteration (20 dialogues, 293 messages). The authors

categorized the rest of the messages independently. The inter-rater reliability of the categorization was

high; three authors achieved Krippendorff’s alpha of 0.731 for the data in the last iteration (11 dialogues,

253 messages).

Our taxonomy has three main categories: instructions, prompting, and statements (see Table 3.1).

Instruction messages have content that asks the opponent (usually the tutee) to do specific actions,

such as fixing code and attempting problem-solving after concept understanding. Instruction messages

are mostly related to the proceeding of steps in teaching. Prompting messages have intentions for

eliciting specific actions from the opponent. These include asking a tutee about a specific concept of

interest, giving thought-provoking questions to encourage knowledge-building, and asking a tutor for help.

We designate Prompting-Thought-provoking to knowledge-building because such questions can signal

collaborative knowledge-building where learners bring up exploratory questions and start knowledge-

building discussions with agents. Statement messages are utterances explaining one’s knowledge and

1https://www.khanacademy.org/computing/computer-science/algorithms/binary-search/a/binary-search
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opinions. Among them, Statement-Elaboration and Statement-Sense-making are knowledge-building as

they are the artifacts of new knowledge; this corresponds to Roscoe and Chi’s classification of knowledge-

building activity [130].

Table 3.1: Our taxonomy to classify the type of messages in LBT conversations with a teachable agent.
The bold texts in the example column are the examples of respective message types. The types with *
are knowledge-telling responses. The types with ** fall into knowledge-building responses.

Category Sub Category Explanation Example

Instruction
Fixing*

[Instruct to] correct specific
knowledge or part of code.

Tutee: Here is my code: <code>

Tutor: Call the input() function twice so that
N and K are separately taken as input.

Commanding

[”] do simple actions
irrelevant to learning. (e.g.,
simply combining code for a
submission).

Tutee: I have written the binary search function.

Tutor: Now, write the entire Python code.

Encouraging
[”] retry a previous action
with emotional
encouragement.

Tutor: You are in the right direction.
Keep writing more code.

Prompting

Challenge
-finding

[Prompt the opponent to]
explain his struggles to find
the parts to help.

Tutor: In which part are you facing difficulties?

Tutee: I am struggling with writing
the conditionals inside the while loop.

Hinting*
[”] think about
alternative/specific
approaches.

Tutee: I could not complete this part of the code.

Tutor: Well, have you considered the case
when the number is equal to K?

Checking
[”] show or self-explain his
understanding of specific
knowledge.

Tutor: Do you know what binary search is?

Tutee: Yes! Binary search is . . .

Thought-
provoking**

[”] elaborate previous
explanations or think beyond
the content of the given
learning materials.

Tutor: What will happen if we switch the min
/ max updating code?

Tutee: I haven’t thought about it. Will the loop
run forever?

Asking for help
[”] analyze the speaker’s
problem or give hints.

Tutee: Could you help me with solving the
problem, please?

Statement

Comprehension*

[State one’s knowledge or
opinion by] paraphrasing /
copying / explaining the
learning material or the
opponent’s response.

Tutor: First, let’s define the function called
binary search. In the while loop, . . .

Elaboration**

[”] providing extended
clarification or relevant
examples beyond the given
materials.

Tutee: Can you think of a real-life example
where we can use binary search?

Tutor: I think we can use it for finding a word in
a dictionary where words are listed alphabetically.

Sense-making**

[”] realizing own errors /
misconceptions or making
new inferences / connections
to prior knowledge.

Tutor: Can you take a closer look at the else
statement in your code?

Tutee: Ah, I got it. Let’s modify the high value
to mid. Here is the corrected code.

Accepting
/ Reject

[”] agreeing or disagreeing
with the opponent’s response.

Tutor: You should update line 24 to . . .

Tutee: I think that is a good idea.

Feedback
[”] responding to the
opponent’s action or thought.

Tutor: Yes, that is exactly right.

Miscellaneous
Greetings/goodbyes, social
expressions

Tutor: Do you have any questions?

Tutee: No, thank you so much for your
guidance so far!

3.3.3 Findings from Participants’ Comments and Dialogue Analysis

We found that an LLM chatbot can serve as a teachable agent for rudimentary LBT. Participants

were positive about teaching an LLM chatbot and felt it helped them reorganize and recall their knowl-

edge. However, our dialogue analysis and in-depth survey responses revealed that the LLM chatbot fell

short of adequately supporting learners’ knowledge-building process.

AlgoBo-Basic was perceived as an overly competent learner due to its extensive prior

31



knowledge and self-correcting behavior. Participants highly appreciated AlgoBo-Basic’s ability

to “talk like a real person and ask specific questions” (P14) for simulating a learner. However, two-

thirds of participants commented that they experienced awkwardness due to AlgoBo-Basic’s competence.

AlgoBo-Basic initially started a conversation by asking for help. However, after a few chats, AlgoBo-

Basic provided competent responses too quickly, which did not reflect a novice learner’s learning process.

P5 remarked, “I explained it very simply, but he understood it very well... He is so much smarter than

me. He seems to fill by himself the knowledge even I am not sure about.” AlgoBo-Basic’s adeptness in

code writing and explanation also limited conversational patterns and confused learners about their roles.

AlgoBo-Basic made twice as many knowledge statements (i.e., Statement-Comprehension) as participants

did, taking away the chance for learners to self-explain and teach (see the Statement-Comprehension row

in Table 3.2). P7 stated, “AlgoBo-Basic was like a teaching assistant testing a student’s ability, rather

than a student struggling with binary search problems.” Participants responded that they would have

liked to see more student-like interactions from AlgoBo-Basic such as “asking more proactive questions”

(P1) and “making mistakes and requesting tutors for an elaborated explanation” (P5).

Dialogues between tutors and AlgoBo-Basic were limited to only knowledge-telling. Par-

ticipants valued retelling of their knowledge—“Writing down knowledge was very helpful in organizing

knowledge. If you want to teach someone, you should create steps in your head, and this process helped

a lot” (P1). However, their learning was limited to knowledge-telling; out of 546 messages, we could

observe 244 knowledge-telling messages but only 15 knowledge-building utterances (Table 3.2). Despite

helping reorganize knowledge, self-explanations did not lead to building new knowledge beyond what

they previously knew—“I didn’t discover anything new because I explained what I had already learned”

(P4). Furthermore, tutors’ self-explanations were often undeveloped because AlgoBo-Basic did not ask

questions on participants’ vague explanations, and AlgoBo-Basic performed well. For example, P15 an-

swered AlgoBo-Basic’s question on why the input array needs to be sorted: “Sorted arrays reduce the

number of calculations and maximize the effectiveness of binary search.” Despite the lack of detailed

reasoning (e.g., “how” and “why”), AlgoBo-Basic accepted the explanation and moved on to the next

question.

Table 3.2: The distribution of message categories for 31 dialogues from the formative study. The types
with ∗ are knowledge-telling messages. The types with ∗∗ fall into knowledge-building messages.

Category Sub Category Tutee Tutor Total

Instruction
Fixing* 0 37 37
Commanding 0 65 65
Encouragement 0 1 1

Prompting

Challenge-finding 0 18 18
Hinting* 1 12 13
Checking 1 31 32
Thought-provoking** 0 1 1
Asking-for-help 91 0 91

Statement

Comprehension* 133 61 194
Elaboration** 0 1 1
Sense-making** 12 1 13
Accepting 35 4 39
Feedback 0 17 17

Miscellaneous 19 5 24
Total 292 254 546
Knowledge-telling 134 110 244
Knowledge-building 12 3 15
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Participants carried out antipatterns of LBT and sought feedback. Participants remarked tu-

toring through natural language communication was intuitive and familiar because it resembled tutoring

humans, and they could apply the same teaching methods to AlgoBo-Basic. However, some participants

wanted to see better methods for them to teach AlgoBo-Basic (P9) and a method to review their learning

process (P15). P15 said, “I was able to see that my teaching skills worked, but the reflection [on my

tutoring session] left a lot to be desired due to the lack of feedback on my teaching method” (P15). While

analyzing participants’ dialogues, we found common conversational antipatterns that may restrain the

benefits of LBT. The first pattern was Commanding, in which participants repetitively gave AlgoBo-

Basic specific instructions for writing and correcting code. This pattern lacks an explanation of “why”

and “how” which can prompt learners to go beyond recalling facts (i.e., knowledge-telling). The second

pattern was Spoon-feeding, in which participants give away knowledge without questions to check or

prompt a tutee’s understanding. Rather than passive explanations, learners can actively construct new

knowledge by making thinking questions for their tutees, taking the benefits of having interactive agents.

The last pattern was Under-teaching, in which AlgoBo-Basic progressed in problem-solving but did

knowledge-telling only because learners did not attempt to teach and develop further knowledge.

3.4 Design Goals

The findings from our formative study showed that LLMs could serve as a rudimentary teachable

agent for LBT. However, we also confirmed the need to improve LLM chatbots’ imitation of help-seeking

tutees, promote the knowledge-building of learners, and support learners’ metacognition in teaching.

Based on the insights, we set three design goals.

D1. Design teachable agents that can simulate misconceptions and gradual learning curves.

We found that the pre-trained knowledge and self-correcting behavior of LLMs made AlgoBo feel less

like a tutee and prevented tutors from learning by identifying tutees’ errors and enlightening them with

elaborate explanations [125]. To reduce undesirable competence, we need to control the prior knowledge

of LLMs and make them show persistent misconception and unawareness in their responses until they

receive pedagogical aid.

D2. Develop conversations through teachable agents’ elaboration questions. AlgoBo rarely

asked follow-ups or thought-provoking questions (Table 3.2) that can elicit learners’ knowledge-building

through elaboration and sense-making [101, 81]. Instead of keeping AlgoBo as a passive tutee throughout

a conversation, switching AlgoBo into an active questioner may scaffold learners to build knowledge step

by step. For example, AlgoBo can start as a help-seeking tutee asking learners to self-explain basic

concepts, and it can turn into a thought-provoking Socratic questioner intermittently.

D3. Provide learners with metacognitive feedback on their teaching methods during a con-

versation. Besides the scaffolding from the tutee side, learners can actively improve the quality of their

LBT by leading constructive tutoring and refraining from the three antipatterns. In our formative study,

however, participants found guidance and reflection on their teaching techniques lacking. Metacognitive

feedback on teaching during LBT can help learners recognize how to improve their teaching methods on

the spot and refine conversations throughout.
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Figure 3.2: To the left, the 3 learning objectives they need to reach (A), learners can see AlgoBo’s
profile (B), and the questions they need to help AlgoBo solve (C). To the right, they can see the code
they submitted (E), a code playground (F), and the code that AlgoBo write (G). When AlgoBo wrote
code, participants could click on the “run test cases” and run AlgoBo’s code. In the middle (D), learners
use a typical chat interface to teach AlgoBo while receiving questions (H) and guidance from Teaching
Helper (I)

3.5 System

We present TeachYou, an LBT system featuring AlgoBo, an LLM-based teachable agent. AlgoBo

gets help from learners to solve introductory algorithm problems while asking thought-provoking ques-

tions that encourage the learners to expand their knowledge beyond their current level. Through the

system, we propose 1) a new LLM prompting pipeline for simulating tutees of specific levels of knowledge

and misconceptions and 2) a learning environment for learners to effectively conduct LBT.

Programming and algorithm learners can use TeachYou to review what they learned and explore

further knowledge through an engaging and interactive LBT activity. We designed an interface (Fig. 3.2)

to help learners conduct the activity. Throughout the LBT activity, learners should achieve three sequen-

tial objectives in teaching AlgoBo (Fig. 3.2 A). The objectives correspond to the three levels in Bloom’s

taxonomy (Understand-Apply-Analyze) [131, 132]; learners first check if AlgoBo correctly understand the

concept of interest; then, learners help AlgoBo apply the concept to solve a problem; lastly, learners and

AlgoBo discuss real-life use cases and other related topics. Learners can refer to the profile of AlgoBo to

set their attitude and expectations (Fig. 3.2 B). We set the persona of AlgoBo as a 2nd-year high school

student, as opposed to a 1st-year CS student in the formative study, to match the slow learning behavior

and to encourage learners’ patience in teaching. Learners use a typical chat interface to teach AlgoBo

(Fig. 3.2 D) and have access to teaching support (Fig. 3.2 C, E, F, G). While tutoring, learners receive

why questions and thought-provoking questions from AlgoBo, helping them self-explain the rationale be-

hind their instructions and expand their knowledge (Fig. 3.2 H). TeachYou also provides feedback on

learners’ teaching methods and suggestions for improvement to encourage reflection on teaching (Fig. 3.2
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I).

In order to support the aforementioned learning scenario and the three design goals effectively, we

implemented three system components: First, we implemented the Reflect-Respond prompting pipeline

for a teachable agent to simulate student-like learning behavior. Secondly, within a conversation, our

teachable agent shifts between help-receiver and questioner modes in every third conversation turn,

eliciting self-explanation and knowledge construction, respectively. Lastly, the learning environment

analyzes the dialogue between learners and AlgoBo and provides feedback on their tutoring methods to

promote metacognition.

Figure 3.3: The overview of the Reflect-Respond prompting pipeline for simulating knowledge learning of
AlgoBo and examples for each component. From the recent conversation, AlgoBo extracts new knowledge
of the while loop condition and update its knowledge state (colored in green). Then, AlgoBo retrieves
knowledge relevant to while loops and composes a response that fills its knowledge gap.

3.5.1 Reflect-Respond prompting pipeline to simulate knowledge learning

From our observations and user comments in the formative study, we considered three properties

crucial for LLM-based teachable agents to simulate knowledge learning—reconfigurability, persistence,

and adaptability. Reconfigurability refers to how precisely we can set an agent’s performance in

question-answering and problem-solving. Reconfigurable agents allow us to build tutees with specific

misconceptions and help design tutoring scenarios. Persistence examines how the knowledge level of a

teachable agent on a target topic is maintained consistently throughout the agent interaction. Persistent

agents do not self-correct their misconceptions and show constant question-answering performance unless

being taught; their knowledge level should also not be susceptible to messages irrelevant to the knowledge

of interest (e.g., jokes). Adaptability measures how well the agent updates its knowledge as it acquires

new information from tutors in conversations. Adaptability allows a teachable agent to improve its

knowledge level and remember what tutors have taught.

To achieve these properties, we introduce a prompting pipeline that leverages a knowledge state

and two information flow mechanisms: Reflection and Response (Fig. 3.3). A knowledge state is a
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store representing the knowledge AlgoBo currently holds. It is comparable to a schema, a cognitive

unit of knowledge for problem-solving [133]. AlgoBo’s responses are constrained by its knowledge state,

and we update the knowledge state consistently throughout a conversation. Knowledge states link to

reconfigurability; if we leave them empty, agents will show zero-knowledge behavior; if we add incorrect

or correct information, agents will show misconceptions or prescribed knowledge levels, respectively.

Reflection is a flow dedicated to the update of knowledge states. In the Reflection flow, we use an

LLM to extract new information from the latest conversations (i.e., the last three messages) and then

update knowledge states by adding or correcting information. After Reflection, the Response flow

occurs; we first use the LLM to retrieve information relevant to the conversational context from the

current knowledge state and then compose a response by only combining the retrieved knowledge. If a

knowledge state does not have relevant information and nothing is retrieved, AlgoBo responds: “I’m not

sure how to do that. Could you explain it to me?” Reflection and Response connect to the persistence

and adaptability of agents as the flows control the retrieval and update of knowledge states in reaction

to external stimuli.

We implemented the knowledge state as a JSON object with two attributes: facts and code implementation.

Facts store natural language explanations of the target knowledge. Code implementation contains code

snippets (see Fig. 3.3 knowledge state). The four operations in the pipeline are implemented with GPT-

4 as a base LLM. We adopted well-known prompting engineering techniques, such as AI chains [134],

few-shot prompts [86, 135], persona setting [84, 118], and code prompts [136, 137]. We note that our

implementation is one possible instance of our proposed pipeline, and it can improve further with better

LLMs and algorithms for the operations. For example, we can represent knowledge states with more com-

plex tree structures [138, 139], and the update operation may use the Least Recently Used algorithm [140]

to simulate a fixed-size knowledge capacity. We chose GPT-4 for operating our pipeline because it can

effectively process the contextual information in conversations compared to other approaches.

Figure 3.4: AlgoBo shifts its mode in every three messages. When AlgoBo is in the questioner mode, it
keeps asking follow-up questions until receiving a satisfactory response (constructive loop)
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3.5.2 AlgoBo’s Mode-shifting to develop constructive LBT dialogues

Beyond telling knowledge to AlgoBo, we aim to push learners to answer thought-provoking questions

and build new knowledge. From the formative study, we observed that entrusting LLMs entirely with

making conversations did not result in desirable knowledge-building patterns (e.g., question-answering on

“why” and “how”) spontaneously. Prior research has shown that guiding questions from conversational

agents are effective for improving learners’ knowledge-building and divergent thinking [81, 141]. To

control conversation flows while giving learners the freedom to steer them, we introduce Mode-shifting,

in which AlgoBo periodically shifts between two modes: In the help-receiver mode, AlgoBo passively

learns from tutors and prompts their self-explanations; in the questioner mode, AlgoBo asks thought-

provoking questions to stimulate the knowledge-building of learners.

We use Mode-shifting to make conversation flows dynamic and engaging. In every third message,

AlgoBo shifts to the questioner mode and asks a thinking question. The thinking question differs by the

phase of the activity (Fig. 3.2 A). While learners teach AlgoBo about concepts and code implementation

(i.e., the first and second objectives), AlgoBo asks “why” questions in response to learners’ instructions

and explanations. During the discussion phase (i.e., the third objective), AlgoBo brings up related

algorithms or real-life examples and asks “how” questions to prompt learners to explain and connect to

what they have learned. After the thinking questions, the conversation goes through a constructive loop,

in which learners receive follow-up questions from AlgoBo until they answer the question in depth with

a valid example. When AlgoBo assesses learners’ responses as satisfactory, AlgoBo summarizes them

and shifts back to the receiver mode. The period of Mode-shifting (every three messages) is heuristic;

from our pilot studies, we found that such frequency was optimal for prompting elaboration while not

distracting tutors too much.

To incorporate Mode-shifting to LBT dialogues, we implemented four components (Fig. 3.4). The

Thinking Question Generator is a module that uses GPT-4 to produce thought-provoking questions

related to the current conversation. For managing the constructive loop, we followed the protocol of the

constructive tutee inquiry in Shahriar et al.’s work [81] and adapted it to LLM. We used the formative

study dialogues with response quality annotations to train the Response Quality Classifier. The

classifier assesses every learner’s responses in the loop and determines AlgoBo’s follow-up question as

pre-defined in Constructive Tutee Inquiry protocol [81]. Lastly, the Paraphrasing Module adjusts

the fixed question to the conversational context.

3.5.3 Teaching Helper for Metacognitive Guidance

Throughout our formative study, we found conversational antipatterns that hindered effective LBT.

To prevent this, TeachYou provides metacognitive feedback throughout the conversation to help learn-

ers reflect on the overall teaching session and offer overarching guidance on steering the discussion.

TeachYou presents the feedback through Teaching Helper, a red or green text box that appears

below the messages (see Fig. 3.2 I). Teaching Helper provides information on the current problems with

the teaching method and elaborates on what learners could do to improve their conversation.

TeachYou provides four Teaching Helper messages, depending on detected conversational patterns

(Fig. 3.5). For the Commanding and Spoon-feeding patterns, in which learners should correct their

teaching styles, TeachYou shows feedback messages in red boxes. To ensure learners read feedback,

we interrupt the conversation with AlgoBo until learners explicitly decide how to act. The send button

in the chat interface is blocked until learners pick an option among the possible teaching methods to
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Figure 3.5: The four Teaching Helper messages and corresponding suggestions that appear depending
on the conversational patterns.

address the issue. We chose to give learners multiple suggestions and let them choose their teaching

method, instead of giving specific guidance to follow because the active selection of teaching methods

may improve learners’ recognition and autonomy in tutoring [142]. For theUnder-teaching pattern and

default cases where no antipattern is found, TeachYou shows messages in a green box. The messages

either encourage learners to go beyond the current learning topic or give general tips for good answering

and questioning [143, 144, 145]. Teaching Helper messages and learners’ selection remain in conversations

for revisiting. To avoid frequent interruptions and distractions from Teaching Helper, we restrict the

presentation of the feedback to every six messages.

Teaching Helper is powered by a message-type classifier for detecting conversational patterns. We

used the dialogue dataset from the formative study to fine-tune the GPT-3 davinci model. For training,

we used 438 messages, and the classifier achieved an accuracy of 71.3% for the remaining 108 messages

in a validation test.

3.6 Evaluation

We evaluated the efficacy of TeachYou for eliciting knowledge-building experiences in LBT. This

overarching goal broke down into three main research questions:

RQ1. How well does the Reflect-Respond pipeline simulate misconceptions and knowledge development?

RQ2. How does TeachYou help elicit knowledge-building in LBT conversations?

RQ3. How does TeachYou improve learners’ metacognition about tutoring?

The evaluation was divided into two parts. The initial phase was a technical evaluation that aimed

to assess if the Reflect-Respond pipeline could induce a teachable agent to produce responses that were

reconfigurable, persistent, and adaptive throughout the course of a conversation (RQ1). In the second

phase, we ran a user study to examine the effects of Mode-shifting and Teaching Helper on learning

experiences (RQ2 and RQ3).
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Figure 3.6: The process of measuring adaptability for correct tutoring with an Implementation problem
and State 2 as a seed knowledge state. The evaluations were performed in Korean to ensure compatibility
with the main study conditions.

3.6.1 Technical Evaluation of the Reflect-Respond Pipeline

As defined in Section 3.5.1, we evaluated the responses generated by our prompting pipeline along

three axes—reconfigurability, persistence, and adaptability (RQ1).

Evaluating AlgoBo’s Knowledge Level

We evaluated AlgoBo’s knowledge level by observing its performance on Multiple Choice Questions

(MCQs) under varying knowledge states and conversational interactions. Although our target learning

setting does not involve MCQs, we chose MCQs to follow prior research on assessing LLMs’ performance

[146, 137] and collect clear-cut results. A well-configured teachable agent should only perform well on

the MCQ questions that can be answered with the given information in the knowledge state. To confirm

that AlgoBo was answering questions based on its knowledge state only and not picking random choices,

we also prompted AlgoBo to explain why it chose the answers (Fig. 3.6).

Procedure and Setup

We measured AlgoBo’s MCQ performance on three different algorithmic topics. For each topic, we

created a set of nine MCQs. Within each set, we had three MCQs for each of Bloom’s taxonomy cat-

egories: Understanding, Implementation (Applying), and Analysis [131, 132]. Understanding questions

consisted of questions on factual concepts, Implementation questions were about filling in the blanks

in code, and Analysis questions were about the time complexity calculation and comparison to other

relevant algorithms. AlgoBo was evaluated with 4 different knowledge states and conversational inputs.

For reconfigurability (i.e., the change in knowledge level with different knowledge states), we pre-

pared four seed knowledge states. State 1 was empty to simulate zero knowledge. State 2 had an

explanation of a topic algorithm in only facts to observe if AlgoBo knows only the given information.

State 3 had the same explanation plus a piece of incorrect code in code implementation to check if

AlgoBo shows the prescribed misconception. State 4 had the correct explanation and code to see if

AlgoBo becomes competent with more input knowledge. We prompted AlgoBo to solve MCQs with

different seed knowledge states and compared the scores between the states. To prevent AlgoBo from

storing knowledge learned from the MCQs into its knowledge state, we turned off the Reflection flow.
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For assessing persistence (i.e., the invariance of knowledge level under no stimuli), we ran random

conversations on State 2. In the random conversations, AlgoBo was taught irrelevant information, such

as arithmetic, translation, and classification, thus leading AlgoBo to save random information in its

knowledge state [147]. We turned on the Reflection flow so that AlgoBo could update its initial knowledge

state. We prompted AlgoBo to solve the same MCQs again and compared the difference between the

first and second scores.

For adaptability (i.e., the acceptance of new knowledge), we considered two cases—Correct and

Incorrect tutoring. The performance gap between Correct and Incorrect tutoring is crucial to check

an agent’s suitability for LBT because a teachable agent should not excel when learners give incorrect

or incomplete instruction. Tutoring conversations taught three pieces of information that mapped to

Understanding, Implementation, and Analysis of concepts. Correct tutoring gave AlgoBo correct fac-

tual information, whereas Incorrect tutoring provided false information. We ran Correct and Incorrect

tutoring separately on AlgoBo configured with State 2 and compared the differences between the MCQ

scores at the start and after each type of tutoring. We used the GPT-4-0613 model with 0 temperature

throughout the evaluation.

3.6.2 Technical Evaluation Result

We report the result of the technical evaluation on reconfigurability, persistence, and adaptability.

We observed a small variation in the MCQ score even for the same inputs, knowledge states, and LLM

model, perhaps due to the randomness inherent in the model and the running hardware2. We repeated

the entire measurement five times for each input configuration and reported the median score for each

question to handle variances of AlgoBo’s response. The variance in score was mild; on average, AlgoBo

produced a different response once in five repetitions.

[RQ1] Response flow can effectively reconfigure the knowledge level of AlgoBo.

As expected, AlgoBo got all MCQs wrong when its knowledge state was empty (see State 1 in Table 3.3).

When the knowledge state had only facts information (State 2 ), AlgoBo could solve some conceptual

(Understanding and Analysis) questions but none of the Implementation questions. This shows that

separating the knowledge state by knowledge types (facts and code implementation) can help configure

knowledge more precisely by types. When the knowledge state contained code information, AlgoBo

started to solve Implementation questions and achieved higher scores when given correct code (State 4 ),

compared to incorrect code (State 3 ). AlgoBo followed what was written in its knowledge state (State

3 ) exactly and produced wrong code and answers.

[RQ1] Reflect-Respond makes AlgoBo produce responses persistent to knowledge states.

The random conversation had a mild effect on the MCQ scores (compare the difference between the “At

the start” and “After random conversation” columns in Table 3.4). While random conversation changed

the scores of conceptual questions, the scores of Implementation questions stayed the same. We analyzed

the inputs and outputs of the Respond flow in depth and found that AlgoBo retrieved algorithm-related

knowledge that was missing in the first MCQ solving. Considering our LLM prompt for Retrieve, we

contemplate that the population of more information in knowledge states might increase the relative

importance of relevant knowledge in retrieval and help AlgoBo solve questions correctly. In other words,

the scores after the random conversation are closer to what the AlgoBo should have received initially.

To see how far the population of random information increases knowledge level, we ran another random

2https://community.openai.com/t/a-question-on-determinism/8185/2
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conversation and checked MCQ scores (see Table 3.5 Scenario 1). The second random conversation

contained random statements on arithmetic, translation, and classification. We did not observe any

significant increase in the scores, confirming that the persistence of knowledge levels is robust regardless

of the length of random conversations.

[RQ1] Reflect-Respond allows AlgoBo to adapt knowledge states from conversations.

Correct tutoring significantly improved MCQ scores (compare the difference between the “At the start”

and “After Correct tutoring” columns in Table 3.4) across Understanding, Implementation, and Anal-

ysis. Conversely, the Incorrect tutoring improved MCQ scores (compare “At the start” and “After

Incorrect tutoring” columns in Table 3.4), but not as much as the Correct tutoring did. For example,

the incorrect code information ‘‘if arr[mid] > x: low = mid + 1 elif arr[mid] < x: high =

mid - 1’’ given in Incorrect tutoring stimulated AlgoBo to infer that “Binary search returns a value

indicating not found if the target is not in the list” and solve one of the Implementation questions.

This result shows that partially correct information in the Incorrect tutoring could help solve problems,

suggesting the need for more precise control in writing the knowledge states.

To investigate if AlgoBo prefers correct information to incorrect information and if incoming knowl-

edge tends to overwrite pre-existing knowledge, we ran two scenarios in which AlgoBo received Correct

and Incorrect tutoring in a sequence (see Table 3.5 Scenario 3 and 4). The result shows that AlgoBo

tends to keep correct information and remove incorrect ones (check Table 3.6 last knowledge state). We

surmise that AlgoBo dropped conflicting information to keep its knowledge state short as instructed in

the Update prompt. We also speculate that LLMs prefer to follow widespread (often factual) knowledge

compared to incorrect information as the way it is trained [148].

Table 3.3: The number of correct MCQs for different knowledge states. State 1 is an empty knowledge
state; State 2 has facts only; State 3 has facts with wrong code; State 4 has facts and correct code.
“U”, “I”, and “A” stand for Understanding, Implementation, and Analysis question types. The number
in each cell ranges from zero to three as there were three MCQs for a particular question type.

State 1 State 2 State 3 State 4
Question types U I A U I A U I A U I A
Binary search 0 0 0 2 0 0 3 3 0 3 3 1
Merge sort 0 0 0 1 0 1 3 0 2 3 1 1

Breadth-first search 0 0 0 0 0 1 2 2 2 2 3 1

Table 3.4: AlgoBo’s MCQ scores after each conversational input. “U”, “I”, and “A” stand for Under-
standing, Implementation, and Analysis question types. Note that State 2 was used as a seed knowledge
state for all topics.

At the Start After
Random
Conv.

After
Incorrect
Tutoring

After Correct
Tutoring

Question types U I A U I A U I A U I A
Binary search 2 0 1 1 0 1 2 2 1 3 3 3
Merge sort 1 0 2 2 0 2 3 1 2 3 3 3

Breadth-first search 1 0 1 1 0 1 1 0 2 2 3 3

3.6.3 User Study

We also ran a user study to evaluate the usefulness of Mode-shifting and Teaching Helper in improv-

ing the learning experience (RQ2 and RQ3). We designed a between-subjects study to check the useful-
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Table 3.5: The number of correct MCQs after a sequence of tutoring and random conversations. Sce-
nario 1 shows that the continuous addition of random information does not increase the knowledge
level significantly. Scenario 2 confirms AlgoBo’s knowledge level reacts to only information relevant to
target knowledge. Scenarios 3 and 4 demonstrate that AlgoBo prefers correct information to incorrect
information.

Question types U I A U I A U I A
Scenario 1 At the Start Random Conv. Random Conv.
Binary search 2 0 1 1 0 1 1 1 1
Merge sort 1 0 2 2 0 2 2 0 2

Breadth-first search 1 0 1 0 0 1 1 0 1
Scenario 2 At the Start Random Conv. Correct Tutoring
Binary search 2 0 1 1 1 1 3 3 3
Merge sort 1 0 2 2 0 2 3 3 3

Breadth-first search 1 0 1 0 0 1 3 3 2
Scenario 3 At the Start Incorrect Tutoring Correct Tutoring
Binary search 2 0 1 3 2 0 3 3 3
Merge sort 1 0 2 2 1 2 2 3 3

Breadth-first search 1 0 1 1 0 1 2 3 1
Scenario 4 At the Start Correct Tutoring Incorrect Tutoring
Binary search 2 0 1 3 3 3 3 3 3
Merge sort 1 0 2 3 3 3 3 3 3

Breadth-first search 1 0 1 2 3 2 3 2 2

ness of our system components. In the Baseline condition, participants used the version of TeachYou

without Mode-shifting and Teaching Helper. The participants in the TeachYou condition used the com-

plete version of TeachYou as described in Section 3.5. The Reflect-Respond pipeline instructed AlgoBo

in both conditions. We did not have separate conditions for Mode-shifting and Teaching Helper because

we assumed the interaction between them would be insignificant as they support different aspects of

learning (i.e., knowledge-building and metacognition).

Participants

We recruited 40 participants through advertisements on the campus community websites (age=24±
4.0, 25 males and 15 females). Participants were required to understand short (about 20 lines) Python

programs that contain basic syntax such as if and while statements, and we excluded those who

participated in the formative study. To cap participants’ prior knowledge, we filtered out the participants

who were assumed to have mastered binary search already. We collected applicants’ confidence in

understanding binary search and teaching it to others on a 7-point Likert scale, the last time coding

binary search, and their paid teaching experience on programming. We also asked applicants to solve

six Understanding and Implementation MCQs about binary search. We filtered out the applicants who

met three or more of the following criteria: 1) scored five or more in the MCQs, 2) rated six or more

for confidence, 3) implemented binary search within the last six months, and 4) were paid for teaching.

We randomly assigned 20 participants to each condition—Baseline and TeachYou. We did not observe

any significant differences between conditions in the initial self-rated understanding of binary search

(Baseline=4.40 ± 1.35, TeachYou=4.25 ± 1.65, two-tailed t-test, p = 0.76) and the time to solve the

exercise problem during our study (Baseline=116 ± 60 sec, TeachYou=124 ± 62 sec, two-tailed t-test,

p = 0.66).
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Table 3.6: The update log of knowledge state for Scenario 3 (Incorrect tutoring → Correct tutoring).
Newly added information is colored green; edited information is colored yellow; deleted content is colored
red.

Messages Knowledge State

At the start - {"facts": ["Binary search repeats the process

of dividing the input list in half."],

"code implementation": []}

Incorrect tutoring Tutor: Binary search
uses a hashing function to
retrieve values directly by
index.

{"facts": ["Binary search repeats the process

of dividing the input list in half.", "Binary

search uses a hashing function to retrieve val

ues directly by index."],

"code implementation": []}

Tutor: if arr[mid] >

x: low = mid + 1 elif

arr[mid] < x: high = mid

- 1

{"facts": ["Binary search repeats the process

of dividing the input list in half.", "Binary

search uses a hashing function to retrieve

values directly by index."],

"code implementation": ["if arr[mid] > x: low =

mid + 1 elif arr[mid] < x: high = mid - 1"]}

Tutor: In the worst case,
the time complexity of bi-
nary search is O(N2).

{"facts": ["Binary search repeats the process

of dividing the input list in half.", "Binary

search uses a hashing function to retrieve

values directly by index.", "In the worst case,

the time complexity of binary search is O(N2)"],

"code implementation": ["if arr[mid] > x: low

= mid + 1 elif arr[mid] < x: high = mid - 1"]}

Correct tutoring Tutor: Binary search
is efficient when the data
structure is ordered and any
index in the data structure
can be accessed in constant
time.

{"facts": ["Binary search repeats the process

of dividing the input list in half.", "Binary

search uses a hashing function to retrieve

values directly by index.", "In the worst case,

the time complexity of binary search is O(N2)",

"Binary search is efficient when the data struc

ture is ordered and any index in the data struc

ture can be accessed in constant time."],

"code implementation": ["if arr[mid] > x: low

= mid + 1 elif arr[mid] < x: high = mid - 1"]}

Tutor: When find-
ing a target by binary
search in the input array
list, the range is reduced
by half as shown below.
if list[middle] == tar

get: return middle elif

list[middle] < target:

min = middle + 1 else:

max = middle - 1

{"facts": ["Binary search is efficient when

any index in the ordered data structure can

be accessed in constant time and repeats the

process of dividing the input list in half.",

"Binary search uses a hashing function to

retrieve values directly by index.", "In the

worst case, the time complexity of binary search

is O(N2)."],

"code implementation": ["if arr[mid] > x: low

= mid + 1 elif arr[mid] < x: high = mid -

1","if list[middle] == target: return middle

elif list[middle] < target: min = middle + 1

else: max = middle - 1"]}

Tutor: The time com-
plexity of binary search is
O(log N) because the search
range is reduced by half.

{"facts": ["Binary search is efficient when

any index in the ordered data structure can

be accessed in constant time and repeats the

process of dividing the input list in half.",

"Binary search uses a hashing function

to
retrieve values directly by in

dex."

, "The time

complexity of binary search is O(log N)."],

"code implementation": ["if arr[mid] > x: low

= mid + 1 elif arr[mid] < x: high = mid - 1",

"if list[middle] == target: return middle elif

list[middle] < target: min = middle + 1 else:

max = middle - 1"]}
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Procedure and Materials

The user study was run online; after submitting informed consent, the participants received an

online link to our system and completed the study in their available time. Participants spent 60 ± 25

minutes on average to complete the study and were paid 25,000 KRW (i.e., approximately 18.5 USD).

All the instructions and materials used in the study were translated into Korean to avoid any language

barrier and unnecessary cognitive overhead.

The study procedure was organized into three parts (see Table 3.7). In the first part, participants

learned about binary search and how to implement it in Python. Participants read the lecture materials

on binary search taken from Khan Academy3 (Step 1) and solved an exercise problem in the form of a

Parsons problem [123] (Step 2). After the exercise, participants wrote about their strategies in teaching

(if any) and their prior experience in using AI chatbots, such as ChatGPT and Bing search (Step 3).

In the second part, participants conducted LBT with AlgoBo. We provided explanations about

LBT, the profile information of AlgoBo, and the participants’ objectives for the LBT activity (Step 4).

We stated in the objectives that participants should not only help AlgoBo solve the exercise problems

but also construct new knowledge for themselves, encouraging the participants to pursue knowledge-

building. Then, participants taught different versions of AlgoBo and TeachYou according to their

conditions (Step 5) with the interface shown in Fig. 3.2. AlgoBo was configured by our prompting

pipeline, and the seed knowledge state was identical across the conditions. The facts field of the seed

knowledge state was empty to simulate a lack of understanding, and the code implementation field had

a basic code structure that lacked the entire range update logic in binary search. We did not go for

zero-knowledge AlgoBo to keep the entire teaching sessions within 40 min and spare enough time for

having discussions. All the participants were given three goals to achieve in series; we asked them to 1)

check if AlgoBo understands binary search first, then 2) help AlgoBo solve the exercise problems, and 3)

discuss with AlgoBo about binary search in depth. Participants could finish the LBT activity as long as

AlgoBo’s code passed all test cases, and they could skip to the next step. Participants were also allowed

to search for information on the Internet when stuck or finding information.

In the third part, the participants completed three questionnaires about their cognitive load, metacog-

nition, and satisfaction (Steps 6, 7, and 8). We adopted the questionnaire from Morrison et al.’s study [57]

to measure cognitive load and used the questions from King et al.’s study [101] for assessing metacognition

and satisfaction.

Table 3.7: The outline of the user study and the time allotted to each step on average.

Step (min.)
Conditions

Baseline TeachYou
1 (10) Learning binary search
2 (5) Exercise problem
3 (5) Pre-task survey
4 (3) Explanation about AlgoBo and LBT

5 (40)
Teaching AlgoBo

with the knowledge
configuration only

Teaching AlgoBo
with the knowledge

configuration, Mode-shifting,
and Teaching Helper

6 (5) Cognitive load measurement
7 (5) Metacognition measurement
8 (5) Post-task survey

3https://www.khanacademy.org/computing/computer-science/algorithms/binary-search/a/binary-search
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Measures

We summarize our metrics in the user study and their measurement timing along with the steps

in Table 3.7. We employed the Bonferroni correction for all statistical tests with the questionnaires to

avoid potential multiple comparison problems.

Knowledge-building density in LBT dialogues. Past research assessed the quality of dia-

logues by measuring the density of expressed and interchanged knowledge-building messages in conver-

sations [81, 96]. To look into how Mode-shifting helps knowledge-building in conversations (RQ2), we

classified the message types (Table 3.1) and examined the ratio of knowledge-building type messages in a

dialogue. We collected 1210 messages in 40 dialogues. Two authors took three iterations for annotation

and conflict resolution; in the last iteration (400 messages), the authors achieved high inter-rater relia-

bility (Krippendorff’s alpha=0.743). We looked into the density of knowledge-building type messages in

a dialogue between conditions. We summed the messages from participants and AlgoBo because they

co-built new knowledge by exchanging ideas and adding ideas on top of each other as illustrated in

Table 3.9. Lastly, we analyze the problem-solving phase and discussion phase separately since they had

different objective settings (Fig. 3.2 A); the problem-solving phase refers to the part of conversations

dedicated to the first two objectives, in which participants had a clear goal of helping AlgoBo write code

that passes all the test cases; the discussion phase refers to the remaining part of conversations in which

participants are asked to expand their knowledge freely without completion requirements.

Self-rated cognitive load on tutoring. As we introduced new functionalities (Teaching Helper

and Mode-shifting), it was imperative to evaluate how much these enhancements increased the cognitive

load of learners. We adopted and adjusted Morrison et al.’s questionnaire designed to measure cognitive

load in CS learning [57]. The questionnaire measures three types of cognitive load—intrinsic load (i.e.,

the inherent complexity in a learning activity), extrinsic load (i.e., the hindrance caused by instructional

design), and germane load (i.e., the meaningful load used for learning). Participants rated the questions

right after the LBT activity in Step 6.

Self-perceived metacognition on tutoring. We aim to improve learners’ metacognition of their

LBT experience by giving feedback and guidance through Teaching Helper. To confirm the efficacy of

Teaching Helper on metacognition (RQ3), we asked participants 8 questions on understanding, supportive

communication, explaining, and self-monitoring based on King et al.’s research [101] (Table 3.10) in Step

7.

Satisfaction on LBT. Apart from the learning benefits, we measured how satisfactory the learning

experience with virtual agents was. We asked participants to rate 4 statements about their perceived

usefulness, comfortability, and preference for future reuse of TeachYou and AlgoBo in Step 8.

Post-task survey. We revisited the three themes explored in the formative study—learners’ per-

ception of AlgoBo as a peer learner, learner-perceived usefulness of TeachYou in identifying knowledge

gaps, and familiarity with teaching a virtual agent. Like in the formative study, we asked participants

to rate two questions from each theme (Table 3.11) and write detailed reasons for the rating in Step 8.

Additionally, we prepared condition-specific questions; for the Baseline condition, we asked participants

further about their perception of AlgoBo; for the TeachYou condition, we received free-form comments

on Mode-shifting and Teaching Helper from participants.
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3.6.4 User Study Result

In this section, we summarize our findings from the user study. We explain the statistical significance,

participants’ comments, and system usage logs to support our findings. Participants are labeled with

either B[1-20] for the Baseline condition or T[1-20] for the TeachYou condition.

[RQ2] TeachYou enriched knowledge-building in the problem-solving phase.

We found a statistically significant improvement in the knowledge-building density of the dialogues

during the problem-solving phase in TeachYou (Baseline=3.5± 6.6%, TeachYou=8.4± 7.1%, two-tailed

t-test, p = 0.03, Cohen’s d=0.71). TeachYou condition also had a higher density of Prompting-Thought-

provoking type (Table 3.8), suggesting that tutors and AlgoBo prompted each other’s knowledge-building

more often when Mode-shifting and Teaching Helper were present (see the dialogue example in Table 3.9).

Participants also rated TeachYou higher on the Likert scale questions on the usefulness of AlgoBo for

learning new knowledge (Baseline=3.25±1.71, TeachYou=4.95±1.70, two-tailed t-test, p < 0.01, Cohen’s

d=1.00) (Table 3.11).

Participants’ comments suggest that Mode-shifting contributed heavily to knowledge-building. TeachYou

participants remarked the questions from AlgoBo were useful for reviewing code from a different perspec-

tive (T6) and thinking about the edge cases where the input list is not sorted (T10). Participants also

explored binary search further by reasoning deeply about why and how binary search is faster than linear

search (T4 and T9), comparing the efficiency with other relevant searching algorithms (T2 and T13),

and thinking about real-life applications (T17). T15 commented that “[Mode-shifting] was the most

important component in the system. [Questions] helped me guide what to teach and helped self-explain

things I had not thought of.” On the contrary, Baseline participants found LBT with AlgoBo “useful for

solidifying their prior knowledge but unsupportive for learning new knowledge due to lack of questions”

(B4 and B15).

Table 3.8: The density (i.e., number of occurrences / exchanged messages) of each message type in
dialogues.

Mean Density ± Standard Deviation (%)
Problem-solving Discussion

Baseline TeachYou Baseline TeachYou

Instruction
Fixing 3.9± 5.2 4.5± 5.8 0.3± 2.9 1.4± 1.4

Commanding 0.6± 5.0 7.8± 1.9 0.0± 3.1 1.5± 0.0
Encouragement 0.2± 0.0 0.0± 0.9 0.0± 0.0 0.0± 0.0

Prompting

Challenge-finding 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0
Hinting 16.6± 6.6 7.9± 10.1 1.1± 0.0 0.0± 4.6
Checking 8.5± 8.1 10.2± 11.0 2.4± 10.3 5.4± 5.1

Thought-provoking 1.8± 5.7 5.7± 4.5 33.8± 10.8 35.1± 23.0
Asking-for-help 16.9± 6.3 16.0± 6.6 4.1± 6.7 2.1± 7.9

Statement

Comprehension 49.8± 6.1 42.3± 11.9 35.6± 4.8 26.8± 19.7
Elaboration 1.7± 2.3 1.6± 3.6 9.6± 8.0 7.5± 14.0
Sense-making 0.0± 2.7 1.1± 0.0 7.2± 9.3 10.0± 10.2
Accepting 0.0± 1.7 0.4± 0.0 0.0± 1.5 0.6± 0.0
Feedback 0.0± 4.2 2.0± 0.0 4.3± 6.3 8.3± 7.0

[RQ3] TeachYou did not improve metacognition but reminded good LBT practices.

We could not observe strong signals for improvement in metacognition (Table 3.10) and familiarity with

teaching (Table 3.11). T2 remarked on the difficulty in applying the suggestions to his conversation—

“Teaching Helper was a useful guide, but it was difficult to relate my explanation to what AlgoBo
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Table 3.9: Examples of co-building of knowledge in different phases of the LBT activity.
Phase

(Participant)
Conversation

Problem-Solving
(T12)

Tutee: In binary search, is setting guess to (min + max) // 2 always optimal? What if we use a different method?
[Prompting-Thought-provoking]

Tutor: Other methods take longer.
[Statement-Comprehension]

Tutee: Could you explain in more detail how other methods may take longer?
[Prompting-Thought-provoking]

Tutor: Since you have to compare each item from the beginning, you may have to compare all the cases in the worst
case. But with binary search, you don’t have to do that.
[Statement-Elaboration]

Discussion
(T11)

Tutee: How about this case?. When we look for a specific product in an online shopping mall, we search by the name
of the product. Can a binary search algorithm be used in this case as well?
[Prompting-Thought-provoking]

Tutor: Yes! To put it simply, the process of finding a specific element among many elements in an array is all related to
binary search.
[Statement-Comprehension]

Tutee: Then, can you explain in more detail the operation of the binary search algorithm in this case?
[Prompting-Thought-provoking]

Tutor: In this case, if they are arranged in alphabetical order, the algorithm will work by linking alphabet order as
another consideration.
[Statement-Elaboration]

Tutee: Could you give me one more example?
[Prompting-Thought-provoking]

Tutor: For example, if you have an array of prime numbers, you can apply a binary search algorithm to find a specific
prime number.
[Statement-Sense-making]

knew.” Teaching Helper was not helpful for the participants who taught well in particular. T13 received

positive feedback only (i.e., the green boxes in Fig 3.5) and felt “suggestions [from Teaching Helper] were

repetitive and irrelevant to the current conversation.”

Nevertheless, the comments from the survey suggest that Teaching Helper functioned as a reminder

to participants to think metacognitively about their entire teaching patterns through reflection (T3),

to ask deep questions (T7), and to foster independent thinking (T14). Additionally, Teaching Helper

restrained participants from treating AlgoBo merely as a machine. “I sometimes found myself conversing

in the usual [imperative] way with ChatGPT. However, when a notification appears, it brings me back

to the realization that I am in a teaching context, prompting me to contemplate how best to instruct so

that AlgoBo can learn effectively and align with the direction I aim for” (T17).

Table 3.10: Participants’ ratings on the questions regarding their metacognition (1: Not the case at all,
7: Completely the case). The significance level after the Bonferroni correction was 0.00625.

Questions
Mean ± Standard Deviation

p-value Cohen’s d
Baseline TeachYou

I understood today’s lesson well. 6.30± 0.86 6.25± 0.64 0.84 0.07
I listened to AlgoBo well. 6.00± 1.34 5.55± 1.57 0.34 0.31
I gave feedback to AlgoBo well. 5.45± 1.28 5.25± 1.25 0.62 0.16
I explained well by telling why and how. 5.10± 1.62 5.30± 1.03 0.64 0.15
I connected new materials to what AlgoBo already knew. 4.50± 1.54 4.05± 1.43 0.34 0.30
I stayed with questioning well, rather than telling answers
to AlgoBo.

5.15± 1.87 4.90± 1.37 0.63 0.15

I asked probing questions when AlgoBo’s answer was
not complete.

5.00± 1.81 4.60± 1.31 0.43 0.25

I sequenced my questions by asking review questions
first and then asking thinking questions.

4.50± 1.54 5.20± 1.15 0.11 0.52

Mode-shifting and Teaching Helper did not exert additional cognitive load.

We did not observe any significant difference across all types of cognitive load between the condi-

tions. Considering that TeachYou participants exchanged significantly more messages (Baseline=17 ±
7.7,TeachYou=43±18.5, two-tailed t-test, p < 0.01, Cohen’s d=1.87), the result may imply that periodic

47



questions and feedback not only exerted minimal cognitive load but also helped participants maintain a

manageable load throughout long conversations.

Table 3.11: Six themed questions given in the Post-task survey. (1: Not the case at all, 7: Completely the
case). Statistical significances are marked with ∗. The significance level after the Bonferroni correction
was 0.025.

Themes Questions
Mean ± Standard Deviation

p-value Cohen’s d
Baseline TeachYou

Perception of
AlgoBo as a

learner

I perceived AlgoBo as a student
struggling to solve binary search
problems.

3.15± 1.31 4.60± 1.79 0.01* 0.93

AlgoBo solved the binary problems due
to my help.

5.25± 1.59 4.90± 1.59 0.49 0.22

Usefulness
for learning

Conversation with AlgoBo helped me
reorganize my knowledge about binary
search.

5.20± 1.51 5.40± 1.10 0.63 0.15

Conversation with AlgoBo helped me
discover new knowledge that I did not
know

3.25± 1.71 4.95± 1.70 ¡0.01* 1.00

Familiarity
with teaching

Learning by teaching AlgoBo was
familiar and intuitive.

4.70± 1.66 4.75± 1.45 0.92 0.03

I taught AlgoBo effectively. 4.65± 1.63 4.00± 1.56 0.21 0.41

3.7 Discussion

We discuss design suggestions, benefits, and future research directions of LLM-based teachable

agents.

3.7.1 Design Considerations for Mode-shifting in LBT

Our results showed that Mode-shifting not only led to more knowledge-dense conversations but also

improved participants’ perceptions of AlgoBo as a convincing tutee (Table 3.11). Mode-shifting also

tended to foster longer discussion phases (Baseline=5.6 ± 3.7 messages, TeachYou=9.4 ± 8.4 messages,

two-tailed t-test, p = 0.07, Cohen’s d=0.59). Considering that completion of the discussion phase was up

to the participants, the difference may imply that Mode-shifting made LBT conversations more engaging

and lingering.

Although there was a significant increase in knowledge-building in the TeachYou condition, the

ratings on the metacognition questions did not show significant differences (Table 3.10). As a possible

reason, we found some cases where Mode-shifting interrupted participants’ teaching flows and methods,

especially in situations where AlgoBo asked other questions without answering tutors’ Socratic questions

(T8 and T20). T20 mentioned, “There were many times when AlgoBo asked random questions while

writing code [...], which was not intuitive for me in teaching.” Although participants could recognize the

issues with their teaching methods through the Teaching Helper, AlgoBo’s pre-programmed interaction in

Mode-shifting did not reflect teaching contexts and hindered participants from practicing better teaching

strategies. This suggests the need for context-aware Mode-shifting where the system captures adequate

timing for thought-provoking questions without interrupting participant-intended teaching flow.

There are many aspects to consider when designing Mode-shifting techniques for LBT. While

knowledge-building is the primary goal, improvements in learners’ metacognition and satisfaction can

elicit intrinsic learning benefits. However, from our results, it seems that the two values are in a trade-off
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relationship. To facilitate knowledge-building, teachable agents should intervene in conversations and

ask thought-provoking questions; on the contrary, to support the active exploration of teaching methods

and metacognition, learners should be given the control to lead conversation flows. Future research may

empirically look into the trade-off relationship and how learners will balance them when they directly

control the degree of system intervention on conversation flows.

3.7.2 Using LLMs for Building Teachable Agents

Our primary aim was to investigate if prompt-engineered LLMs can offer cost-effective authoring

and simulation of teachable agents. Past research looked into using interactive authoring methods [2]

and learnersourcing [149, 150] to offload experts’ manual efforts for building the knowledge model of

teachable agents and intelligent tutoring systems. Nevertheless, these methods required hundreds of

lines of code to adapt the systems to specific subjects.

LLMs can provide easy adaptation and a low authoring barrier for conversational agents. Our

technical evaluation across different topics (Table 3.3 and Table 3.4) showed that the Reflect-Respond

prompting pipeline is applicable to general algorithm topics even with a few few-shot examples. We wrote

19 few-shot examples (290 lines in length) for the Reflect-Respond pipeline and another 16 examples (210

lines) for Mode-shifting; with this, we could achieve the desired level of reconfigurability, persistence, and

adaptability for all three topics. All the examples and instructions in the LLM prompts were written in

natural languages, making our method compelling especially for instructors and education researchers

with limited programming expertise.

Recent research on AI suggests editing LLMs’ pre-trained knowledge by changing hidden states or

transformer layers within the model [151, 152, 153]. While these model-centric approaches can provide

alternative ways to build LLM-based teachable agents with specified knowledge levels, our prompting

pipeline has strengths in scalability, cost-effectiveness, and explainability. First, our approach offers a

scalable and cost-effective method for running different versions of teachable agents. While model-centric

methods require retraining of LLMs for different knowledge configurations, our prompting pipeline can

share a single LLM instance and simulate various versions of teachable agents with only knowledge

state JSON files. Second, our pipeline can represent the knowledge states of teachable agents in more

explainable and manipulable forms, enabling learners with more transparent methods of analyzing the

tutee’s knowledge state [89, 154, 155].

Yet we found it challenging to find the exact knowledge state to make AlgoBo solve or fail particular

problems due to LLMs’ sensitivity to minor changes in prompts. Future work can propose another

control layer to interact with knowledge states more precisely.

3.7.3 Learner-driven Customization of Teachable Agents

In our user study, we provided participants AlgoBo with the same knowledge configurations regard-

less of their prior knowledge and teaching preference. This one-size-fits-all setting might explain the high

variance in some of our results (Table 3.8). Peer matching is one of the crucial factors in peer learning

and LBT. Learning gain and engagement of tutees and tutors increase only when their reciprocal exper-

tise matches [80, 156]. Although conventional teachable agents can simulate learners of specific abilities

and persona, they are limited in flexibility and variety due to high authoring costs and programming

barriers. LLMs now allow the configuration of agents with natural languages [84, 118], opening new

doors for learners to adjust teachable agents for their educational needs.
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We suggest two aspects of customization. First, learners can directly manipulate the seed knowledge

state, adjust competency levels, and even introduce specific misconceptions. For example, a learner who

already understands binary search may want to skip basic explanations of binary search and spend

more time on discussion. The learner can simply input his/her knowledge into AlgoBo, allowing future

conversations to start at a more advanced level. Customizable knowledge levels can also make LBT more

engaging for learners as they can choose their mates and avoid frustration from the high expertise gap.

Second, learners can customize AlgoBo’s parametrized learning behaviors, such as Mode-shifting.

Although we can alleviate learners’ fatigue and distraction fromMode-shifting by making AlgoBo context-

aware and asking questions timely instead of the current rule-based scheme, giving direct control to

the question-asking frequency can also help learners manage their load and self-regulate their learning

environment. All these configurations are possible through natural language inputs from the user or a

framework that provides users with configurable parameters for better control [155]. Future research

can look into how the customization and personalization of teachable agents can increase the benefits of

LBT even further.

3.7.4 Setting the Right Expectation of Teachable Agents

Teachable agents often have had visual forms of a human student [89, 90, 157, 158]. Likewise,

we also gave AlgoBo a student-like persona to help learners set initial expectations of tutees. Due to

the given persona and unfamiliarity in LBT with virtual agents, many participants put the expectation

of a human learner to AlgoBo [159]. However, the high expectations aggravated awkward instances

of AlgoBo’s responses compared to human tutees. AlgoBo asked repetitive questions and could not

transfer natural language explanations to code (T7). AlgoBo asked questions (i.e., because it was in

the questioner mode) even when tutors asked AlgoBo’s opinions and thoughts, making the question-

answering flow unnatural (T20). These clumsy behaviors confused participants in applying effective

teaching methods and decreased their satisfaction and engagement. While using better LLMs and a more

refined pipeline can alleviate the problem, we argue that reducing the gap between learners’ expectations

and the capabilities of teachable agents is also fundamental in the context of LBT with AI [160, 161].

Through the perspective of the gulf of execution and evaluation [162], we suggest some interaction-

centric design implications that can close learners’ expectation gap in LBT. For the gulf of execution,

learners should be better informed about whom and how they teach. For example, learners may receive

more detailed explanations of AlgoBo’s operating principles. This can increase learners’ tolerance of

AlgoBo’s awkward responses and help form an appropriate first impression of agents [163]. The learning

system can also inform learners of their expected roles in different phases in Mode-shifting clearly. For

instance, when AlgoBo is in the questioner mode, the system can clarify that tutors should focus on

providing answers. This will help learners follow the pedagogical conversation flows (e.g., Mode-shifting)

and improve learning impact. For the gulf of evaluation, the system can present AlgoBo’s learning

progress explicitly. Learning systems can show AlgoBo’s current knowledge state more directly and

allow learners to self-assess the effectiveness of their teaching methods. Future research can explore

these modifications to make the conversations with teachable agents more satisfactory and predictable.
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3.8 Limitation and Future Work

First, the scope of our evaluation is limited to algorithm learning and procedural knowledge in

programming. Although our results showed that the Reflect-Respond pipeline is generalizable within

different algorithm topics, we need to confirm if the pipeline is generalizable to other subjects (e.g., math

and physics) as we have optimized our prompts for programming learning and trained our message clas-

sifiers on the binary search dialogues. Moreover, since procedural knowledge and declarative knowledge

are different in cognitive processing and effective learning interventions [164, 165], TeachYou may not

scaffold declarative knowledge learning effectively. As prior research looked into declarative knowledge

learning [89, 166], future studies can investigate more extensive topics outside algorithm learning.

Second, our user study was confined to indirect measures of learning gain. Dialogue quality is one of

the primary metrics in LBT adopted in past research [105, 101], and we did a comprehensive analysis of

knowledge-building through dialogue analysis and surveys. Nevertheless, we can make our findings more

concrete by measuring participants’ learning gain directly through pre-post test comparison. Although

we did not consider a pre-post test because we assumed one-time LBT would not elicit significant

performance improvement, future research can design studies to compare the learning gain between

conditions and confirm the connection between dialogue quality and learning gain [81].

Lastly, future research can deploy TeachYou to real classrooms of greater size and monitor the

longitudinal dynamics among learners’ perception, learning gain, and metacognition. Although we could

observe statistical significance in some of our measurements, there were high variances among partici-

pants, perhaps due to different levels of prior knowledge, teaching styles, and conversational patterns.

These properties are hard to control in nature; a user study on larger populations can sharpen the statis-

tics of the results and make our findings more concrete. In addition to the population size, longitudinal

studies may reveal significant changes in learners’ metacognition and teaching patterns as there is more

room for learners to understand the nature of AlgoBo and improve their methods over time.

We plan to deploy our system to the classes offered in our institution, in which students learn

different algorithm topics throughout a semester. The classroom deployment will require a configuration

interface where instructors can set up class materials and edit AlgoBo’s knowledge state and the prompts

in the Reflect-Respond pipeline for their needs. We also need to reduce the response time of AlgoBo

(currently about 30 seconds) for practical use, as many participants pointed out. After the small-scale

controlled deployment, we envision deploying TeachYou as an online platform to help instructors of

different fields adopt LBT to their classes. LLM-powered LBT will enable the dissemination of interactive

learning at scale.
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Chapter 4. TeachTune

This chapter presents the third example of the user-driven approach to adaptive learning: Teach-

Tune, a chatbot authoring system that enables teachers to create and review tutor chatbots customized

to their students. This chapter explores how chatbot authoring based on student profiles as a unit of

testing can enhance the chatbot review process. The content in this chapter is adapted, updated, and

rewritten from our prior work published at CHI 2025 [167]. Throughout this chapter, the pronouns “we,”

“our,” and “us” refer to the coauthors of that publication.

Figure 4.1: TeachTune is an evaluation tool that helps teachers review the interaction quality of
pedagogical agents by utilizing simulated students. Direct chat supports an in-depth assessment but in
a narrow scope. Single-turn tests with benchmark datasets support breadth exploration of pedagogical
agents’ adaptivity but lack depth in assessing conversations in multi-turn. TeachTune takes the best
of both worlds by leveraging automated chat between the pedagogical agent and user-defined simulated
students to help teachers review the adaptivity of pedagogical agents in sufficient depth and breadth.

4.1 Motivation and Contributions

Large Language Models (LLMs) have empowered teachers to build Pedagogical Conversational

Agents (PCAs) [168] with little programming expertise. PCAs refer to conversational agents that act as

instructors [169], peers [170], and motivators [171] with whom learners can communicate through natural

language, used in diverse subjects, grades, and pedagogies. Teacher-designed PCAs can better adapt to

downstream class environments (i.e., students and curriculum) and allow teachers to experiment with

diverse class activities that were previously prohibitive due to limited human resources. While conven-

tional chatbots require authoring hard-coded conversational flows and responses [172, 173], LLM-based

agents need only a description of how the agents should behave in natural language, known as prompt-

ing [174]. Prior research has proposed prompting techniques [134, 175, 176], user interfaces [177, 178, 179],

and frameworks [180, 181] that make domain-specific and personalized agents even more accessible to

build for end-users. With the lowered barrier and cost of making conversational agents, researchers
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have actively experimented with LLM-based PCAs under diverse pedagogical settings, such as 1-on-1

tutoring [182, 183, 184], peer learning [70, 185], and collaborative learning [186, 187, 188].

To disseminate these experimental PCAs to actual classes at scale, reviewing agents’ content and

interaction qualities is necessary before deployment. Many countries and schools are concerned about

the potential harms of LLMs and hesitant about their use in classrooms, especially K-12, despite the

benefits [189, 190]. LLM-based PCAs need robust validation against hallucination [191, 192], social

biases [193, 194], and overreliance [195, 196]. Moreover, since students vary in their levels of knowledge

and learning attitudes in a class [197], teachers must review how well their PCAs can cover diverse

students in advance to help each student improve attitudes and learn better [198, 199, 200, 201]. For

instance, teachers should check whether PCAs help not only poorly performing students fill knowledge

gaps but also well-performing students build further knowledge through discussions. Regarding students’

personalities, teachers should check if PCAs ask questions to prompt inactive students and compliment

active students to keep them motivated. These attempts contribute to improving fairness in learning,

closing the growth gap between students instead of widening it [202].

However, existing methods for reviewing the PCAs’ coverage of various student profiles offer limited

breadth and depth (Fig. 4.1). The current landscape of chatbot evaluation takes two approaches at large.

First, teachers can directly chat with their PCAs and roleplay themselves as students [203, 204, 205].

Although interactive chats allow teachers to review the behaviors of PCAs over multi-turn conversations

in depth, it is time-consuming for teachers to manually write messages and re-run conversations after

revising PCA designs, restraining the breadth of reviewing different students. Second, teachers can

simultaneously author many input messages as test cases (e.g., benchmark datasets) and assess the

PCAs’ responses [206, 207, 208, 209, 210]. Single-turn test cases are scalable and reproducible, but

teachers can examine only limited responses that do not capture multi-turn interactions (e.g., splitting

explanations [211], asking follow-up questions [212]), restricting the depth of each review. Teachers may

also need to create test cases manually if their PCAs target new curriculums and class activities.

To support efficient PCA reviewing with breadth and depth, we propose a novel review method

in which teachers utilize auto-generated conversations between a PCA and simulated students. Recent

research has found that LLMs can simulate human behaviors of diverse personalities [213, 118] and

knowledge levels [214, 70]. We extend this idea to PCA review by simulating conversations between PCAs

and students with LLM.We envision simulated conversations making PCA evaluation as reproducible and

efficient as the test case approach while maintaining the benefit of reviewing multi-turn interactions like

direct chat. Teachers can review the adaptivity of PCAs by configuring diverse simulated students as a

unit of testing and examine the quality of interaction in depth by observing auto-generated conversations

among them. We implemented this idea into TeachTune, a tool that allows teachers to design PCAs

and review their robustness against diverse students and multi-turn scenarios through automated chats

with simulated students. Teachers can configure simulated students by adding or removing knowledge

components and adjusting the intensity of student traits, such as self-efficacy and motivation. Our LLM-

prompting pipeline, Personalized Reflect-Respond, takes configurations on knowledge and trait

intensity levels (5-point scale) as inputs and generates a comprehensive overview to instruct simulated

students to generate believable responses.

To evaluate the performance of Personalized Reflect-Respond in simulating targeted student

behaviors, we asked ten teachers to interact with nine simulated students of varying knowledge and trait

levels in a blinded condition and to predict the simulated students’ configuration levels for knowledge

and traits. We measured the difference between teacher-predicted and initially configured levels. Our
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pipeline showed a 5% median error for knowledge components and a 10% median error for student

traits, implying that our simulated students’ behaviors closely align with the expectations of teachers

who configure them. We also conducted a between-subjects study with 30 teachers to evaluate how

TeachTune can help teachers efficiently review the interaction quality of PCAs in depth and breadth.

Study participants created and reviewed PCAs for middle school science classes using TeachTune or

a baseline system where PCA review was possible through only direct chats and single-turn test cases.

We found that automated chats significantly help teachers explore a broader range of students within

traits (large effect size, η2=0.304) at a lower task load (η2=0.395).

This chapter makes the following contributions:

• Personalized Reflect-Respond, an LLM prompting pipeline that generates an overview of

a target student’s knowledge, motivation, and psychosocial context and follows the overview to

simulate a believable student behavior.

• TeachTune, an interface for teachers to efficiently review the coverage of PCAs against diverse

knowledge levels and student traits.

• Empirical findings showing that TeachTune can help teachers design PCAs at a lower task load

and review more student profiles, compared to direct chats and test cases only.

4.2 Related Work

Our work aims to support the design and reviewing process of PCAs in diverse learning contexts.

We outline the emergent challenges in designing conversational agents and how LLM-based simulation

can tackle the problem.

4.2.1 Conversational Agent Design Process

Designing chatbots involves dedicated chatbot designers prototyping and then iteratively revising

their designs through testing. Understanding and responding to a diverse range of potential user intents

and needs is crucial to the chatbot’s success. Popular methods include the Wizard-of-Oz approach to

collect quality conversation data [215] and co-design workshops to receive direct feedback from mul-

tiple stakeholders [216, 217]. Involving humans to simulate conversations or collecting feedback can

help chatbot designers understand human-chatbot collaborative workflow [172], explore diverse needs

of users [218, 219], or iterate their chatbot to handle edge cases [215, 173]. Typical chatbot reviewing

methods include conducting a usability study with a defined set of chatbots’ social characteristics [220],

directly chatting 1-on-1 with the designed chatbot [203], and testing with domain experts [204]. Such

methods can yield quality evaluation but are costly as they need to be executed manually by humans.

For more large-scale testing, designers can use existing test cases [206, 205] or construct new test sets

with LLMs [207]. However, such evaluations happen in big chunks of single-turn conversations, which

limits the depth of conversation dynamics throughout multiple turns. To complement the limitations,

researchers have recently proposed leveraging LLMs as simulated users [221], role-players [222], and agent

authoring assistant [223]. TeachTune explores a similar thread of work in the context of education by

utilizing simulated students to aid teachers’ breadth- and depth-wise reviewing of PCAs.
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4.2.2 Simulating Human Behavior with LLMs

Recent advancements in LLM have led researchers to explore the capabilities of LLMs in simulating

humans and their environments, such as simulating psychology experiments [224], individuals’ beliefs and

preferences [225, 226, 227, 228, 229], and social interactions [118, 230, 231, 232]. In education, existing

works have simulated student behaviors for testing learning contents [214, 233, 188], predicting cogni-

tive states of students [234, 235], facilitating interactive pedagogy [70], and assisting teaching abilities

of instructors [236, 237, 238, 239]. In deciding which specific attribute to simulate, existing simulation

work has utilized either knowledge states [214, 70, 240, 188] or cognitive traits, such as personalities and

mindset [236, 213, 241]. However, simulating both knowledge states and personalities is necessary for

authentic learning behaviors because cognitive traits, in addition to prior knowledge, are a strong indica-

tor for predicting success in learning [242, 243, 197, 244, 245]. Liu et al. explored utilizing cognitive and

noncognitive aspects, such as the student’s language proficiency and the Big Five personality, to simulate

students at binary levels (e.g., low vs. high openness) for testing intelligent tutoring systems [235]. Our

work develops this idea further by presenting an LLM-powered pipeline that can configure and simulate

both learners’ knowledge and traits at a finer granularity (i.e., a five-point scale). Finer-grained control

of student simulation will help teachers review PCAs against detailed student types, making their classes

more inclusive.

4.3 Formative Interview and Design Goals

We conducted semi-structured interviews with five school teachers and observed how teachers re-

view PCAs to investigate RQ1. More specifically, we aimed to gain a comprehensive understanding of

what types of students teachers want PCAs to cover, what student traits (e.g., motivation level, stress)

characterize those students, how teachers create student personas using those traits, and what challenges

teachers have with existing PCA review methods (i.e., direct chat and test cases).

RQ1: What are teachers’ needs in reviewing PCAs and challenges in using direct chats and test cases?

4.3.1 Interviewees

We recruited middle school science teachers through online teacher communities in Korea. We

required teachers to possess either an education-related degree or at least one year of teaching experience.

The teachers had diverse backgrounds (Table 4.1). The interview took place through Zoom for 1.5 hours,

and interviewees were compensated KRW 50,000 (USD 38).

Table 4.1: Demographic information of the interview participants. We recruited five participants with
varying levels of teaching experience, chatbot familiarity, chatbot design process, and ChatGPT familiar-
ity. “Very familiar” indicates the frequent usage, “Familiar” for a little usage, “Unfamiliar” for passing
knowledge, and “Very unfamiliar” for no knowledge.

Id Period of teaching Size of class
Familiarity

Chatbots Chatbot design process ChatGPT
I1 3 years 20 students Unfamiliar Very unfamiliar Familiar
I2 6 years 20 students Very familiar Very familiar Very familiar
I3 16 years 21 students Unfamiliar Very unfamiliar Familiar
I4 2 years 200 students Very familiar Familiar Very familiar
I5 1 year 90 students Familiar Familiar Unfamiliar
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Figure 4.2: The interface used for the formative interview. On the left is the Direct Chat tab, where
interviewees could converse with the chatbot as the student’s role. Interviewees could roll back to previous
messages by clicking the rewind button next to the chatbot’s message. On the right is the Test Cases
tab, where interviewees can add a set of student utterances and see chat responses.

4.3.2 Procedure

We began the interview by presenting the research background, ChatGPT, and its various use cases

(e.g., searching, brainstorming, and role-playing). We requested permission to record their voice and

screen throughout the session and asked semi-structured interview questions during and after sessions.

Interviewees first identified the most critical student traits that PCAs should cover when support-

ing diverse students in K-12. To do so, we gave interviewees a list of 42 traits organized under five

categories—personality traits, motivation factors, self-regulatory learning strategies, student approaches

to learning, and psychosocial contextual influence [197]. Interviewees ranked the categories by importance

of reviewing and chose the top three traits from each category.

Interviewees then assumed a situation where they created PCAs for their science class to help

students review the phase transition between solid, liquid, and gas. Interviewees reviewed the interaction

quality and adaptivity of a given tutor-role PCA by chatting with it directly and authoring test case

messages, playing the role of students. Interviewees could revisit the list of 42 traits for their review.

Interviewees used the interfaces in Fig. 4.2 for 10 minutes each and were asked to find as many limitations

of the PCA as possible. The PCA was a GPT-3.5-based agent with the following system prompt: You

are a middle school science teacher. You are having a conversation to help students understand what

they learned in science class. Recently, students learned about phase transition. Help students if they

have difficulty understanding phase transition.

Subsequently, interviewees listed student profiles whose conversation with the PCA would help

them review its quality and adaptivity. A student profile is distinguished from student traits as it

is a combination of traits describing a student. Interviewees wrote student profiles in free form, using

knowledge level and earlier 42 student traits to describe them (e.g., a student with average science grades
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but an introvert who prefers individual learning over cooperative learning).

Category Student Trait Definition

Motivation factors
Academic self-efficacy Self-beliefs of academic capability
Intrinsic motivation Inherent self-interest, and enjoyment of academic learning and tasks

Psychosocial
contextual influence

Academic stress Overwhelming negative emotionality resulting directly from academic stressors
Goal commitment Commitment to staying in school and obtaining a degree

Table 4.2: The top four student traits teachers found important for PCAs to cover.

4.3.3 Findings

Teachers deemed students’ knowledge levels, motivation factors, and psychosocial contex-

tual influences as important student traits to review.

Interviewees thought that PCAs should support students with low motivation and knowledge, and

hence, it is crucial to review how PCAs scaffold these students robustly. All five interviewees started

their reviewing of the PCA with knowledge-related questions to assess the correctness and coverage of its

knowledge. They then focused on how the PCA responds to a student with low motivation and interest

(Table 4.2). Motivational factors (i.e., academic self-efficacy and intrinsic motivation) are important

because students with low motivation often do not pay attention to class activities, and learning with

a PCA would not work at all if the PCA cannot first encourage those students’ participation (I1, I2,

and I5). Interviewees also considered psychosocial factors (i.e., academic stress and goal commitment)

important as they significantly affect the learning experience (I1). I3 remarked that she tried testing if

the PCA could handle emotional questions because they take up most students’ conversations.

Multi-turn conversations are crucial for review, but writing messages to converse with

PCAs requires considerable effort and expertise.

Follow-up questions and phased scaffolding are important pedagogical conversational patterns that

appear over several message turns. Interviewees commented that it is critical to check how PCAs answer

students’ serial follow-up questions, use easier words across a conversation for struggling students, and

remember conversational contexts because they affect learning and frequently happen in student-tutor

conversations. Interviewees typically had 15 message turns for a comprehensive review of the PCA.

Interviewees noted that these multi-turn interactions are not observable in single-turn test cases and

found direct chat more informative. However, interviewees also remarked on the considerable workload

of writing messages manually (I1), the difficulty of repeating conversations (I4), and the benefits of test

cases over direct chats in terms of parallel reviewing (I2). I2 also commented that teachers would struggle

to generate believable chats if they have less experience or teach humanities subjects whose content and

patterns are diverse.

Teachers’ mental model of review is based on student profiles, but they lack systematic

approaches to organize and incorporate diverse types and granularities of student traits.

Interviewees created test cases and conversational patterns with specific student personas in mind

and referred to them when explaining their rationale for test cases. For example, I4 recalled students

with borderline intellectual functioning and tested if the PCA could provide digestible explanations

and diagrams. However, interviewees tend to review PCAs on the fly without a systematic approach;
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interviewees mix different student personas (e.g., high and low knowledge, shy and active) in a single

conversation instead of simulating each persona in a separate chat. I4 and I5 remarked that they had not

conceived the separation, and single-persona conversations would have made the review more meaningful.

I2 commented that creating student profiles first would have prepared her to organize more structural

test cases. Interviewees also commented on the difficulty of describing students with varying levels within

a trait (I4) and reflecting diverse traits in free-form writing (I1).

4.3.4 Design Goals

Based on the findings from the formative interview, we outline the design goals to help teachers

efficiently review their PCAs’ limitations against diverse students and improve their PCAs iteratively.

The design goals are 1-to-1 mapped to each finding in §4.3.3 and aim to address teachers’ needs and

challenges.

DG1. Support the reviewing of PCAs’ adaptivity to students with varying knowledge levels, motivation

factors, and psychosocial contexts.

DG2. Offload the manual effort to generate multi-turn conversations for quick and iterative reviews in

the PCA design process.

DG3. Provide teachers with structures and interactions for authoring separate student profiles and orga-

nizing test cases.

4.4 System: TeachTune

We present TeachTune, a web-based tool where teachers can build LLM-based PCAs and quickly

review their coverage against simulated students with diverse knowledge levels, motivation factors, and

psychosocial contexts before deploying the PCAs to actual students. We outline the user interfaces

for creating PCAs, configuring simulated students of teachers’ needs as test cases, and reviewing PCAs

through automatically generated conversations between PCAs and simulated students. We also introduce

our novel technical pipeline to simulate students behind the scenes.

4.4.1 PCA Creation Interface

Teachers can build PCAs with a graph-like state machine representation (Fig. 4.3) [173, 204]. The

state machine of a PCA starts with a root node that consists of the PCA’s start message to students and

the instruction it initially follows. For example, the PCA in Fig. 4.3 starts its conversation by saying:

“Let’s review the phase transitions between solid, liquid, and gas!” and asks questions about phase

transitions to a student (Fig. 4.3 A) until the state changes to other nodes. The state changes to one

of the connected nodes depending on whether or not the student answers the questions well (Fig. 4.3

B). When the state changes to either node, PCA receives a new instruction, described in the nodes, to

behave accordingly (Fig. 4.3 C). The PCA is an LLM-based agent prompted conditionally with the state

machine, whose state is determined by a master LLM agent. The master agent monitors the conversation

between the PCA and a student and decides if the state should remain in the same node or transit to

one of its child nodes.
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Figure 4.3: A PCA follows the dialogue flow defined in its state diagram. Nodes represent the PCA’s
utterance, and edges represent the potential response path of simulated students. The root node (A)
contains the PCA’s starting message and initial behavior. Based on a student’s response, the master
agent keeps the current state or changes the active node to one of the connected nodes (B). The next
active node determines the PCA’s subsequent response (C).

Authoring graph-based state machines

TeachTune provides a node-based interface to author the state machine of PCAs (Fig. 4.4 left).

Teachers can drag to move nodes, zoom in, and pan the state diagram. They can add child nodes by

clicking the “Add Behavior” button on the parent node. Teachers can also add directed edges between

nodes to indicate the sequence of instructions PCAs should follow. In each node, teachers describe

a student behavior for PCAs to react to (Fig. 4.4 E: “if the student ...”) and instructions for PCAs

to follow (Fig. 4.4 F: “then, the chatbot ...”). Student behaviors are written in natural language,

allowing teachers to cover a diverse range and granularity of cases, such as cases where students do not

remember the term sublimation or ignore PCA’s questions. Instructions can also take various forms,

from prescribed explanations about sublimation to abstract ones, such as creating an intriguing question

to elicit students’ curiosity. To help teachers understand how the state machine works and debug it,

TeachTune visualizes a marker (Fig. 4.4 D) on the state machine diagram that shows the current state

of PCA along conversations during reviews. The node-based interface helps teachers design and represent

conversation flows that are adaptive to diverse cases.

4.4.2 PCA Review Interface

Teachers can review the robustness of their PCAs by testing different edge cases with three methods—

direct chat, single-turn test cases, and automated chat. The user interface for direct chat and test cases

are identical to the ones used in the formative study (Fig. 4.2); teachers can either directly talk to their

PCAs over multi-turn or test multiple pre-defined input messages at once and observe how PCAs respond

to each. The last and our novel method, review through automated chats, involves two steps—creating
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Figure 4.4: The TeachTune interface. On the right, a teacher can add new student profiles (A) and
review their auto-generated conversation (B). The teacher can also check the student’s current knowledge
stage at each utterance (C). On the left is the PCA creation interface with a state diagram. The robot
icon shows the current state (i.e., active node) of the PCA at each turn (D). The PCA changes its
behavior according to the conditions (E) and follows the instructions written on the currently active
node (F).

student profiles and observing simulated conversations.

Templated student profile creation

Teachers should first define what types of students they review against. TeachTune helps teachers

externalize and develop their evaluation space with templated student profiles. Our interface (Fig. 4.5)

provides knowledge components and student trait inventories to help teachers recognize possible combi-

nations and granularities of different knowledge levels and traits and organize them effectively (DG3).

When creating each student profile, teachers can specify the student’s initial knowledge by check-marking

knowledge components (Fig. 4.5 A) and configure the student’s personality by rating the trait inventories

on a 5-point Likert scale (Fig. 4.5 B). TeachTune then generates a natural language description of the

student, which teachers can freely edit to correct or add more contextual information about the student

(Fig. 4.5 C). This description, namely trait overview, is passed to our simulation pipeline.

Once teachers have created a pool of student profiles to review against, they can leverage it over

their iterative PCA design process, like how single-turn test cases are efficient for repeated reviews.

We decided to let teachers configure their student pools instead of automatically providing all possible

student profiles because it is time-consuming for teachers to check student profiles who might not even

exist in their classes.

TeachTune populates knowledge components pre-defined in textbooks and curricula. Teachers

can also add custom (e.g., more granular) knowledge components. For the trait inventories, we chose the

top three statements from existing inventories [246, 247, 248, 249] based on their correlation to student
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Figure 4.5: The interface to create a student profile. Teachers set the initial knowledge level of the
student by check-marking the knowledge components to turn on at the beginning of a conversation (A).
They also rate 5-point Likert scale questions to configure the four unique student traits (B). TeachTune
generates a (C) natural language student profile overview based on the information set from (B). Users
can edit the system-generated description or add more contextual information about a student.

performance. We present three statements for each trait, considering the efficiency and precision in

authoring student profiles, heuristically decided from our iterative system design.

Automated chat

Teachers then select one of the student profiles to generate a lesson conversation between the pro-

file’s simulated student and their PCAs (Fig. 4.4 A). PCAs start conversations, and the state marker

on the state diagram transits in real-time throughout the conversation. Simulated students initially

show unawareness as prescribed by their knowledge states in profiles and acquire knowledge from PCAs

in mock conversations. Simulated students also actively ask questions, show indifference, or exhibit

passive learning attitudes according to their student traits. TeachTune generates six messages (i.e.,

three turns) between PCAs and simulated students at a time, and teachers can keep generating further

conversation by clicking the “Generate Conversation” button. When teachers change the state machine

diagram, TeachTune prompts teachers to re-generate conversations from the beginning. Teachers can

use automated chats to quickly review different PCA designs on the same students without manually

typing messages (DG2). When teachers find corner cases that their PCA design did not cover, they

can add a node that describes the case and appropriate instruction for PCAs. For example, with the

state machine in Fig. 4.3, teachers may find the PCA stuck in the root state when it chats with a simu-

lated student who asks questions. To handle the case, teachers can add a node that reacts to students’

questions and instruct PCA to answer them.
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Figure 4.6: The Personalized Reflect-Respond pipeline. The pipeline interprets the student’s
trait values and creates a trait overview (1), and the previous conversation history is used to update the
knowledge state through the reflect pipeline (2). Afterward, the Respond pipeline takes the conversation,
updated knowledge state, and the trait overview to generate the response (3). The blue background is
a runtime area where the components inside change throughout a conversation. The trait overview is
created once before the runtime.

4.4.3 Personalized Reflect-Respond

We propose a Personalized Reflect-Respond LLM pipeline that simulates conversations with

specific student profiles. Our pipeline design is inspired by and extended from Jin et al.’s Reflect-Respond

pipeline [70]; we added a personalization component that prompts LLMs to incorporate prescribed

student traits into simulated students (DG1).

Reflect-Respond is an LLM-driven pipeline that simulates knowledge-learning [70]. It takes a sim-

ulated student’s current knowledge state and conversation history as inputs (Fig. 4.6). A knowledge

state is a list of knowledge components that are either acquired or not acquired. The state dynamically

changes throughout conversations to mimic knowledge acquisition. To generate a simulated student’s

response, inputs pass through the Reflect and Respond steps. Reflect updates the knowledge state by

activating relevant components, while Respond produces a likely reply based on the updated state and

conversation history.

Our pipeline personalizes Reflect-Respond by giving an LLM additional instruction in the Respond

step. Before the runtime of Reflect-Respond, Interpret step first translates trait scores into a trait

overview that contains a comprehensive summary and reasoning of how the student should behave

(Fig. 4.6 Step 1). Once teachers edit and confirm the overview through the interface (Fig. 4.5 C), it is

passed to the Respond step so that the LLM takes the student traits into account in addition to the

conversational context and knowledge state. We added the Interpret step because it produces student

profiles that allow teachers to edit flexibly and prompt LLMs to reflect on student traits more cohesively

(i.e., chain of thought [250]).

We took an LLM-driven approach to personalize and implement the Reflect-Respond pipeline. We

considered adopting student modeling methods that rely on more predictable and grounded Markov mod-

els [251, 252]. Still, we decided to use a fully LLM-driven approach because we also target extracurricular

teaching scenarios where large datasets to build Markov models may not be available.
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4.5 Evaluation

We evaluated the alignment of Personalized Reflect-Respond to teachers’ perception of simu-

lated students and the efficacy of TeachTune for helping teachers review PCAs against diverse student

profiles. Our evaluation explores the following research questions:

RQ2: How accurately does the Personalized Reflect-Respond pipeline simulate a student’s knowl-

edge level and traits expected by teachers?

RQ3: How do simulated students and automated chats, compared to direct chats and test cases, help

teachers review PCAs?

The evaluation was twofold. To investigate RQ2, we created nine simulated students of diversely

sampled knowledge and trait configurations and asked 10 teachers to predict their configurations through

direct chats and pre-generated conversations. To answer RQ3, we ran a between-subjects user study with

30 teachers and observed how the student profile template and simulated students helped the design and

reviewing of PCAs. We received approval for our evaluation study design from our institutional review

board.

4.5.1 Technical Evaluation

Under controlled settings, we evaluated how well the behavior of a simulated student instructed by

our pipeline aligns with teachers’ expectations of the student regarding knowledge level, motivation, and

psychosocial contexts (RQ2).

Evaluators

We recruited ten K-12 science teachers as evaluators through online teacher communities. The

evaluators had experience teaching 25±9.2-sized (µ ± σ) classes (min: 8, max: 33) for 4.5±4.2 years

(min: 0.5, max: 15). As compensation, evaluators received KRW 50,000 (USD 38).

Baseline Pipeline

We created a baseline pipeline to explore how the Interpret step affects the alignment gap. The

Baseline pipeline directly takes raw student traits in its Respond step without the Interpret step. By

comparing Baseline with Ours (i.e., Personalized Reflect-Respond), we aimed to investigate if

explanation-rich trait overviews help an LLM reduce the gap between simulated students and teachers’

expectations. Pipelines were powered by GPT-4o-mini, with the temperature set to zero for consistent

output.

Setup

The phase transition between solid, liquid, and gas was the learning topic of our setup. We chose

phase transition because it has varying complexities of knowledge components and applicable pedagogies.

Simulated students could initially know and learn six knowledge components of varying complexity; the

first three components describe the nature of three phases, and the latter three are about invariant

properties in phase transition with reasoning. The knowledge components were from middle school

science textbooks and curricula qualified by the Korean Ministry of Education.
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We prepared 18 simulated students for the evaluation (see Fig. 4.7). We first chose nine student

profiles through the farthest-point sampling [253], where the point set was 243 possible combinations of

different levels of knowledge and student traits to ensure the coverage and diversity of samples. Each

student profile was instantiated into two simulated students instructed by Baseline and Ours.

Figure 4.7: A summary of our technical evaluation. From the 243 possible combinations of intensities
(3 levels (high/medium/low) for each of the five characteristics), we used farthest-point sampling (1) to
sample nine unique student profiles. Then, we ran each of the nine student profiles in the Baseline and
Personalized Reflect-Respond pipeline, which resulted in 18 simulated students (2). A total of 10
evaluators were recruited to predict the student profiles given conversation histories in a blind condition
(3). We then measured bias between generated student profiles and evaluators’ predicted student profiles
(4).

Procedure

We first explained the research background to the evaluators. The evaluators then reviewed 18

simulated students independently in a randomized order. To reduce fatigue from conversing with sim-

ulated students manually, we provided two pre-prepared dialogues—interview and lesson dialogues. In

interview dialogues, simulated students sequentially responded to six quizzes about phase transition and

ten questions about their student traits (Fig. 4.8). In lesson dialogues, simulated students received 12

instructional messages dynamically generated by an LLM tutor prompted to teach phase transitions

(Fig. 4.9). Lesson dialogues show more natural teacher-student conversations in which teachers speak

adaptively to students. Evaluators could also converse with simulated students directly if they wanted.

Nine evaluators used direct chats at least once; they conversed with 5±4.5 students and exchanged 8±8.3

messages on average.

We gave evaluators a list of six knowledge components and three 5-point Likert scale inventory items

for each student trait; they predicted each simulated student’s initial knowledge state, intensity level of

the four student traits, and believability.

Measures

We measured the alignment between simulated students’ behaviors and teachers’ expectations of

them in two aspects—bias and believability. The bias is the gap between the teacher-perceived and

system-configured student profiles. A smaller bias would indicate that our pipeline simulates student
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behaviors closer to what teachers anticipate. Believability [118] is the perceived authenticity of simulated

students regarding their response content and behavior patterns. We measured the bias and believability

of each sampled student profile independently and analyzed the overall trend.

Evaluators’ marking on knowledge components was binary (i.e., whether a simulated student pos-

sesses this knowledge), and their rating on the four student traits was a scalar ranging from three to

fifteen, summing 5-point Likert scale scores from three inventory items as originally designed [246, 247,

248, 249]. We used the two-sided Mann-Whitney U test per simulated student pairs to compare Baseline

and Ours. We report the following measures:

• Knowledge Bias (% error). We quantified the bias on knowledge level as the percentage of incor-

rectly predicted knowledge components. We report the average and median across the evaluators.

• Student Trait Bias (0-12 difference). We calculated the mean absolute error between the eval-

uators’ Likert score and the configured value for each student trait. We report the average and

median across the evaluators.

• Believability (1-5 points). We directly compared evaluators’ ratings on the three statements about

how authentic simulated behavioral and conversational responses are and how valuable simulated

students are for teaching preparation (Fig. 4.11).

(Interview Question): Let’s review the changes of state. How about doing it with a quiz?

(Simulated Student): Yes, I think a quiz would be good. I’m a bit nervous, but I’ll give it

a try!

: First, can you explain the characteristics of a solid?

: Solids have particles arranged in a regular pattern, making them hard. They have a fixed

shape and volume and do not flow.

: How about the particle arrangement of a liquid?

: In liquids, the particles are more irregularly arranged than in solids, so the shape can

change, but the volume remains fixed, and they have the ability to flow.

[...]

: What causes solids, liquids, and gases to change state?

: I don’t know.

: When a substance changes state, does its properties change? Can you explain why?

[...]

: Do you have any personal goals regarding your science studies?

: Yes, my goal is to become good at science. I think I need to work harder.

: Do you think you can work hard to achieve that goal?

: Yes, I have hope that if I work hard, I will eventually do well. But I know it won’t be

easy.

: What will you do if you encounter a difficult problem while studying?

: I’m worried about how persistent I can be with difficult problems. But I will try not to

give up and attempt it again.

[...]

Figure 4.8: An interview dialogue of a simulated student powered by Personalized Reflect-
Respond with the following student profile: medium knowledge level, high goal commitment, medium
motivation, low self-efficacy, and low stress. The dialogue was designed to reveal the characteristics of
the student.
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(LLM Instructor): Let’s review what we learned last week!

(Simulated Student): Yes, let’s review! I can talk about the changes in the states of

solids, liquids, and gases.

: Great! Can you explain the particle arrangement in solids, liquids, and gases? Can you

tell me what the differences are?

: Solids have a regular particle arrangement, making them hard. Liquids have a more

irregular arrangement than solids, so their shape changes, but their volume stays the same.

Gases have a very irregular particle arrangement, so their shape and volume are not fixed.

: You explained that well! Do you also know how particles move? Can you explain particle

motion?

: I’m not sure. I don’t remember much about particle motion.

: That’s okay! This is a new concept we didn’t cover last time. Particle motion means that

particles are constantly moving, and the speed of this motion varies depending on the state.

Do you understand?

: Yes, though I’m not entirely sure I got it. But the idea that particles are always moving

sounds interesting!

: It is, isn’t it? Science has so many fascinating parts like this! Now, let’s study state

changes. Can you explain what causes a substance to change from one state to another?

: I’m not sure. I can’t remember what causes a substance’s state to change.

: Let’s think about it again. The state of a substance mainly changes due to temperature and

pressure. Now, do you think the properties of a substance change when it undergoes a state

change?

: Yes, I think the properties change when a state change happens. But I’m not sure which

specific properties change.

: You said you’re unsure. Then, do you think the mass of a substance changes during a state

change? What do you think the reason is? Let’s think about it again.

[...]

Figure 4.9: A lesson dialogue of the teacher chatbot and a simulated student powered by Personalized
Reflect-Respond with the following student profile: medium knowledge level, high goal commitment,
medium motivation, low self-efficacy, and low stress. The dialogue was designed to simulate a review
session.

4.5.2 Technical Evaluation Result

We report the descriptive statistics on the bias and believability of Personalized Reflect-

Respond (Ours) and validate its design by comparing it with Baseline. Our results collectively show

that Personalized Reflect-Respond can instruct an LLM to simulate a student’s behavior of a

specific knowledge state and traits precisely.

The knowledge bias was small (median: 5%)

The gap between the configured and evaluator-perceived knowledge states was small (the last row

of Table 4.3). Among the nine student profiles, evaluators unanimously and correctly identified the

knowledge components of four profiles. The average accuracy across profiles was 93%, where the minimum

was 78%. Profiles 4 and 7 achieved the lowest accuracy; evaluators underrated Profile 4 and overrated

Profile 7. Student profile 4 describes a learner who knows all knowledge components but exhibits low

confidence and interest. The corresponding simulated student tended to respond to the tutor’s questions

half-heartedly. We speculate that this behavior might have confused evaluators to think the student was

unaware of some of the knowledge components. Student profile 7 was a learner who knew only half of

the knowledge but had high self-efficacy. Its confident response might have deluded evaluators that it
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knows more.

The trait bias was small (median: 1.3 out of 12)

The gap between the configured and perceived levels of student traits was also small (Fig. 4.10).

The mean bias was 1.9, and the minimum and maximum were 0.4 and 4.9, respectively. Considering

that we summed the bias from three 5-point scale questions for each trait, teachers can precisely set their

simulated students within less than ±1 point error on each Likert scale input in our profile generation

interface (Fig. 4.5 B). The average variance between the perceived traits was also small (σ2 = 0.61),

possibly indicating that simulated students manifested characteristics unique to their traits and led to

a high agreement among teachers’ perceptions. Nevertheless, Profiles 3, 4, and 9 showed biases above

four on the goal commitment trait. All of these student profiles had contrasting goal commitment and

motivation ratings; for instance, the goal commitment rating of Profile 3 was low, while the motivation

rating was high. We contemplate that since these two traits often correlate and go together [254, 255],

evaluators might have misunderstood the motivational behaviors of simulated students as goal-related

patterns.

Simulated students were believable (median: 3.5 out of 5)

Evaluators reported that simulated students behave as naturally as real students and are helpful for

teacher training (Fig. 4.11). The average scores for each question (i.e., B1, B2, and B3) were 3.6± 0.4,

3.5 ± 0.3, and 3.4 ± 0.3, respectively. The variance in the B1 scores was high in some of the profiles.

For instance, the variance was 2.1 (min: 1, max: 5) for Profile 2, which describes a student with zero

knowledge and the lowest goal commitment, motivation, and self-efficacy. Since the simulated student

knew nothing, it repeatedly said “I do not know” in its interview and lesson dialogues as instructed by

its prompt. Evaluators had different opinions on this behavior; low raters felt the repetitive messages

were unnatural and artificial, while high raters thought unmotivated students tended to give short and

sloppy answers in actual classes. B3 scores showed a similar trend and a high correlation to B1 scores

(Pearson’s r=0.96).

The Interpret step increased believability significantly

Our ablation study showed the tradeoff relationship between the bias and believability in our pipeline

design. The Baseline pipeline showed minimal knowledge and trait bias compared to Ours (Table 4.3

and Fig. 4.10). Bias was minimal because Baseline students often revealed the raw trait values in the

system prompt when responding to questions (e.g., “I have a low motivation” and “I strongly agree.”)

However, these frank responses resulted in a statistically significant decrease in the believability of

simulated students (Fig. 4.11). Evaluators felt artificiality towards the dry and repeated responses and

perceived them as detrimental to being a pedagogy tester (B3). On the other hand, Ours students were

better at incorporating multiple traits into responses. For example, Profile 5 is a student who has high

goal commitment and stress levels at the same time. While Baseline generated “Thank you! But, I

am stressed about my daily study.” for a tutor’s encouragement, Ours creates a multifaceted response:

“Thank you! I am a bit stressed about my daily study, but I am trying hard.” The Interpret step can

balance the tradeoff between bias and believability by prompting LLMs to analyze student profiles more

comprehensively and generate more believable behaviors.
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Student Profiles
1 2 3 4 5 6 7 8 9 Mean Median

Baseline 8.3±20.4 0.0±0.0 0.0±0.0 13.3±5.2 1.7±4.1 10.0±0.0 6.7±5.2 0.0±0.0 0.0±0.0 4.4 1.7
Ours 8.3±.11.7 6.7±16.3 5.0±5.5 21.7±20.4 0.0±0.0 0.0±.0.0 21.7±18.3 0.0±0.0 0.0±0.0 7.0 5.0

Table 4.3: The knowledge bias of each student profile. The bias was overall small, with an average of
7%, with Profile 4 and 7 having the largest bias.

Figure 4.10: The bias in four student traits: goal commitment (GC), motivation (MO), self-efficacy
(SE), and stress (ST). The asterisk (*) indicates statistical significance (p¡.05) between conditions.

4.5.3 User Study

We ran a user study with 30 K-12 science teachers to explore how templated student profile creation

and automated chats affect the PCA design process (RQ3). We designed a between-subjects study

in which each participant created a PCA under one of the three conditions—Baseline, Autochat, and

Knowledge. In Baseline, participants used a version of TeachTune without the automated chat

feature; participants could access direct chat and single-turn test cases only. In Autochat, participants

used TeachTune with all features available; they could generate student profiles with our template

interface and use automated chats, direct chats, and test cases. In Knowledge, participants used

another version of TeachTune where they could use all features but configure only the knowledge level

of simulated students (i.e., no student traits and trait overview); this is analogous to using simulated

students powered by the original Reflect-Respond pipeline.

By comparing the three conditions, we investigated the effect of having simulated students on PCA

review (Baseline vs. Autochat) and how simulating student traits beyond their knowledge level affect

the depth and breadth of the design process (Autochat vs. Knowledge). The Knowledge condition is the

baseline for the automated chat feature. By looking into this condition, we investigate if the existing

simulated student pipeline (i.e., Reflect-Respond) is enough to elicit improved test coverage and how

Personalized Reflect-Respond can improve it further.
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Figure 4.11: Result of the believability measured in 5-point Likert scale (1: Strongly disagree, 5: Strongly
agree) with three questions. B1: This student naturally responds (e.g., explain, question, ignore) to the
teacher’s questions or instructions. B2: This student uses language and speaking style that a real student
would use. B3: This student looks real and is useful as a chatbot for teacher training. The asterisk (*)
indicates statistical (p¡.05) significance between conditions.

Participants

We recruited 36 teachers through online teacher communities in Korea and randomly assigned them

to one of the conditions. Participants had varying teaching periods (3.3±4.7 years) and class sizes

(13±12 students). Thirteen participants are currently teaching at public schools. According to our pre-

task survey, all participants had experience using chatbots and ChatGPT. They responded that they

were interested in using AI (e.g., image generation AI and ChatGPT) in their classes. More than half of

the participants reported they were knowledgeable about the chatbot design process, and five of them

actually had experience making chatbots. There was no statistical difference in participants’ teaching

experience, openness to AI technology, and knowledge about chatbot design among the conditions. Study

sessions took place for 1.5 hours, and participants received KRW 50,000 (USD 38) as compensation.

We randomly assigned ten participants to each condition, and the study was run asynchronously,

considering participants’ geographical diversity and daytime teaching positions. We also conducted ad-

ditional sessions with six teachers in Autochat condition to complement our asynchronous study design

by observing how teachers interact with TeachTune directly through Zoom screen sharing. We moni-

tored the whole session and asked questions during and after they created PCAs. We excluded these six

participants from our comparative analysis due to our intervention within the sessions. We only report

their comments.
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Procedure and Materials

After submitting informed consent, the participants received an online link to our system and com-

pleted a given task in their available time, following the instructions on the website. Participants first read

an introduction about the research background and the purpose of this study and watched a 7-minute tu-

torial video about the features in TeachTune. Participants could revisit the tutorial materials anytime

during the study.

We asked participants to use TeachTune to create a PCA that can teach “the phase transitions

between solid, liquid, and gas” to students of as diverse knowledge levels and student traits as possible.

Participants then used TeachTune in one of the Baseline, Autochat, and Knowledge conditions to

design their PCAs for 30-60 minutes; participants spent 50±15 minutes on average. All participants

received a list of knowledge components for the topic and explanations of the four student traits to

ensure consistency and prevent bias in information exposure. We encouraged participants to consider

them throughout the design process. After completing their PCA design, participants rated their task

load. Participants then revisited their direct chats, test cases, simulated students, and state diagrams to

report the student profiles they had considered in a predefined template (Fig. 4.12). The study finished

with a post-task survey asking about their PCA design experience. The study procedure is summarized

in Table 4.4.

Materials and Setup

Participants received the six knowledge components used in our technical evaluation. We also gave

participants an initial state diagram to help them start their PCA design.

We made a few modifications to our pipeline setup. Our technical evaluation revealed that repeated

responses critically undermine simulated students’ perceived believability and usefulness. To prevent

repeated responses and improve the efficacy of the automated chat, we set the temperature of the

Respond step to 1.0 and added a short instruction on repetition at the end of the prompt. The prompt

and temperature for other pipeline components were the same as those in technical evaluation.

Measures

We looked into how TeachTune affects the PCA design process as a review tool. An ideal review

tool would help users reduce manual task loads, explore extensive evaluation space, and create quality

artifacts. We evaluated each aspect with the following measures. Since we had a small sample size

for each condition (n=10) and it was hard to assume normality, we statistically compared the measures

between the conditions through the Kruskal-Wallis test. We conducted Dunn’s test for post hoc analysis.

• Task load (1-7 points). Participants responded to the 7-point scale NASA Task Load Index [256]

right after building their PCAs (Table 4.4 Step 3). We modified the scale to seven to make it

consistent with other scale-based questionnaires. Participants answered two NASA TLX forms,

each asking about the task load on PCA creation and PCA review tasks, respectively.

• Coverage. We asked participants to report the student profiles they have considered in their

design process (Table 4.4 Step 4). We gave a template where participants could indicate each

of the knowledge levels and four student traits of a student profile into five levels (1: very low,

5: very high). Participants could access their usage logs of direct chats, single-turn test cases,

automated chats, and state diagrams to recall all the student profiles covered in their design
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process (Fig. 4.12). We define coverage as the number of unique student profiles characterized by

the combinations of levels. We focused only on the diversity of knowledge levels and four traits

to compare the conditions consistently. We chose self-reporting because system usage logs cannot

capture intended student profiles in Baseline and Knowledge.

• Quality (3-21 points per trait). Although our design goals center around improving the coverage

of student profiles, we also measured the quality of created PCAs. This was to check the effect of

coverage on the final PCA design. We asked two external experts to rate the quality of the PCAs

generated by the participants. Both experts were faculty members with a PhD in educational

technologies and learning science and have researched AI tutors and pedagogies for ten years.

The evaluators independently assessed 30 PCAs by conversing with them and analyzing their

state machine diagrams. Evaluators exchanged a median of 28±10 and 45±20 messages per PCA.

We instructed the evaluators to rate the heuristic usability of PCAs [257] and their coverage for

knowledge levels and student traits. The usability and coverage ratings were composed of three

7-point scale sub-items, and we summed them up for analysis. Evaluators exchanged their test logs

and ratings for the first ten chatbots to reach a consensus on the criteria. If the evaluators rated

a PCA more than 3 points apart, they rated the PCA again independently. We report their mean

rating after conflict resolution.

• Post-task Survey. We asked participants about the usefulness of each PCA review method and

satisfaction on a 7-point Likert scale (Table 4.4 Step 5). We also collected free-form comments

from participants about their rationale for ratings.

Step (min.) Activity
1 (10) Introduction on research background and user interface
2 (60) PCA design
3 (5) Task load measurement
4 (10) Student profile reporting
5 (5) Post-task survey

Table 4.4: The study procedure. A single study session took around 90 minutes in total, and the
participants were given 60 minutes for the PCA design.

4.5.4 User Study Result

Participants created PCAs with 15±6 nodes and 21±10 edges in their state diagram on average.

We outline the significant findings from the user study along with quantitative measures, participants’

comments, and system usage logs. Participants are labeld with B[1-10] for Baseline, A[1-10] for Autochat,

K[1-10] for Knowledge, and O[1-6] for the teachers we directly observed.

Autochat resulted in a lower physical and temporal task load

There was a significant effect of simulating student traits beyond knowledge on the physical (H=10.1,

p=.006) and temporal (H=12.7, p=.002) task load for the PCA creation task (Fig. 4.13 left). The effect

sizes were large [258]: η2=0.301 and η2=0.395, respectively. A post-hoc test suggested Autochat partic-

ipants had significantly lower task load than Knowledge participants (physical: p=.002 and temporal:

p¡.001). The same trend appeared in the PCA review task (H=6.3, p=.043) with a large effect size

(η2=0.160) (Fig. 4.13 right).
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Figure 4.12: The profile collection UI used in Step 4: student profile reporting. The participants were
instructed to report the types of students they considered in their chatbot design on the right in the unit
of profiles containing knowledge and traits. In this process, they had access to history, including their
automated chats, direct chats, and test cases, as well as the designed PCAs.

The fact that having simulated students reduced teachers’ task load in Autochat and not in Knowl-

edge may imply that automated chat is meaningful only when simulated students cover all characteristics

(i.e., knowledge and student traits). Since participants were instructed to consider diverse knowledge

levels and student traits, we surmise that the incomplete review support in Knowledge made automated

chat less efficient than not having it. Knowledge participants commented that it would be helpful if they

could configure the student traits mentioned in the instructions (K2 and K7).

In our observational sessions, automated chats alleviated teachers’ burden in ideation and repeated

tests. O1 commented: “I referred to the beginning parts of automated chats [for starting conversations

in direct chats]. I would spend an extra 20 to 30 minutes [to come up with my own] if I did not have

automated chats.”

Autochat participants considered more unique student profiles

Participants submitted Baseline: 2.2±2.3, Autochat : 4.9±1.6, and Knowledge: 2.9±1.7 unique

student profiles and the difference between conditions was significant (H=10.2, p=.006, η2=0.304). Au-

tochat participants considered significantly more student profiles than Baseline (p=.002) and Knowledge

(p=.036). Autochat participants also reported that they covered more levels of different knowledge and

student traits (Fig. 4.14).

The result collectively shows that having simulated students helps teachers improve their coverage in

general and significantly elicits extended coverage when simulated students support more characteristics.

However, we did not observe a difference in participant-perceived coverage among the conditions. This

insignificant difference may indicate that teachers rated more conservatively after recognizing their un-

awareness of the evaluation space. A1 remarked: “I became more interested in using chatbots to provide

individualized guidance to students, and I would like to actually apply [TeachTune] to my classes in

the future. During the chatbot test, I again realized that each student has different characteristics and
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academic performance, so the types of questions they ask are also diverse. Even if the learning content

is the same for a class, students’ feedback can vary greatly, and a chatbot could help with this problem.”

O3 also remarked that structurally separate student profiles helped her recognize individual students,

which would not be considered in direct chats, and prompted her to test as many profiles as possible.

Direct chats, test cases, and automated chats complement each other

All participants reported that the systems were helpful in creating quality PCAs. For the question

about future usage of systems, Autochat participants reported the highest affirmation among the con-

ditions (median: 6), despite the statistical difference among the conditions was not significant. We did

not observe a significant preference for direct chats, test cases, and automated chats. Still, participants’

comments showed that each feature has its unique role in a PCA design process and complements each

other (see Fig. 4.15).

Direct chats were helpful, especially when participants had specific scenarios to review. Since partic-

ipants could directly and precisely control the content of messages, they could navigate the conversational

flow better than automated chats (A5), check PCAs’ responses to a specific question (A7), and review

extreme student types and messages that automated chats do not support (A10 and K6). Thus, par-

ticipants used direct chats during early design stages (B2 and K1) and for debugging specific paths in

PCAs’ state diagrams in depth (B7, B8, and A6).

On the other hand, participants tend to use automated chats for later exploration stages and coverage

tests. Autochat and Knowledge participants often took a design pattern in which they designed a

prototypical PCA and tested its basic functionality with direct chats and improved the PCA further by

reviewing it with automated chats (A1, A6, K1, and K5). Many participants pointed out that automated

chats were efficient for reviewing student profiles in breadth and depth (A4, A5, A10, K2, K7, and K10)

and helpful in finding corner cases they had not thought of (K4 and K7). Nevertheless, some participants

complained about limited controllability and intervention in automated chats (A1 and A5) and the gap

between actual students and our simulated students due to repeated responses (A2 and A3).

Test cases were helpful for node-oriented debugging of PCAs. Participants used them when they

reviewed how a PCA at a particular node responds (B5) and when they tested single-turn interactions

quickly without having lengthy and manual conversations (B1). Most participants preferred direct chats

and automated chats to test cases for their review, indicating the importance of reviewing multi-turn

interactions in education.

The difference in PCA qualities among conditions was insignificant

On average, Autochat scored the highest quality (Table 4.5), but we did not observe statistical

differences among the conditions for knowledge (H=1.75, p=.416), motivation factor (H=4.89, p=.087),

psychosocial contexts (H=2.49, p=.287), and usability (H=1.32, p=.517). PCA qualities also did not

correlate with the size of the state diagram graphs (Spearman rank-order correlation, p=.179, p=.581,

p=.486, and p=.533, respectively).

The result may suggest that even though Autochat participants could review more automated chats

and student profiles during their design, they needed additional support to incorporate their insights and

findings from automated chats into their PCA design. Participants struggled to write the instruction to

PCAs for each node (A3 and K5) and wanted autosuggestions and feedback for the instruction (K1 and

A9), which contributes to the quality of PCAs. The observations imply that the next bottleneck in the
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LLM-based PCA design process is debugging PCA according to evaluation results.

It is also possible that teachers may not have sufficient learning science knowledge to make the

best instructional design decisions based on students’ traits [259]. For instance, O1 designed a PCA

for the first time and remarked that she struggled to define good characteristics of PCAs until she saw

automated chats as a starting point for creativity. O5 recalled an instance where she tested a student’s

message, “stupid robot,” and her PCA responded, “Thank you! You are also a nice student [...] Bye.”

Although O5 found this awkward, she could not think of a better pedagogical response to stop students

from bullying the PCA.

Future work could use well-established guidelines and theories [260, 261] on personalized instructions

to scaffold end-to-end PCA design. When a teacher identifies an issue with a simulated student with low

self-efficacy, a system may suggest changes to PCA design for the teacher to add confidence-boosting

strategies to PCAs.

Figure 4.13: NASA-TLX survey results for PCA creation task (left) and PCA review task (right). The
asterisk (*) indicates statistical significance (p¡0.05) between conditions.

Figure 4.14: The number of levels covered in reported student profiles, in the order of knowledge level
(KL), goal commitment (GC), motivation (MO), self-efficacy (SE), and stress (ST). The asterisk (*)
indicates statistical significance (p¡0.05) between conditions.

4.6 Discussion

We revisit our research questions briefly and discuss how TeachTune contributes to augmenting

the PCA design process.
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Trait Baseline Autochat Knowledge
Knowledge coverage 16.5±1.4 17.0±0.9 16.3±1.5
Motivation factor

coverage
15.6±1.2 17.4±1.8 16.2±1.0

Psychosocial context
coverage

15.4±0.6 16.3±1.5 15.4±0.7

Usability 16.0±0.9 16.2±1.3 16.0±1.1

Table 4.5: The average quality scores of PCAs from each condition. There was no statistical difference
among the conditions.

4.6.1 Student Traits for Inclusive Education

Teachers expressed their need to review how PCAs adapt to students’ diverse knowledge levels,

motivation factors, and psychosocial contextual influence. Prior literature on student traits [197] provided

us with extensive dimensions of student traits, and our interview complemented them with teachers’

practical priority and concern among them. Our approach may highlight that we might need a more

holistic understanding that spans theories, quantitative analysis, and teacher interviews to identify key

challenges teachers face and derive effective design goals.

Moreover, although TeachTune satisfied the basic needs for simulating these student traits, teach-

ers wanted additional characteristics to include more diverse student types and teaching scenarios in

actual class settings (A5, A8, A10, and K7). These additional needs should not only include the 42 stu-

dent traits [197] investigated in our formative interview but should also involve the traits of marginalized

learners [262, 263]. For instance, students with cognitive disabilities need adaptive delivery of informa-

tion, and immigrant learners would benefit from culturally friendly examples. Reviewing PCAs before

deployment with simulated marginalized students will make classes inclusive and prevent technologies

from widening skill gaps [264].

4.6.2 Tolerance for the Alignment Gap

We observed 5% and 10% median alignment gaps between our simulated students and teachers’

perceptions (RQ2). This degree of gap could be bearable in the context of simulating conversations

because simulated students are primarily designed for teachers to review interactions, not to replicate

a particular student precisely, and real students also often show discrepancies in their knowledge states

and behaviors by making mistakes and guess answers [265]. Recent research on knowledge tracing

suggests that students make more than 10% of slips and guesses in a science examination, and the rate

depends on students’ proficiency [266]. The individualized rate of slips and guesses per student profile

(e.g., increasing the frequency of guesses for a highly motivated simulated student) may improve the

believability of simulated students. Teachers will also need interfaces that transparently reveal the state

of simulated students (e.g., Fig. 4.4 C) to distinguish system errors from intended slips.

4.6.3 Using Simulated Students for Analysis

Our user study showed that TeachTune helps teachers consider a broader range of students and

can help them review their PCAs more robustly before deployment (RQ3). PCA design is an iterative

process, and it continues after deploying PCAs to classes. Student profiles and simulated students

can support teachers’ post-deployment design process by leveraging students’ conversation history with

PCAs. For instance, teachers can group students by their predefined student profiles as a unit of analysis
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Figure 4.15: Examples of iterative PCA design using each feature. Direct chat: O1 tested a specific
question and added new nodes inspired by the PCA’s response. Automated chat: O5 identified problems
and modified the state diagram. To provide adaptive pedagogy to a low efficacy knowledgeable student,
O5 changed the instruction from giving explanations to asking questions. Test cases: O6 modified the
specific node to include additional content and used the same test case for re-testing.

and compare learning gain among the groups to identify design issues in PCA. Simulated students can

also serve as an interactive analysis tool. Teachers may fine-tune a simulated student with specific

student-PCA conversation data and interactively replay (e.g., ask questions to gain deeper insight about

the student) previous learning sessions with the simulated agent aligned with a particular student.

4.6.4 Profile-oriented Design Workflow

During formative interviews, we observed that teachers unfamiliar with reviewing PCAs often weave

multiple student profiles into a single direct chat. To address the issue, TeachTune proposed a two-step

profile-oriented workflow comprising steps for (1) organizing diverse student profiles defined by student

traits and (2) observing the test messages generated from these profiles. Our user study showed that

this profile-oriented review process could elicit diverse student profiles from teachers and help them

explore extensive evaluation spaces. The effectiveness of this two-step workflow lies in its hierarchical

structure, which first organizes the evaluation scope at the target user level and then branches into

specific scenarios each user might encounter. Such a hierarchical approach can be particularly beneficial

for laypeople who try making LLM-infused tools by themselves but are not familiar with reviewing them.

For example, when a non-expert develops an LLM application, it will be easier to consider potential user

groups than to think of corner cases immediately. The two-step workflow with simulated user groups can

scaffold the creator to review the application step by step and generate user scenarios rapidly. We expect

that the LLM-assisted profile-oriented design workflow is generalizable to diverse creative tasks, such as

UX design [267], service design [268], and video creation [229], that require a profound and extensive
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understanding of target users.

4.6.5 Risks of Amplifying Stereotypes of Students

Our technical evaluation assumed teachers’ expectations of student behaviors as ground truth, con-

sidering that simulated students are proxies for automating testing teachers intend. However, in practical

classes, there are risks of teachers having stereotypes or TeachTune amplifying their bias toward stu-

dents over time.

During the observational sessions, we asked teachers’ perspectives, and teachers expressed varying

levels of concern. O3 commented that private tutors would have limited opportunities to observe their

students beyond lessons, making them dependent on simulated behaviors. Conversely, O1 was concerned

about her possible stereotypes of student behaviors and relied on automated chat to confirm behaviors

she expected. O4 stated that automated chats would not bias teachers as they know the chats are

simulated and just a point of reference.

Teachers will need an additional feedback loop to close the gap between their expectations and

actual students by deploying PCAs iteratively and monitoring student interaction logs as hypothesis

testing. Future work may observe and support how teachers fill or widen the gap at a more longitudinal

time scale (e.g., a semester with multiple lessons).

4.7 Limitations and Future Work

We outline the limitations of the work. First, we did not confirm the pedagogical effect of PCAs

on students’ learning gain and attitude, as we only evaluated the quality of PCAs with experts. We

could run lab studies in which middle school students use the PCAs designed by our participants, and

we measure their learning gain on phase transitions through a pre-and post-test. Student-involved

studies could also reveal the gap between teachers’ expectations and students’ actual learning; even

though a teacher tests a student profile and designs a PCA to cover it, a student of the profile may

not find it helpful. Our research focused on investigating the gap between simulated students’ behaviors

and teachers’ expectations. Future work can explore the alignment gap between simulated and actual

students and develop interactions to guide teachers in debugging their PCAs and closing the gap. Our

preliminary findings will act as a foundational step to move on to safer student-involved studies.

Second, our technical evaluation and user study are limited to a single subject (i.e., science) and

learning topic (i.e., phase transitions). Under practical and temporal constraints, we evaluated how

Personalized Reflect-Respond generalizes to diverse student profiles and how TeachTune works

in a controlled setting as a case study. We expect that our findings will generalize to other STEM fields

where knowledge components are well-defined. Still, humanities subjects may require additional support

(e.g., simulating students’ cultural backgrounds in literature classes). We plan to deploy TeachTune

to a programming course at our university and a middle school second language writing class. In the

deployment, we will ask the instructors to build PCAs for different roles and contexts, such as homework

assistants, teaching assistants, and peer learners. These deployments will concretize our findings in

diverse student ages, subjects, and pedagogies.

Lastly, we simulated a limited number of student traits only. Learning is a complex process with

complex dynamics between knowledge states, learning traits, cognitive load, and emotion. Our Person-

alized Reflect-Respond introduced a multifaceted student simulation that involves both knowledge
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and student traits, but we acknowledge that more personal attributes of students are necessary for

authentic simulated students. The attributes can also include interaction-level attributes like delayed

responses and facial expressions. Moreover, we assumed student traits to be static throughout conver-

sations, but actual students may change their attitudes with appropriate guidance, and thus, student

traits should be as malleable as the knowledge state. We will explore and develop these different designs

of student simulation in the future.
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Chapter 5. General Discussion

This chapter revisits the fundamental components of the user-driven approach to creating adaptive

learning tools and discusses the principles for successful learning tool development.

5.1 Guidance and Expressivity

Across the three systems, hierarchical representations played a central role in enabling collaboration

and granting users fine-grained control during tool creation. These representations were effective because

they segmented information into discrete, modular units, forming structured interaction patterns that

guided users through complex authoring tasks. However, this discretization can pose challenges to user

expressivity—particularly in creative processes where users may wish to define, modify, or combine fea-

tures in ways not anticipated by the system. Rigid hierarchical structures, while supportive of scaffolding

understanding and coordination, may inadvertently constrain the fluidity and individuality often needed

in tool design.

To address this tension, each system integrated natural language into its hierarchical representa-

tions. By representing atomic components—such as subgoals, knowledge elements, or trait attributes—in

natural language, users had the expressive flexibility to describe and customize the components in their

terms while still operating within an underlying structural scaffold. In the future, we will see more of

these hybrid approaches that combine discrete structures with continuous, language-based interactions,

allowing systems to offer both guidance and expressivity: structured enough to guide yet open-ended

enough to empower.

5.2 Motivating Learners and Teachers

For a user-initiated approach to succeed, it is essential to encourage learners and teachers to ac-

tively participate in creating the tools. Across the three systems, two primary motivational mechanisms

consistently emerged: (1) reducing the cost and barriers to tool creation and (2) increasing the perceived

pedagogical value of creating personalized tools.

In CodeTree, the act of generating subgoal hierarchies through self-explanation not only sup-

ported the creation of adaptive code explanations but also significantly improved learners’ code-tracing

skills. TeachYou leveraged natural language knowledge-state representations and large language mod-

els (LLMs) to lower the barrier of authoring teachable agents. TeachTune enabled teachers to create

inclusive pedagogical chatbots and explore their effectiveness with simulated students, ultimately reduc-

ing teachers’ workload while enhancing instructional coverage.

These findings highlight two promising directions for the learner- and teacher-driven creation of

educational tools. First, tool creation itself can serve as a pedagogical activity, fostering a metacog-

nitive understanding of learning content and student needs. Constructing tools requires reflection on

the underlying cognitive processes they aim to support. Although teachers and learners may initially

lack such metacognitive insights, AI scaffolding and collaborative authoring can guide and augment this

process—echoing the principles of learnersourcing, where didactic experience is gained through construc-

tive participation [31].
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Second, enhancing accessibility in tool creation opens pathways for scalable and personalized learn-

ing. As generative technologies become more usable, non-technical educators and students increasingly

engage with systems they once considered out of reach. The growing interest among teachers in adopt-

ing such systems, as observed in practice [269, 270], underscores this shift. While interactive learning

is widely recognized as the most effective mode, its application has traditionally been limited to a few

standardized subjects due to the high development cost of domain-specific software.

By empowering teachers and learners to create tools, we open up new opportunities for more

metacognitively engaging and pedagogically inclusive learning experiences. Ultimately, I envision a

future where educational technology is no longer solely built by experts but co-created by learners and

teachers—making education more adaptable, participatory, and democratized.
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Chapter 6. Conclusion

This thesis has proposed a user-driven approach to adaptive learning design as a scalable response

to the growing diversity of learners and learning contexts in online education. Rather than relying solely

on centralized system designers, the proposed approach empowers learners and teachers to actively

participate in the creation and customization of adaptive learning tools that align with their specific

needs and contexts.

At the core of this approach is the use of hierarchical representations—modular, compositional

structures that enable users to articulate, organize, and refine learning content and adaptive behaviors.

To explore this approach, three systems were developed: CodeTree, TeachYou, and TeachTune.

Each system leverages authoring interfaces built upon hierarchical representations, enabling learners

and teachers to contribute meaningfully to the authoring process without requiring extensive technical

expertise. Through the use of subgoal hierarchies, knowledge states, and student profiles, these systems

demonstrated how learners and teachers could collaboratively create adaptive explanations, configure

teachable agents, and iteratively refine pedagogical chatbots.

Ultimately, this thesis argues that empowering learners and teachers as active co-designers of adap-

tive learning tools offers a promising path toward more personalized, responsive, and inclusive educational

technologies—ones that better reflect the diverse and evolving realities of modern education.
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and the protégé effect: Increasing the effort towards learning. Journal of Science Education and

Technology, 18:334–352, 2009.

[80] Amy Debbané, Ken Jen Lee, Jarvis Tse, and Edith Law. Learning by teaching: Key challenges

and design implications. Proc. ACM Hum.-Comput. Interact., 7(CSCW1), apr 2023.

[81] Tasmia Shahriar and Noboru Matsuda. “can you clarify what you said?”: Studying the impact

of tutee agents’ follow-up questions on tutors’ learning. In Ido Roll, Danielle McNamara, Sergey

Sosnovsky, Rose Luckin, and Vania Dimitrova, editors, Artificial Intelligence in Education, pages

395–407, Cham, 2021. Springer International Publishing.

[82] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong

Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow

instructions with human feedback. Advances in Neural Information Processing Systems, 35:27730–

27744, 2022.

[83] Steven I. Ross, Fernando Martinez, Stephanie Houde, Michael Muller, and Justin D. Weisz. The

programmer’s assistant: Conversational interaction with a large language model for software de-

velopment. In Proceedings of the 28th International Conference on Intelligent User Interfaces, IUI

’23, page 491–514, New York, NY, USA, 2023. Association for Computing Machinery.

[84] Julia M Markel, Steven G Opferman, James A Landay, and Chris Piech. Gpteach: Interactive ta

training with gpt-based students, Feb 2023.

[85] Aobo Kong, Shiwan Zhao, Hao Chen, Qicheng Li, Yong Qin, Ruiqi Sun, and Xin Zhou. Better

zero-shot reasoning with role-play prompting. arXiv preprint arXiv:2308.07702, 2023.

[86] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-

wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel

Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,

88



Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,

Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,

and Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato, R. Had-

sell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, vol-

ume 33, pages 1877–1901. Curran Associates, Inc., 2020.

[87] Alec Radford, JeffreyWu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language

models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[88] Gautam Biswas, Thomas Katzlberger, John Bransford, Daniel Schwartz, et al. Extending intelli-

gent learning environments with teachable agents to enhance learning. In Artificial intelligence in

education, pages 389–397. Citeseer, 2001.

[89] Krittaya Leelawong and Gautam Biswas. Designing learning by teaching agents: The betty’s brain

system. Int. J. Artif. Intell. Ed., 18(3):181–208, aug 2008.

[90] Noboru Matsuda, Victoria Keiser, Rohan Raizada, Arthur Tu, Gabriel Stylianides, William W.

Cohen, and Kenneth R. Koedinger. Learning by teaching simstudent: Technical accomplishments

and an initial use with students. In Vincent Aleven, Judy Kay, and Jack Mostow, editors, Intelligent

Tutoring Systems, pages 317–326, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[91] Lena Pareto, Tobias Arvemo, Ylva Dahl, Magnus Haake, and Agneta Gulz. A teachable-agent

arithmetic game’s effects on mathematics understanding, attitude and self-efficacy. In Gautam

Biswas, Susan Bull, Judy Kay, and Antonija Mitrovic, editors, Artificial Intelligence in Education,

pages 247–255, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[92] Christine Chin and David E Brown. Student-generated questions: A meaningful aspect of learning

in science. International Journal of Science Education, 24(5):521–549, 2002.

[93] Fu-Yun Yu. Promoting metacognitive strategy development through online question-generation

instructional approach. In Proceedings of the 2005 Conference on Towards Sustainable and Scalable

Educational Innovations Informed by the Learning Sciences: Sharing Good Practices of Research,

Experimentation and Innovation, page 564–571, NLD, 2005. IOS Press.

[94] Ester Aflalo. Students generating questions as a way of learning. Active Learning in Higher

Education, 22(1):63–75, 2021.

[95] Dan Rothstein and Luz Santana. Make just one change: Teach students to ask their own questions.

Harvard Education Press, 2011.

[96] R.D. Roscoe and M.T.H. Chi. Understanding tutor learning: Knowledge building and knowledge

telling in peer tutors’ explanations and questions. Review of Educational Research, 77:534–574,

2007.

[97] David Duran. Learning-by-teaching. evidence and implications as a pedagogical mechanism. In-

novations in Education and Teaching International, 54(5):476–484, 2017.

[98] Marlene Scardamalia and Carl Bereiter. Knowledge building: Theory, pedagogy, and technology,

pages 97–. 01 2006.

89



[99] Noreen M. Webb, Philip Ender, and Scott Lewis. Problem-solving strategies and group processes in

small groups learning computer programming. American Educational Research Journal, 23(2):243–

261, 1986.

[100] Michael Pressley, Mark A McDaniel, James E Turnure, Eileen Wood, and Maheen Ahmad. Gen-

eration and precision of elaboration: Effects on intentional and incidental learning. Journal of

Experimental Psychology: Learning, Memory, and Cognition, 13(2):291, 1987.

[101] A. King, A. Staffieri, and A. Adelgais. Mutual peer tutoring: Effects of structuring tutorial

interaction to scaffold peer learning. Journal of Educational Psychology, 90(1):134–152, 1998.

[102] Rod D Roscoe and Michelene TH Chi. The influence of the tutee in learning by peer tutoring. In

Proceedings of the Annual Meeting of the Cognitive Science Society, volume 26, 2004.

[103] Noboru Matsuda, Vishnu Priya Chandra Sekar, and Natalie Wall. Metacognitive scaffolding am-

plifies the effect of learning by teaching a teachable agent. In Carolyn Penstein Rosé, Roberto
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2017. 12. – 2023. 2. 한국과학기술원 KIXLAB 연구 인턴

2022. 6. – 2022. 9. University of California San Diego DesignLab 연구 인턴

2019. 8. – 2021. 10. VCNC 소프트웨어 엔지니어

연 구 업 적

1. Jin, H., Yoo, M., Park, J., Lee, Y., Wang, X., & Kim, J. (2025, May). “TeachTune: Reviewing

Pedagogical Agents Against Diverse Student Profiles with Simulated Students.” In Proceedings of

the 2025 CHI Conference on Human Factors in Computing Systems (to be published).

2. Jin, H., Lee, S., Shin, H., & Kim, J. (2024, May). “Teach AI How to Code: Using large language

models as teachable agents for programming education.” In Proceedings of the 2024 CHI Conference

on Human Factors in Computing Systems (pp. 1-28).

3. Jin, H., Chang, M., & Kim, J. (2019, May). “SolveDeep: A system for supporting subgoal learning

in online math problem solving.” In Extended abstracts of the 2019 CHI conference on human

factors in computing systems (pp. 1-6).

4. Jin, H., & Kim, J. (2024). “CodeTree: A System for Learnersourcing Subgoal Hierarchies in Code

Examples.” Proceedings of the ACM on Human-Computer Interaction, 8(CSCW1), 1-37.

5. Lee, C., Han, D., Jin, H., & Oh, A. (2019, June). “AutomaTA: Human-machine interaction

for answering context-specific questions.” In Proceedings of the Sixth (2019) ACM Conference on

Learning@ Scale (pp. 1-4).

6. Jin, H., Kim, Y., Park, Y. S., Tilekbay, B., Son, J., & Kim, J. (2024, July). “Using Large Language

Models To Diagnose Math Problem-solving Skills At Scale.” In Proceedings of the Eleventh ACM

Conference on Learning@ Scale (pp. 471-475).

105



7. Yen, Y. C. G., Pan, I. Y., Lin, G., Li, M., Jin, H., Chen, M., ... & Dow, S. P. (2024). “When to

Give Feedback: Exploring Tradeoffs in the Timing of Design Feedback.” In Proceedings of the 16th

Conference on Creativity & Cognition (C&C ’24). (pp. 292–310).

8. Yen, Y. C. G., E, J. L., Jin, H., Li, M., Lin, G., Pan, I. Y., & Dow, S. P. (2024). “ProcessGallery:

Contrasting Early and Late Iterations for Design Principle Learning.” Proceedings of the ACM on

Human-Computer Interaction, 8(CSCW1), (pp. 1-35).

9. Jin, H., & Kim, J. (2022). “Learnersourcing Subgoal Hierarchies of Code Examples.” In LSGCS@

L@S (pp. 35-39).

10. Moore, S., Singh, A., Lu, X., Jin, H., Khosravi, H., Denny, P., ... & Stamper, J. (2024, July).

“Learnersourcing: Student-generated Content@ Scale: 2nd Annual Workshop.” In Proceedings of

the Eleventh ACM Conference on Learning@ Scale (pp. 559-562).

106


