
석 사 학 위 논 문
Master’s Thesis

AlgoSolve: 학습자 크라우드소싱 기반

마이크로태스크를 통한 하위목표 학습 시스템

AlgoSolve: Supporting Subgoal Learning through Learnersourced

Microtasks

2021

최 갑 도 (崔甲到 Choi, Kabdo)

한 국 과 학 기 술 원

Korea Advanced Institute of Science and Technology

석 사 학 위 논 문

AlgoSolve: 학습자 크라우드소싱 기반

마이크로태스크를 통한 하위목표 학습 시스템

2021

최 갑 도

한 국 과 학 기 술 원

전산학부

AlgoSolve: 학습자 크라우드소싱 기반

마이크로태스크를 통한 하위목표 학습 시스템

최 갑 도

위 논문은 한국과학기술원 석사학위논문으로

학위논문 심사위원회의 심사를 통과하였음

2021년 6월 17일

심사위원장 김 주 호 (인)

심 사 위 원 오 혜 연 (인)

심 사 위 원 유 신 (인)

AlgoSolve: Supporting Subgoal Learning through

Learnersourced Microtasks

Kabdo Choi

Advisor: Juho Kim

A dissertation submitted to the faculty of

Korea Advanced Institute of Science and Technology in

partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

Daejeon, Korea

June 17, 2021

Approved by

Juho Kim

Professor of School of Computing

The study was conducted in accordance with Code of Research Ethics1.

1 Declaration of Ethical Conduct in Research: I, as a graduate student of Korea Advanced Institute of Science and

Technology, hereby declare that I have not committed any act that may damage the credibility of my research. This

includes, but is not limited to, falsification, thesis written by someone else, distortion of research findings, and plagiarism.

I confirm that my thesis contains honest conclusions based on my own careful research under the guidance of my advisor.

MCS 최갑도. AlgoSolve: 학습자 크라우드소싱 기반 마이크로태스크를 통한 하

위목표 학습 시스템. 전산학부 . 2021년. 32+iv 쪽. 지도교수: 김주호.

(영문 논문)

Kabdo Choi. AlgoSolve: Supporting Subgoal Learning through Learner-

sourced Microtasks. School of Computing . 2021. 32+iv pages. Advisor:

Juho Kim. (Text in English)

초 록

알고리즘 문제 풀이 초보자의 경우 문제 풀이에 있어서 많은 어려움을 겪으며, 주로 풀이를 구현하기 전에

제대로 구상하지 못하는 데에서 기인한다. 학습자의 문제 풀이 구상을 도와주기 위해 하위목표 학습 기법이

효과적으로 적용될 수 있음이 알려져 있다. 하지만 하위목표 학습 기법은 힌트, 전문가 레이블 등의 고품질

학습 자료가 같이 제공될 때 효과적이며, 이러한 고품질 자료는 다수 자습 환경에 적용되기 어렵다는 단점이

있다. 이를 극복하기 위해 본 연구에서는 하위목표 학습을 도와주기 위한 학습자 크라우드소싱 워크플로우

를 제안한다. 2개 마이크로태스크로 구성되어 있는 학습자 크라우드소싱 워크플로우를 통해 학습자로부터

고품질 하위목표 레이블을 수집하고, 이를 활용해 하위목표 학습 과정을 효과적으로 지원할 수 있게 된다.

이러한워크플로우를알고리즘문제풀이에서하위목표학습을도와주는시스템인 AlgoSolve에구현하였다.

본연구에서제안하는워크플로우의효과를확인하기위해알고리즘문제풀이초보자 63명을대상으로하는

실험을 진행하였으며, AlgoSolve가 더 높은 품질의 하위목표 레이블을 생성하고 학습 과정에서 배운 풀이

기법을 유사한 문제에 적용하는 데 도움을 줄 수 있음을 확인하였다.

핵 심 낱 말 하위목표 학습, 알고리즘 문제 풀이, 마이크로태스크, 학습자 크라우드소싱

Abstract

Algorithmic problem-solving has enabled scalable learning opportunities for learning programming. How-

ever, novices often struggle to solve problems successfully, where one of the main reasons arises from their

inability to develop solution plans before solving the problem. Subgoal learning has been shown effective

in promoting learners’ ability to develop more complete solution plans. However, subgoal learning is

most effective when expert-crafted guidance is provided, which is not widely available in self-learning

environments. To overcome this problem, we developed a learnersourcing workflow composed of two

microtasks that can collect high-quality subgoal labels and provide guidance in subgoal learning using

these as high-quality examples. We implemented the workflow into AlgoSolve, a prototypical interface

that supports subgoal learning in algorithmic problem-solving. Results from a between-subjects study

with 63 novices demonstrate that AlgoSolve successfully guides learners to create high-quality subgoal

labels and develop more complete solution plans.

Keywords Subgoal learning, algorithmic problem-solving, microtasks, learnersourcing

Contents

Contents . i

List of Tables . iii

List of Figures . iv

Chapter 1. Introduction 1

Chapter 2. Background and Related Work 3

2.1 Solution Planning and Methods for Supporting Planning 3

2.2 Subgoal Learning . 3

2.3 Learnersourcing Approaches . 4

Chapter 3. AlgoSolve 5

3.1 Microtask Design . 5

3.1.1 Task 1: Subgoal Voting . 6

3.1.2 Task 2: Subgoal Labeling 7

3.2 Subgoal Label Example Selection Policy 8

Chapter 4. Evaluation 10

4.1 Study Design . 10

4.2 Participants . 10

4.3 Study Materials . 10

4.4 Procedure . 12

4.5 Measurements . 12

Chapter 5. Results 16

5.1 Qualitative Analysis of the Submitted Subgoal Labels 16

5.1.1 Subgoals where Label Quality was Significantly Improved

After Comparison . 16

5.1.2 Compound Subgoals . 16

5.2 Effects on Solution Planning Ability 18

5.3 Quality of the System-selected Subgoal Labels 19

5.4 Peer Consensus on Subgoal Label Examples 19

5.5 Learner Experience . 21

5.5.1 Learner Experience on the Subgoal Voting Task 21

5.5.2 Learner Experience on the Subgoal Labeling Task 23

i

Chapter 6. Discussion 24

6.1 Benefits of Viewing High-Quality Peer Examples 24

6.2 Improving the Microtask Design 24

Chapter 7. Limitation and Future Work 26

7.1 Scaling to a Larger, More Diverse Population 26

7.2 Defining the Scope and Hierarchy of Subgoals 26

Chapter 8. Conclusion 27

Bibliography 28

Acknowledgments 31

Curriculum Vitae in Korean 32

ii

List of Tables

4.1 Overview of the study procedure. 12

4.2 Categories of subgoal label quality used in the current study. 13

4.3 SOLO scoring criteria used in the current study. 13

4.4 Representative examples of subgoal labels for each label score. Each row represents a

subgoal (e.g., S1: Subgoal 1). 15

5.1 Qualitative analysis results for learner-submitted subgoal labels. For each row, the first

row represents the baseline participants and the second row represents the microtask

participants, denoted as initial → final. 18

5.2 Changes made in the labels during the Subgoal Labeling microtask, in terms of label

quality score. 19

5.3 SOLO score frequency of the solution plans submitted in the assessment task. 19

5.4 System-selected labels with the highest mean score among labels that received three votes

or better (except for S6). We also provide the expert comparison results between system-

selected labels and expert-created labels. For subgoals without a majority, we also denote

the top choices (E: expert, M: match, S: system). 20

5.5 Mean (standard deviation) score of cognitive load. 21

iii

List of Figures

3.1 Overview of AlgoSolve and the learner workflow. Learners first gain an understanding of

good examples of subgoal labels by going through a set of Subgoal Voting tasks, and then

proceed to a set of Subgoal Labeling tasks where they create their own labels. 5

3.2 Overview of the Subgoal Voting task. Learners are given up to five subgoal labels and are

asked to select a single option that best describes the given subgoal. 6

3.3 Peer consensus information after the learner submit their vote in the Subgoal Voting task. 7

3.4 Overview of the Subgoal Labeling task. Learners provide their own subgoal labels that

describe the given subgoal. 8

3.5 After the learner submit their initial labels in the Subgoal Labeling task, system-selected

peer examples are shown to the learner. 8

4.1 Worked example used in the training session, labeled with expert-created subgoal labels.

The hierarchy between subgoals are represented as indentation levels. 11

5.1 Distributions of label quality scores for each subgoal (S1 S14) and the aggregated result

(B: baseline, Mi: microtask - initial submission, Mf: microtask - final submission). 17

5.2 Boxplots of the cognitive load of each condition in terms of each load aspect. 21

5.3 Helpfulness of the given labels; expert-created labels in baseline, peer examples in micro-

task (1: not helpful at all, 7: very helpful). 22

5.4 Helpfulness of the learning activities (1: not helpful at all, 7: very helpful). 22

iv

Chapter 1. Introduction

Learning to program has gained significant popularity in recent years. Algorithmic problem-solving has

been successfully applied to teaching and learning programming and program design [1]. In algorithmic

problem-solving, learners submit a code that solves a given problem which typically requires time- and

memory-efficient solutions, and the code gets automatically graded based on a set of testcases. Algorith-

mic problem-solving enabled scalable learning opportunities, not only in traditional classroom settings

but also widely applicable in self-learning environments such as Massive Open Online Courses (MOOCs)

or Online Judge [2] systems.

One of the characteristics of algorithmic problem-solving is that planning out the solution before

coding is crucial for successfully solving the problem [3]. Despite its importance, it is well known that

novices tend to overlook the planning stage, sometimes skipping this stage entirely [3, 4]. These behaviors

often result in producing incorrect or inferior solutions [3].

Prior work has shown that subgoal learning – a method where students learn solution procedures by

decomposing the solution into functional pieces (i.e., subgoals) – helped learners create more complete

solution plans [5]. Subgoal learning is known to be most beneficial when learners create their own

subgoal labels with appropriate guidance, such as expert-created labels or hints [6]. However, these

types of guidance require the presence of experts, which is not always available in many self-learning

environments.

In this work, we propose a learnersourcing workflow that provides guidance in subgoal learning

with microtasks that are geared toward promoting learners’ understanding of the subgoals in a solution,

while collecting high-quality subgoal labels that reflect a complete understanding of the given code.

The microtasks take advantage of the collected subgoal labels and provide scalable learning activities to

learners while using the learner input to improve the system. We developed two types of microtasks that

make use of high-quality peer examples: Subgoal Voting and Subgoal Labeling. Learners first choose

the best subgoal label examples in the Subgoal Voting task and familiarize themselves with high-quality

subgoal labels by making comparisons among the given examples, and then create their own subgoal

labels, with an opportunity of improvement by comparing with high-quality examples in the Subgoal

Labeling task.

To evaluate our learnersourcing workflow, we developed AlgoSolve, a prototypical interface that

supports subgoal learning with microtasks. We conducted a between-subjects study with 63 novices

in algorithmic problem-solving and compared AlgoSolve against a baseline interface that implements a

method known to be most effective for subgoal learning [6]. Results show that AlgoSolve successfully

guided learners in recognizing high-quality subgoal labels and creating high-quality examples themselves.

Participants who learned subgoals using AlgoSolve were also more capable of applying the solution

technique they have learned for solving novel problems.

The contributions of this work are as follows:

• A learnersourcing workflow that guides learners to provide higher-quality subgoal labels using

previously submitted high-quality examples.

• AlgoSolve, a prototypical interface that supports subgoal learning by providing high-quality peer-

created subgoal label examples.

1

• Results from a between-subjects study indicating that AlgoSolve successfully supports subgoal

learning and helps learners become better at solution planning, followed by implications for de-

signing learnersourcing workflows.

2

Chapter 2. Background and Related Work

We review the theoretical background of our work and previous work on existing learnersourcing

approaches.

2.1 Solution Planning and Methods for Supporting Planning

The algorithmic problem-solving process is composed of several stages: 1) understanding and inter-

preting the problem text, 2) designing a plan that can solve the problem, 3) implementing the solution

code, and 4) testing and debugging the solution [7]. Among these stages, researchers suggested that

properly designing a solution plan is key for successful problem-solving [3]. Learners should be able to

derive a solution plan from the given problem text, and then transform these plans into code. Being able

to develop high-level plans, and then connect these plans with code, but novices often show bad planning

behaviors such as diving straight into implementation without going through the planning stage [4] or

failing to connect the developed plans with code [3].

Several methods that aim to support problem-solving by guiding the planning stage have been

proposed, primarily focusing on using representations that guide learners to externalize their ideas into

structured solution plans that they can refer to when writing code. A popular approach is the use of

flowcharts [8, 9]. However, one downside of using flowcharts is that these are inherently code-level, which

might not be appropriate for learners to develop high-level solution plans for complex problems.

Another body of research aims to make learners focus on higher level tasks. GPCeditor [10] is

a programming environment which asks learners to decompose the problem into goals and plans, in-

stantiate plans into code, and then compose the code into a final program. This approach of guiding

learners through a process of describing plans was further investigated by other researchers [11, 12, 13],

demonstrating the benefits of the approach.

2.2 Subgoal Learning

Subgoal learning [14] is a learning method where learners study solutions with subgoal labels – short

textual descriptions that describe the function of a group of solution steps sharing the same goal. Subgoals

highlight the high-level solution structure generalizable to other problems. By encouraging learners to

memorize this conceptual structure of the solution instead of individual solution steps, they become

better at solving other problems that use the same solution but differ in specific solution steps [15, 16]

and building more complete solution plans [5]. Subgoals can also be directly used in the problem-solving

process, such as putting pre-written comments as building blocks for code prior to implementation [17].

Numerous studies have shown that subgoal learning was effective at improving learners’ problem-solving

performance in procedural domains such as mathematics [15, 18], chemistry [19], and programming [6,

16, 20, 21].

Subgoal learning was initially employed using a passive method; learners passively read the pre-

written labels for a given worked example. However, passive learning is known to be less effective

compared to other types of learning activities (active, constructive, and interactive) [22]. Recently,

Margulieux and Catrambone [6] investigated how different types of learning activity and guidance can

3

affect learner performance in problem-solving and discovered notable differences between learning con-

ditions. Learners showed the best performance when they constructively engaged in learning subgoals

(i.e., constructing their own subgoal labels) where the solution was pre-grouped into subgoals, but only

with appropriate guidance; hints that describe the similarities of the solution steps or expert-created

labels as correct response feedback. Receiving both instances of guidance decreased learner performance.

Although these types of guidance are effective at guiding improving subgoal learning, these require high-

quality materials, created by experts, which is not always present in self-learning settings. Based on

the findings from previous research on subgoal learning, we develop a learnersourcing workflow that can

provide effective guidance to learners using peer submissions.

2.3 Learnersourcing Approaches

Learnersourcing [23] is a crowdsourcing method where learners engage in creating learning mate-

rials for future learners, while having meaningful learning experiences themselves. Learnersourcing has

been successfully applied in collecting learning resources that are comparable to expert quality materials,

while providing scalable opportunities for learning. AXIS [24] collects explanations for math problems

by asking learners to generate, revise, and evaluate explanations, where a machine learning approach

is applied to provide high-quality peer explanations to future learners. Wang et al. [25] proposed Up-

Grade, a learnersourcing approach for generating multiple-choice questions using prior student solutions.

Compared to traditional open-ended assignments, students who answered UpGrade-generated questions

achieved comparable learning outcomes with substantially less time. Other learnersourcing approaches

aim to generate hints for improving student solutions [26], subgoal labels for instructional videos [23] or

mathematical problems [27], tutorial videos [28], explanations for programming misconceptions [29], or

even complex design problems [30].

Researchers have explored learnersourcing workflows that can generate high-quality subgoal labels.

Crowdy [23] implements a three-stage learnersourcing workflow for generating subgoal labels on how-to

videos, where the labels are first generated, evaluated, and then proofread to ensure its quality. The

learner-generated subgoals were found to be comparable in quality to that of experts. However, re-

searchers also reported that there were cases where learners in the final stage did not get much practice

on good subgoals, which resulted in lowered quality of the final outcome. Jin et al. [27] also devel-

oped a learnersourcing workflow that collects subgoal labels and builds a hierarchical representation of

subgoals, where learners first generate and then revise their labels based on the feedback given by the

system. Doroudi et al. [31] has shown that crowdworkers can produce high-quality outcomes by receiving

high-quality examples. Conversely, giving low-quality examples to learners might harm their learning

experience. Following this stream of research, we aim to design our learnersourcing workflow so that

it can collect high-quality subgoal labels and provide them as examples to encourage learners to create

subgoal labels of better quality.

4

Chapter 3. AlgoSolve

Figure 3.1: Overview of AlgoSolve and the learner workflow. Learners first gain an understanding of

good examples of subgoal labels by going through a set of Subgoal Voting tasks, and then proceed to a

set of Subgoal Labeling tasks where they create their own labels.

We introduce AlgoSolve, a system that gathers high-quality subgoal labels and provides the collected

labels as examples during the subgoal learning microtasks to future learners. We first describe an overview

of the learnersourcing workflow used in AlgoSolve, which is composed of two types of microtasks, and

then explain the details of each microtask. Finally, we introduce the policy for selecting subgoal label

examples.

3.1 Microtask Design

Microtasks should be able to successfully guide subgoal learning using high-quality subgoal labels.

Meanwhile, the system needs to collect high-quality examples from learners to provide the best learning

experience. We designed the learning activity as a workflow that consists of two types of microtasks to

effectively support subgoal learning: 1) Subgoal Voting and 2) Subgoal Labeling. By learning subgoals

through the two sets of microtasks, learners can familiarize themselves with high-quality subgoal labels

and become able to create high-quality labels themselves.

Learners first go through a series of Subgoal Voting tasks, where they make comparisons between

subgoal label examples and learn how to create good subgoal labels before providing their own labels, in

the form of multiple-choice questions (Figure 3.2). For each question, they are then given the information

on how many previous learners chose each of the labels as feedback (Figure 3.3). For the given example

5

in Figure 3.3, the learner can realize that the second option, “double the teams to consider circular

table”, was preferred by previous learners over the first option which the learner chose. After completing

all the Subgoal Voting tasks, learners proceed to the Subgoal Labeling tasks, where they create their

own subgoal labels (Figure 3.4). After completing their initial labels, they have a chance of improving

their labels by comparing against high-quality labels submitted by previous learners (Figure 3.5). For

example, the learner in Figure 3.5 could easily spot the differences between their own label and the

provided peer labels, such as using a more precise word ‘count’ instead of ‘get’, or explicitly mentioning

the team names (A, B, and C) and reflect these in their final submissions.

Both types of tasks are generated from a worked example that is already decomposed into subgoals,

where the subgoals are randomly assigned to either of the tasks. The worked example and the scope

and hierarchy of the subgoals for the worked example are generated prior to the activity. Deciding the

appropriate subgoal scopes could be also developed as a learnersourcing task, however we did not include

in the current work in order to focus on gathering quality subgoal labels.

In order to support learners in learning subgoals using high-quality examples, the system needs to

have such label examples at the beginning. AlgoSolve first gathers initial examples by providing learners

with the Subgoal Labeling task alone, without the support from peer examples. After the system collects

three different examples (i.e., examples that are not completely identical) for each subgoal, the system

provides the full set of tasks with peer example support.

3.1.1 Task 1: Subgoal Voting

Figure 3.2: Overview of the Subgoal Voting task. Learners are given up to five subgoal labels and are

asked to select a single option that best describes the given subgoal.

The Subgoal Voting task (Figure 3.2) is designed as multiple-choice questions that asks learners to

select a subgoal label example that best describes a given code segment. Learners are given up to five

examples, and selects a subgoal label example that best describes a given code snippet. The system uses

the learners’ selections to determine the quality differences between subgoal labels and which labels to

show to future learners as examples.

6

We designed the task so that it can help learners quickly understand the examples of good sub-

goal labels. Learners receive three system-selected high-quality subgoal label examples and up to two

randomly-selected examples. We decided to include both high-quality and random – likely to be of lower

quality – so that learners could easily spot the differences between good and bad labels by differentiating

high-quality examples against random examples. We describe the policy for selecting the high-quality

examples in a separate section.

Figure 3.3: Peer consensus information after the learner submit their vote in the Subgoal Voting task.

Multiple-choice questions are typically accompanied with feedback on the learners’ choice, such as

showing the correct answer and additional explanations for the options. However, since the system does

not have a clear distinction between correct and incorrect options, the system instead provides peer

consensus on how other learners made the choices by showing the number of times each example was

selected (Figure 3.3).

3.1.2 Task 2: Subgoal Labeling

Now that learners have gained an understanding of high-quality subgoal labels, the system then

asks learners to provide their labels in the Subgoal Labeling task (Figure 3.4). Learners first submit

their initial work (initial subgoal label), and then resubmit their final descriptions (final subgoal labels)

after viewing feedback given by the system (Figure 3.5). Only the final, improved labels are collected

by the system and provided to future learners. Labels that are identical to one of the previous labels

are removed from the system to prevent unnecessary duplicates. The system provides three peer-created

subgoal labels that are known to be the most high-quality examples, where learners can make comparisons

with their initial labels and make iterations.

The Subgoal Labeling task is grounded on prior work on subgoal learning [6], and resembles the

most effective method (guided constructive learning with feedback) for guiding learners to successfully

build mental organizations of the solution. The authors of prior work [6] argue that guidance should be

carefully thought over; poorly designed guidance, such as providing both hints and expert-created labels

as feedback, could hinder the learning effects by dismantling the learner’s prior understanding of the

7

Figure 3.4: Overview of the Subgoal Labeling task. Learners provide their own subgoal labels that

describe the given subgoal.

solution and making them blindly apply the expert labels, resulting in diminished learning benefits. We

address this issue by intentionally not positing the examples as being feedback nor of high-quality, so

that learners do not perceive the given examples as ‘correct’ answers and become more likely to preserve

their own explanations.

Figure 3.5: After the learner submit their initial labels in the Subgoal Labeling task, system-selected

peer examples are shown to the learner.

3.2 Subgoal Label Example Selection Policy

As subgoal labels get accumulated, AlgoSolve needs to determine high-quality subgoal label examples

to show in the microtasks. Many of the existing learnersourcing workflows use majority voting [23, 26, 27]

to choose the best examples. Another approach is to employ machine learning to dynamically determine

examples that will be shown to learners, such as multi-armed bandits [24, 32]. We decided to use the

latter approach, specifically multi-armed bandits. We chose multi-armed bandits as it is capable of

8

searching for newly added examples (exploration) while also selecting examples known to be of best

quality (exploitation).

In AlgoSolve, the system observes the decisions learners make in choosing the best subgoal label

among multiple examples through multiple-choice questions. To fit the multi-armed bandit problem into

our context of voting, we formulate this problem as a multi-dueling bandit problem [33] – a variant of

multi-armed bandit problem where the algorithm selects multiple arms, and then observes the result of

pairwise duels between the selected arms. We use IndSelfSparring [34], a multi-dueling bandits algorithm

which uses Thompson sampling. In order to incentivize newly added subgoal labels in the selection

process, we gave the labels a high prior distribution of Beta(4, 1), meaning that the labels are likely to

be chosen four out of five times.

Since learners submit their labels after making comparisons against existing labels, there is a possi-

bility that the submitted label is a duplicate of a previously submitted label. Also for simple labels (e.g.,

subgoal on printing the result value), there could be identical labels in the pool of label examples. In

order to avoid label examples with identical content, we prevented all labels that were exactly the same

with a previously submitted label after removing non-alphabetical characters from being selected by the

system.

9

Chapter 4. Evaluation

4.1 Study Design

We conducted a between-subjects study which compares AlgoSolve (microtask condition) to a

baseline interface (baseline condition). The baseline interface implements the constructive learning

method accompanied with expert-created subgoal labels as feedback, which is known to be most effective

in subgoal learning [6]. We randomly assigned half of the subgoals to the Subgoal Voting task, and the

remaining half to the Subgoal Labeling task for the microtask condition for each participant. Participants

in the baseline condition were asked to write subgoal labels for all subgoals.

4.2 Participants

We recruited participants who are novices in algorithmic problem-solving from two universities and

a popular online judge system. Among the participants, the first five created the initial seed subgoal

labels for AlgoSolve by using the baseline interface, and were excluded from the analysis. The rest were

randomly assigned to one of the conditions. In the end, 63 participants (male: 46, female: 17, mean

age: 23.4) completed the study session, where 31 used the baseline interface and 32 used AlgoSolve.

Participants were compensated after completing the study.

We asked participants to report their proficiency in algorithmic problem-solving, familiarity of the

topic covered in the study, and confidence in writing explanations in English in a 7-point Likert scale.

We found no significance between the conditions for any of the questions.

4.3 Study Materials

The Sliding Window technique [35] was selected as the topic for the current study. We chose

Sliding Window since it is a relatively simple technique which requires less background knowledge on

other topics in algorithms, and therefore learner performance would be less affected by their previous

experience on algorithmic problem-solving. We selected two algorithmic problems (training problem 1,

assessment problem 2) which are solvable using the technique. We sampled the problems so that they

are challenging enough and have similar levels of difficulty. The level of difficulty was extracted from an

expertsourced repository of problem difficulty 3. Each problem was used in the training session and the

assessment task.

The subgoal-grouped worked example and expert subgoal labels were created through discussion

between the experimenters and a problem-solving expert who had significant experience in problem-

solving. The created worked example consisted of 14 subgoals. The worked example with expert subgoal

labels is shown in Figure 4.1.

1https://www.acmicpc.net/problem/16310
2https://www.acmicpc.net/problem/3078
3https://solved.ac/

10

Subgoal 1: Get the input values

n = int(input())

teams = list(input())

Subgoal 2: Set up the initial values for sliding window

Subgoal 3: Calculate the number of people in each team

a_num = teams.count('A')

b_num = teams.count('B')

c_num = teams.count('C')

Subgoal 4: For each possible team formation, calculate the number of people who are correctly

seated↪→

abc_nums = [teams[0:a_num].count('A'), teams[a_num:(a_num+b_num)].count('B'),

teams[a_num+b_num:n].count('C')]↪→

acb_nums = [teams[0:a_num].count('A'), teams[a_num:(a_num+c_num)].count('C'),

teams[a_num+c_num:n].count('B')]↪→

Subgoal 5: Since both ends of the seat are connected, duplicate the sitting status list

teams += teams

Subgoal 6: Set up the initial minimum value holder

min_people = n

Subgoal 7: Slide the window and update the minimum value holder

for i in range(n):

Subgoal 8: Calculate the number of people who have to move seats to fit the team formation

abc_people = (a_num - abc_nums[0]) + (b_num - abc_nums[1]) + (c_num - abc_nums[2])

acb_people = (a_num - acb_nums[0]) + (c_num - acb_nums[1]) + (b_num - acb_nums[2])

Subgoal 9: Update the minimum value holder

min_people = min(min_people, abc_people, acb_people)

Subgoal 10: Slide the window to the next index and update the number of correctly seated people

Subgoal 11: Handle the person who is moved out from the first team

if teams[i] == 'A':

abc_nums[0] -= 1

acb_nums[0] -= 1

elif teams[i] == 'B':

acb_nums[2] += 1

else:

abc_nums[2] += 1

Subgoal 12: Handle the person who is moved out from the second team

if teams[i + a_num] == 'A':

abc_nums[0] += 1

acb_nums[0] += 1

elif teams[i + a_num] == 'B':

abc_nums[1] -= 1

else:

acb_nums[2] -= 1

Subgoal 13: Handle the person who is moved out from the third team

if teams[i + a_num + b_num] == 'B':

abc_nums[1] += 1

elif teams[i + a_num + b_num] == 'C':

abc_nums[2] -= 1

if teams[i + a_num + c_num] == 'C':

acb_nums[1] += 1

elif teams[i + a_num + c_num] == 'B':

acb_nums[2] -= 1

Subgoal 14: Print the minimal number of people who need to move seats

print(min_people)

Figure 4.1: Worked example used in the training session, labeled with expert-created subgoal labels.

The hierarchy between subgoals are represented as indentation levels.

11

4.4 Procedure

An overview of the study procedure is shown in Table 4.1. Participants first completed the pre-

questionnaire and reported their proficiency and expertise in algorithmic problem-solving. Before starting

the training session, participants were given instructional materials on the Sliding Window technique and

subgoal labels. In the training session, learners received either the baseline labeling task or microtasks

depending on the condition they were assigned. We asked participants to complete a post-questionnaire

where they reported the cognitive load of the activity and their experience in using the system. The

study session concluded with an assessment task that measures participants’ ability to plan out solutions

for a given problem using the technique they have learned from the training session.

Time (mins) Baseline Microtask

Pre-session (20)

5 Introduction & Consent

5 Pre-questionnaire

5 Sliding Window technique introduction

5 Subgoal label tutorial

Training session (30)

Subgoal Voting task
30 Baseline subgoal labeling task

Subgoal Labeling task

Post-session (25)

5 Post-questionnaire

20 Assessment task

Table 4.1: Overview of the study procedure.

4.5 Measurements

We asked learners of their experience in using the system. In the post-questionnaire, learners were

asked to rate their cognitive load, total time spent for the training session, helpfulness of the provided

subgoal labels, and helpfulness of the activity. For measuring cognitive load, we used the CS Cognitive

Load Component Survey (CS CLCS) [36], a cognitive load measurement specialized for the context of

computer science education research. CS CLCS is composed of 10 questions that measure three aspects

of cognitive load – intrinsic, extraneous, and germane load. The degree of helpfulness was rated using a

7-point Likert scale.

In order to investigate how the microtasks affected learners in creating quality subgoal labels, we

qualitatively analyzed the labels learners submitted. We developed four categories for subgoal labels,

which is shown in Table 4.2. The labels were first categorized based on whether the label contained any

incorrect explanation or did not summarize the code in plain language (L0). Among the correct labels,

we categorized them in terms of explanation depth (L1, L2, L3). We chose explanation depth since it

reflects how well the learner conceptually understood the solution, which is the primary goal of subgoal

learning. Representative examples for each level are shown in Table 4.4.

We recruited four experts to measure the quality of learner-created subgoal label examples selected

by AlgoSolve. Experts had significant experience in solving algorithmic problems and/or teaching al-

12

Category Label Description

Improper L0 Labels that convey wrong information about the subgoal, do

not summarize the function but instead explain line-by-line, or

do not explain in plain language (e.g., code)

Surface-level L1 Labels that provide no explanation other than the surface- or

code-level interpretation of the code (e.g., directly mentioning

a variable with its name)

Intermediate-level L2 Labels that contain more than mere surface-level explanations

but lack depth in certain aspects.

Deep-level L3 Labels that successfully explains the purpose of the given code.

Table 4.2: Categories of subgoal label quality used in the current study.

gorithmic problem-solving. We asked experts to solve the training problem using the Sliding Window

technique prior to the evaluation to ensure that they are knowledgeable about the solution technique.

They were also shown the tutorial material on subgoal labels identical to participants so that they have

a common understanding of what are good subgoal labels. The evaluation was made by comparing

a system-selected subgoal label against the expert-created subgoal label for each of the 14 subgoals.

Experts rated the labels as either system better, expert better, or matching in terms of quality.

To assess the learners’ ability to build solution plans in the assessment task, we used SOLO tax-

onomy [37], which measures how well learners understood the topic and produced higher quality, struc-

turally more complex learning output. The SOLO taxonomy consists of five categories: prestructural,

unistructural, multistructural, relational, and extended abstract. We provide the criteria we used in the

current study in Table 4.3, which is a variant of prior research on assessing the effect of subgoal learning

in planning solutions [5].

SOLO category Description

1 - Prestructural Nonsensical answer or an answer that had no more information than the

question provided.

2 - Unistructural Described 1-2 concepts that applied to the problem, but description was

incomplete or did not demonstrate based on the Sliding Window tech-

nique.

3 - Multistructural Described all concepts needed to solve the problem but provided no ex-

planation beyond the question at hand.

4 - Relational Described how to solve the problem and explained how the different pieces

of the choices were made to solve this particular problem.

5 - Extended abstract Explained how to solve a problem like this in abstract terms.

Table 4.3: SOLO scoring criteria used in the current study.

For coding subgoal labels and solution plans, we used a similar method to prior work [5]. The first

five sets of submissions (for each subgoal for labels) were graded together by all three raters to form a

consensus on expectations for each category. The raters then individually graded another five sets of

submissions, and then discussed and resolved any differences in the results. After repeating the process

for 20% of the submissions, we measured inter-rater reliability. For measuring inter-rater reliability,

13

we used the intraclass correlation coefficient with absolute agreement (i.e., ICC(A)) following prior

work [5, 6]. The raters achieved a high level of agreement for both types of submissions; 0.90 for grading

subgoal labels and 0.97 for grading solution plans. The remaining 80% of the submissions were graded

by a single rater.

14

L0 L1 L2 L3

S1 input grouping analysis Declaration of variables

n and teams

convert input into value get the input

S2 settings for the overall

team

Declare and initialize

variables.

Preprocess for calculat-

ing output

Initial setting for Slid-

ing Window

S3 count people in corre-

sponding locations

Find the number of A,

B, and C in a variable

named team

count how many a,b,c

in teams

count number of mem-

bers for each team

S4 Find the wrong input Save operation result in

abc nums, acb nums

Calculate number of

people sitting in acb or

abc

Count number of player

who don’t have to

move.

S5 Update number of

teams

Add the list to the back

one more time.

duplicate team list Connect two teams list

for circular calculation

S6 count number of people Initialize min people

with n

Set initial value of re-

sult as n

Initialize the result as

max to prevent wrong

answer

S7 step for reorganization compare n times and

get real min people

Get minimal number of

people that must switch

seats.

Get the minimum

number of people to

move by sliding window

method

S8 count abc and acb peo-

ple for n times

Calculate abc people &

acb people with in for

loop.

calculate needed

changes

count num. of people

who are not in proper

group order

S9 decide the array of cir-

cular table

update min people vari-

able

Calculate minimum

value for output

Calculate the minimum

number of people need

to move

S10 check abc people that is

lowest

update abc nums and

acb nums for next loop

update num list

whether A, B, C

or properly located

After moving sliding

window, update the

number of people who

seat in place

S11 count number of people

who need to move in the

first group

Update abc nums and

abc nums based on

which team i-th person

belongs to

Update the number of

people of the first group

Update the ”correct”

sitting number of peo-

ple based on the value

of ith value

S12 consider case of starting

point is i+1

Update abc nums and

acb nums

Update abc nums and

acb nums according

to changes in second

group.

update ’ABC’ and

’ACB’ order by consid-

ering second group

S13 update the minimum

movements for the third

group

update the number of

each case

Slide the starting point

to the right by the

number of (A+B) or

(A+C), then correct

the value of the list.

update ’ABC’ and

’ACB’ order by consid-

ering sliding window

S14 finalize the minimum

number

print the value of

min people

print the number of

people who moved

Print the minimal num-

ber of people who need

to move

Table 4.4: Representative examples of subgoal labels for each label score. Each row represents a subgoal

(e.g., S1: Subgoal 1).

15

Chapter 5. Results

5.1 Qualitative Analysis of the Submitted Subgoal Labels

The analysis results on the quality of the subgoal labels are shown in Table 5.1. Figure 5.1 presents

the distribution of the labels in terms of quality score. Overall, participants who submitted subgoal labels

through microtasks created fewer improper labels (L0 labels). 22% of the initial labels were classified

as L0 (compared to 30% of baseline), which was reduced to 15% after comparison with peer examples.

Meanwhile, microtask participants expressed a deeper understanding of the solution, creating more labels

with deep-level explanations (L3 labels). Microtask participants created L3 labels in 27% of the total

labels, later improved to 43% in their final submissions, compared to 20% in the baseline condition. The

Cochran-Armitage trend test between each group of labels showed that the differences in the quality

score distribution were statistically significant between each pair of groups (baseline-microtask (initial):

p < 0.004, microtask (initial)-microtask (final): p < 0.002).

Among the 163 labels that were not initially counted as L3, 55 (34%) labels were improved after

comparison in terms of label score. Only seven labels showed a decrease in label score. Table 5.2

summarizes the amount of change made in terms of label score. These results suggest that the microtasks

were able to encourage participants to create labels that are more correct, more complete, and of higher

quality.

Providing peer examples could lead to learners blindly following these examples by directly copying

them. In order to identify occurrences of copying, we inspected cases where a participant’s label was

identical to another label. We discovered 13 labels (6% of the total labels) that were exactly the same

with a previously submitted label, where four of them were submitted by a single participant.

We discuss two notable cases: 1) subgoals where the quality of the labels got drastically improved

in the final submissions (S4 and S5), and 2) the differences between compound subgoals (S2, S7, S10).

5.1.1 Subgoals where Label Quality was Significantly Improved After Com-

parison

We observed significant differences between the initial and final submissions from microtask partic-

ipants in S4 and S5. The main reason for the low initial quality was that participants were unsuccessful

in figuring out the intent behind the code (e.g., concatenation in S5). In the Subgoal Labeling microtask,

however, participants realized the inferiority of such labels and were able to provide high-quality labels

in the end, implying that peer comparison took an important role in improving explanation quality of

the submitted labels.

5.1.2 Compound Subgoals

Compound subgoals (S2, S7, S10) – high-level subgoals composed of lower-level subgoals – were ex-

pected to be challenging to learners since it requires the ability to understand a larger block of code and

summarize its purpose, which could be difficult to novices in problem-solving. In general, participants

showed poor performance in creating high-quality labels. However, we observed a significant difference

16

Figure 5.1: Distributions of label quality scores for each subgoal (S1 S14) and the aggregated result

(B: baseline, Mi: microtask - initial submission, Mf: microtask - final submission).

in the scores between labels submitted by baseline participants and those submitted by microtask par-

ticipants as final submissions in S2 and S7, and almost half of the participants being able to express a

deep understanding of the subgoal (i.e., L3) in S7. Also, seven out of 15 incomplete labels (i.e., not in

L3) in S7 showed an increase in terms of explanation quality, five of them reaching L3. We discovered

that the voting pattern in S7 was different from other subgoals in that the majority of the participants’

votes were given to labels marked as L3 (8/13, compared to 4/12 in S2 and 0/19 in S10).

17

S# L0 L1 L2 L3 Total

S1
4 (13%) 2 (6%) 8 (26%) 17 (55%) 31

0 (0%) → 0 (0%) 1 (7%) → 0 (0%) 6 (40%) → 4 (27%) 8 (53%) → 11 (73%) 15

S2
8 (26%) 17 (55%) 6 (19%) 0 (0%) 31

1 (6%) → 1 (6%) 5 (31%) → 7 (44%) 10 (63%) → 7 (44%) 0 (0%) → 1 (6%) 16

S3
2 (6%) 6 (19%) 5 (16%) 18 (58%) 31

1 (6%) → 1 (6%) 5 (29%) → 3 (18%) 2 (12%) → 2 (12%) 9 (53%) → 11 (65%) 17

S4
8 (26%) 9 (29%) 7 (23%) 7 (23%) 31

6 (35%) → 2 (12%) 5 (29%) → 1 (6%) 3 (18%) → 6 (35%) 3 (18%) → 8 (47%) 17

S5
9 (29%) 7 (23%) 10 (32%) 5 (16%) 31

4 (25%) → 2 (13%) 2 (13%) → 1 (6%) 7 (44%) → 2 (13%) 3 (19%) → 11 (69%) 16

S6
6 (19%) 4 (13%) 20 (65%) 1 (3%) 31

3 (18%) → 2 (12%) 2 (12%) → 3 (18%) 8 (47%) → 5 (29%) 4 (24%) → 7 (41%) 17

S7
9 (29%) 10 (32%) 10 (32%) 2 (6%) 31

3 (18%) → 2 (12%) 5 (29%) → 3 (18%) 7 (41%) → 5 (29%) 2 (12%) → 7 (41%) 17

S8
10 (32%) 5 (16%) 6 (19%) 10 (32%) 31

6 (38%) → 4 (25%) 2 (13%) → 3 (19%) 0 (0%) → 0 (0%) 8 (50%) → 9 (56%) 16

S9
6 (19%) 12 (39%) 5 (16%) 8 (26%) 31

3 (19%) → 2 (13%) 5 (31%) → 4 (25%) 2 (13%) → 0 (0%) 6 (38%) → 10 (63%) 16

S10
15 (48%) 10 (32%) 5 (16%) 1 (3%) 31

5 (38%) → 5 (38%) 5 (38%) → 5 (38%) 3 (23%) → 3 (23%) 0 (0%) → 0 (0%) 13

S11
12 (39%) 13 (42%) 6 (19%) 0 (0%) 31

7 (50%) → 4 (29%) 3 (21%) → 4 (29%) 3 (21%) → 4 (29%) 1 (7%) → 2 (14%) 14

S12
18 (58%) 8 (26%) 5 (16%) 0 (0%) 31

4 (31%) → 3 (23%) 6 (46%) → 4 (31%) 2 (15%) → 5 (38%) 1 (8%) → 1 (8%) 13

S13
17 (55%) 8 (26%) 6 (19%) 0 (0%) 31

6 (32%) → 6 (32%) 3 (16%) → 3 (16%) 9 (47%) → 9 (47%) 1 (5%) → 1 (5%) 19

S14
6 (19%) 2 (6%) 6 (19%) 17 (55%) 31

0 (0%) → 0 (0%) 2 (11%) → 1 (6%) 1 (6%) → 0 (0%) 15 (83%) → 17 (94%) 18

Total
130 (30%) 113 (26%) 105 (24%) 86 (20%) 434

49 (22%) → 34 (15%) 51 (23%) → 42 (19%) 63 (28%) → 52 (23%) 61 (27%) → 96 (43%) 224

Table 5.1: Qualitative analysis results for learner-submitted subgoal labels. For each row, the first row

represents the baseline participants and the second row represents the microtask participants, denoted

as initial → final.

5.2 Effects on Solution Planning Ability

The frequency of SOLO scores on participants’ solution plans are shown in Table 5.3. In both of

the conditions, the majority of the participants received the lowest score (i.e., prestructural), and none

received the highest score possible (i.e., extended abstract). It should be noted that not all of the solution

plans were considered as nonsensical answers, but were inefficient solutions that did not make use of the

solution technique they have learned. The Cochran-Armitage trend test revealed statistically significant

differences between the conditions (p < 0.05). 31% of the microtask participants received a score of three

or higher, meaning that they were able to correctly apply the technique to novel problems, in contrast

to only 6% for the baseline condition, implying that the microtasks can successfully guide learners in

18

Final

L0 L1 L2 L3

Initial

L0 29 6 6 8

L1 2 33 8 7

L2 3 2 38 20

L3 0 0 0 61

Table 5.2: Changes made in the labels during the Subgoal Labeling microtask, in terms of label quality

score.

1 2 3 4 5

Baseline 25 (81%) 4 (13%) 1 (3%) 1 (3%) 0 (0%)

Microtask 18 (56%) 4 (13%) 9 (28%) 1 (3%) 0 (0%)

Table 5.3: SOLO score frequency of the solution plans submitted in the assessment task.

thoroughly understanding the conceptual structure of the solution.

5.3 Quality of the System-selected Subgoal Labels

Table 5.4 presents the results of the comparative evaluation between system-selected labels and

expert-created labels. Each of the labels received an equal number of preferences of three. Three labels

were considered to have comparable quality. Five labels showed no majority, where two of the labels

were a tie between ‘matching’ and system label preference. This result indicates that, even from a small

population of roughly 30 learners, the system is able to determine and provide subgoal labels of decent

quality that are comparable with expert-created labels.

Experts preferred the expert-created labels because these were better at describing the high-level,

abstract purpose of the subgoal. For example in S10, the expert label included the phrase “slide the

window”, which is a key term for explaining its purpose. Meanwhile, the system-selected labels were

perceived as better labels as these provided a more detailed explanation of the code, such as “in the

worst case as n” (S6) or “for two patterns of ordering” (S8). However, experts noted that the system

label in S13 can easily be misinterpreted, which implies the necessity of microtasks that are designed for

validation or proofreading of subgoal labels.

5.4 Peer Consensus on Subgoal Label Examples

Most of the subgoals selected by the system were clearly preferred by participants (i.e., selected

at least half of the time it was shown). However, we found that two subgoals did not reach a clear

consensus: Subgoals 6 and 10. We discuss each of the subgoals in detail below.

In subgoal 6, none of the labels received three or votes from participants. We discovered that partic-

ipants’ votes were spread out to similar, suboptimal (e.g., labels graded as L1 or L2 in Table 4.4) labels.

Some participants even preferred these labels over L3 labels. This result leads to two interpretations.

Even though the given label lacks explanation depth, learners could still think the level of explanation

as sufficient. Second, for shorter, simpler subgoals, the variety in the labels learners create might be

19

S# System-selected label Expert-created label Majority

S1 get the input Get the input values Matching

S2 make the setup for sliding window Set up the initial values for sliding

window

Expert

S3 Count the number of people of each

team (A, B, and C)

Calculate the number of people in

each team

No majority (M, S)

S4 Count how many A, B, C are in ABC

or ACB order

For each possible team formation,

calculate the number of people who

are correctly seated

Expert

S5 Double the list of team to find possi-

ble cases for circular table

Since both ends of the seat are con-

nected, duplicate the sitting status

list

Matching

S6 Set the minimum number of people

need to move in the worst case as ‘n’

Set up the initial minimum value

holder

System

S7 Find minimum people to be in ABC

or ACB group order using siding win-

dow method.

Slide the window and update the

minimum value holder

System

S8 Get the number of people who should

change their seats for two patterns of

ordering

Calculate the number of people who

have to move seats to fit the team

formation

System

S9 update the number of minimum

changes

Update the minimum value holder No majority (M, S)

S10 Update the number of people in ABC

or ACB order.

Slide the window to the next index

and update the number of correctly

seated people

Expert

S11 Update the “correct” sitting number

of people based on the starting posi-

tion (we want it to be A)

Handle the person who is moved out

from the first team

No majority (E, S)

S12 Update abc nums and acb nums for

the change of starting point of the

second region.

Handle the person who is moved out

from the second team

No majority (E, S)

S13 Update the number of people who

should change their seats in the third

group

Handle the person who is moved out

from the third team

No majority (E, S)

S14 Print the minimal number of people

who need to move

Print the minimal number of people

who need to move seats

Matching

Table 5.4: System-selected labels with the highest mean score among labels that received three votes

or better (except for S6). We also provide the expert comparison results between system-selected labels

and expert-created labels. For subgoals without a majority, we also denote the top choices (E: expert,

M: match, S: system).

limited. This would lead to the system providing multiple examples that have subtle differences, making

it difficult for learners to reach a consensus, and ultimately causing unwanted confusion in the system.

Subgoal 10 was considered to be most difficult to participants, since only one participant (in the

baseline condition) was able to create a label scored as L3, and most of the participants did not even

reach L2. Since none of the examples had a complete explanation of the code, participants might have

20

been more inclined to select other incomplete options, resulting in low level of agreement.

5.5 Learner Experience

Intrinsic load (IL) Extraneous load (EL) Germane load (GL)

Baseline 5.52 (2.64) 2.84 (2.28) 6.50 (2.11)

Microtask 4.97 (2.12) 2.64 (1.78) 6.57 (1.65)

Table 5.5: Mean (standard deviation) score of cognitive load.

Figure 5.2: Boxplots of the cognitive load of each condition in terms of each load aspect.

The summary of the cognitive load reported by participants are shown in Table 5.5 and Figure 5.2.

A Kruskal-Wallis H test revealed no significant difference in the each cognitive load measures between

the conditions (pIL = 0.26, pEL = 0.94, pGL = 0.54). Total time spent on the training session was also

comparable between the two conditions (p = 0.81) – 28.87 minutes for baseline participants and 29.63

minutes for microtask participants, indicating that participants in both conditions put a similar amount

of mental effort.

Participants were asked to rate the helpfulness of the provided labels and learning activities, and

provide an open-ended response on how did or did not the activities helped them understand subgoals.

The summary of the helpfulness is shown in Figure 5.3 and Figure 5.4. The peer examples were compa-

rable to expert-created labels in terms of helpfulness. Overall, participants found the subgoal learning

activity helpful for enhancing their understanding of the solution. By going through the tasks that center

around subgoal learning, participants reported that they were more geared towards understanding the

solution in terms of high-level, abstract structure, which successfully replicates the benefits of subgoal

learning. However, we also discovered a sharp contrast between tasks in terms of helpfulness, which we

discuss in detail below.

5.5.1 Learner Experience on the Subgoal Voting Task

Although the majority of participants (19) thought the Subgoal Voting task as being helpful in

learning subgoals, the Cochran-Armitage trend test revealed a significant difference compared to other

21

Figure 5.3: Helpfulness of the given labels; expert-created labels in baseline, peer examples in microtask

(1: not helpful at all, 7: very helpful).

Figure 5.4: Helpfulness of the learning activities (1: not helpful at all, 7: very helpful).

tasks (baseline task: p < 0.02, Subgoal Labeling task: p < 0.02). The Subgoal Voting task acted as a

scaffold for understanding the solution when novice learners struggled to comprehend the given worked

example. Participants reported that the subgoal label examples acted as hints for grasping the meaning

of code segments they did not understand well. The examples were also helpful for participants in

learning good examples of subgoal labels.

Participants found the task unhelpful when the provided options did not enhance their understanding

of the solution but rather distracted from it. When there were multiple options having the same meaning

with only subtle or subjective differences, participants were confused about which option they should

choose. One participant also reported that it was difficult to choose when there were options that have

ambiguous meaning, and wished to see more descriptive options.

The peer consensus was generally perceived as unhelpful, mainly when the example was recently

added and the consensus was not built. Since there is no consensus for recently added labels (thereby

shown as ‘0 out of 0’), learners were confused by its meaning and did not find use of the information.

22

5.5.2 Learner Experience on the Subgoal Labeling Task

Contrary to the Subgoal Voting task, participants were mostly positive about the Subgoal Labeling

task. All except five participants reported that they found the task helpful for learning subgoals. Par-

ticipants found the peer examples useful as a guide for making good labels or improving on their inferior

initial labels. One participant noted that he was able to improve code-level terms (e.g., list, for loop)

into more abstract terms (e.g., seating sequence, repetitively) by looking at the peer examples. Peer

examples also acted as feedback, enabling learners to identify and fix their errors or misunderstandings

about the code segment.

Participants also expressed desires for adjusting how and what examples they receive. One partic-

ipant commented that she would like to get more subgoals that highlight the drawbacks of her subgoal

label. Another participant wished that these are presented more like a hint so that she could further

develop her thinking skills, where a single example is presented at a time, starting from short labels, and

later showing more detailed, lengthier explanations.

23

Chapter 6. Discussion

Our learnersourcing workflow with the current microtasks were able to provide a reasonable learning

experience compared to a baseline learning method with expert-created resources, while encouraging

learners to provide higher-quality subgoal labels and gain a better conceptual understanding of the

solution technique, thereby becoming better at transferring the obtained knowledge in their attempts to

solve a new problem. In this section, we discuss the findings of our work and possible improvements in

the microtask design to further boost the performance of the workflow.

6.1 Benefits of Viewing High-Quality Peer Examples

The microtasks are designed to make use of high-quality, learner-created subgoal labels as peer

examples. Through a comparison against a baseline interface which does not provide such support

while creating subgoal labels, we observed notable effects of the microtasks in creating better labels. In

general, both microtasks improved the quality of the labels participants submitted. Even for subgoals

where microtask participants did not show much difference from baseline participants, we observed cases

where peer examples guided them to create more high-quality labels. Participants also noted that the

examples were helpful throughout the microtasks, specifically at understanding the task at hand (i.e.,

the worked example), understanding good examples of subgoal labels, and fixing or improving their own

labels. This result demonstrates the usefulness of peer submissions in guiding learners to create better

learning contents.

We also observed notable differences between compound subgoals (S2, S7, S10), which were subgoals

presumed to be most challenging to learners. Both baseline and microtask participants were unsuccessful

in creating high-quality labels, but participants were able to improve their explanation quality of the

labels in S7. We suspect this difference arose from different voting results in the Subgoal Voting task: If

voters successfully identify and select high-quality labels, the system can in turn provide better quality

labels as examples, which the learner can use the given examples as a guidance for improving their own

labels. Although inconclusive, this result implies incentivizing learners to select high-quality explanations

takes a key role in propagating the same level of explanation in future learner contributions.

6.2 Improving the Microtask Design

We observed a notable difference in terms of label quality between compound subgoals. Participants

initially submitted similar labels quality wise, but were able to improve their labels in the final submission.

We suspect that participants being able to successfully select high-quality labels in the Subgoal Voting

task, which leads to better exposure of these high-quality examples in the Subgoal Labeling task, enabled

learners to create better labels despite their unsuccessful initial attempt. However, we also observed that

they could easily select worse explanations over high-quality examples, damaging the system’s ability

in choosing high-quality labels and learner performance. In future iterations, the Subgoal Voting task

would have to better incentivize learners to select high-quality labels to provide better peer examples.

While both microtasks were perceived as being helpful by the majority of the participants, we

observed a significant difference between the two tasks. We asked participants to select a single best ex-

24

ample in the Subgoal Voting task. This was to induce learners to make careful decisions on their selection

rather than simply selecting all options that makes sense, and help the system quickly make distinctions

between labels. However, this decision lad to unwanted confusion to both the system and learners when

multiple plausible examples without significant differences were being shown to the learners. To address

this issue, we could use more advanced methods for filtering similar examples.

In the Subgoal Voting task, we showed participants how many times each example was chosen over

the number of occurrences to reflect peer consensus. However, participants were confused about its

meaning, particularly during the early stage when no consensus was formed yet. Although a larger-scale

study with a larger number of participants could yield different outcomes, the current result indicates

that how to display such information should be carefully considered.

In the current design, we provide peer examples without any modifications. Although only a few

participants made identical copies of previously submitted labels, there is still a high possibility of such

cheating behavior. We also observed that participants showed desires for receiving the examples as

hints, not final answers. The Subgoal Labeling task could be designed so that it can better serve as an

intermediate guidance, such as providing frequently used terms or phrases.

25

Chapter 7. Limitation and Future Work

7.1 Scaling to a Larger, More Diverse Population

We investigated the usefulness of AlgoSolve with slightly more than 60 novices. However, this is

a relatively small-scale evaluation compared to other research on learnersourcing and computer science

education. Although the results strongly suggest that the microtasks were helpful in creating better

labels and better solution plans, a larger-scale evaluation would have to follow. Also, participants came

from a rather limited population of Korean university students/graduates, and were mostly not very

familiar with explaining solutions in English. Further investigation on a more diverse pool of learners

would strengthen the findings of our work.

7.2 Defining the Scope and Hierarchy of Subgoals

In our work, the scope and hierarchy of subgoals were determined before the sessions, decided

through expert discussion. We predetermined the subgoal scope and hierarchy so that the system can

solely focus on the task of gathering high-quality labels. Also, prior work has shown that making learners

to both group the solution and create labels did not lead to a clear learning gain compared to doing the

labeling on grouped solutions [6]. In order to develop AlgoSolve into a system that can fully operate

without any expert intervention, tasks that are designed for determining the scope and hierarchy of the

subgoals could be introduced in future work.

26

Chapter 8. Conclusion

In this work, we introduced a learnersourcing workflow that collectes high-quality subgoal labels

by designing the microtasks to make use of high-quality examples, and implemented the workflow in

AlgoSolve, a prototypical interface for learning subgoals for algorithmic problem-solving. Through a

between-subjects study that compares AlgoSolve against a baseline interface, we observed notable im-

provements in quality of the submitted labels and learners’ ability to create more complete plans.

27

Bibliography

[1] Owen L Astrachan. Non-competitive programming contest problems as the basis for just-in-time

teaching. In 34th Annual Frontiers in Education, 2004. FIE 2004., pages T3H–20. IEEE, 2004.

[2] Andy Kurnia, Andrew Lim, and Brenda Cheang. Online judge. Computers & Education, 36(4):299–

315, 2001.

[3] Francisco Enrique Vicente Castro and Kathi Fisler. Qualitative analyses of movements between

task-level and code-level thinking of novice programmers. In Proceedings of the 51st ACM Technical

Symposium on Computer Science Education, pages 487–493, 2020.

[4] Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne Hagan, Yifat Ben-David

Kolikant, Cary Laxer, Lynda Thomas, Ian Utting, and Tadeusz Wilusz. A multi-national, multi-

institutional study of assessment of programming skills of first-year cs students. In Working group

reports from ITiCSE on Innovation and technology in computer science education, pages 125–180.

2001.

[5] Adrienne Decker, Lauren E Margulieux, and Briana B Morrison. Using the solo taxonomy to

understand subgoal labels effect in cs1. In Proceedings of the 2019 ACM Conference on International

Computing Education Research, pages 209–217, 2019.

[6] Lauren E Margulieux and Richard Catrambone. Finding the best types of guidance for constructing

self-explanations of subgoals in programming. Journal of the Learning Sciences, 28(1):108–151,

2019.

[7] Dastyni Loksa, Andrew J Ko, Will Jernigan, Alannah Oleson, Christopher J Mendez, and Mar-

garet M Burnett. Programming, problem solving, and self-awareness: Effects of explicit guidance.

In Proceedings of the 2016 CHI conference on human factors in computing systems, pages 1449–1461,

2016.

[8] Tia Watts. The sfc editor a graphical tool for algorithm development. Journal of Computing Sciences

in Colleges, 20(2):73–85, 2004.

[9] Martin C Carlisle, Terry A Wilson, Jeffrey W Humphries, and Steven M Hadfield. Raptor: a

visual programming environment for teaching algorithmic problem solving. Acm Sigcse Bulletin,

37(1):176–180, 2005.

[10] Mark Guzdial, Luke Hohmann, Michael Konneman, Christopher Walton, and Elliot Soloway. Sup-

porting programming and learning-to-program with an integrated cad and scaffolding workbench.

Interactive Learning Environments, 6(1-2):143–179, 1998.

[11] H Chad Lane and Kurt VanLehn. Teaching the tacit knowledge of programming to novices with

natural language tutoring. Computer Science Education, 15(3):183–201, 2005.

[12] Michael De Raadt, Richard Watson, and Mark Toleman. Teaching and assessing programming

strategies explicitly. In Proceedings of the 11th Australasian Computing Education Conference (ACE

2009), volume 95, pages 45–54. Australian Computer Society Inc., 2009.

28

[13] Minjie Hu, Michael Winikoff, and Stephen Cranefield. A process for novice programming using goals

and plans. In Proceedings of the Fifteenth Australasian Computing Education Conference-Volume

136, pages 3–12, 2013.

[14] Richard Catrambone and Keith J Holyoak. Learning subgoals and methods for solving probability

problems. Memory & Cognition, 18(6):593–603, 1990.

[15] Richard Catrambone. The subgoal learning model: Creating better examples so that students can

solve novel problems. Journal of experimental psychology: General, 127(4):355, 1998.

[16] Lauren E Margulieux, Mark Guzdial, and Richard Catrambone. Subgoal-labeled instructional ma-

terial improves performance and transfer in learning to develop mobile applications. In Proceedings

of the ninth annual international conference on International computing education research, pages

71–78, 2012.

[17] Lauren E Margulieux, Briana B Morrison, Baker Franke, and Harivololona Ramilison. Effect of

implementing subgoals in code. org’s intro to programming unit in computer science principles.

ACM Transactions on Computing Education (TOCE), 20(4):1–24, 2020.

[18] Robert K Atkinson, Richard Catrambone, and Mary Margaret Merrill. Aiding transfer in statistics:

Examining the use of conceptually oriented equations and elaborations during subgoal learning.

Journal of Educational Psychology, 95(4):762, 2003.

[19] Lauren E Margulieux, Richard Catrambone, and Laura M Schaeffer. Varying effects of subgoal

labeled expository text in programming, chemistry, and statistics. Instructional Science, 46(5):707–

722, 2018.

[20] Briana B Morrison, Lauren E Margulieux, and Mark Guzdial. Subgoals, context, and worked

examples in learning computing problem solving. In Proceedings of the eleventh annual international

conference on international computing education research, pages 21–29, 2015.

[21] Briana B Morrison, Lauren E Margulieux, and Adrienne Decker. The curious case of loops. Computer

Science Education, 30(2):127–154, 2020.

[22] Michelene TH Chi. Active-constructive-interactive: A conceptual framework for differentiating

learning activities. Topics in cognitive science, 1(1):73–105, 2009.

[23] Sarah Weir, Juho Kim, Krzysztof Z Gajos, and Robert C Miller. Learnersourcing subgoal labels

for how-to videos. In Proceedings of the 18th ACM Conference on Computer Supported Cooperative

Work & Social Computing, pages 405–416, 2015.

[24] Joseph Jay Williams, Juho Kim, Anna Rafferty, Samuel Maldonado, Krzysztof Z Gajos, Walter S

Lasecki, and Neil Heffernan. Axis: Generating explanations at scale with learnersourcing and

machine learning. In Proceedings of the Third (2016) ACM Conference on Learning@ Scale, pages

379–388, 2016.

[25] Xu Wang, Srinivasa Teja Talluri, Carolyn Rose, and Kenneth Koedinger. Upgrade: Sourcing student

open-ended solutions to create scalable learning opportunities. In Proceedings of the Sixth (2019)

ACM Conference on Learning@ Scale, pages 1–10, 2019.

29

[26] Elena L Glassman, Aaron Lin, Carrie J Cai, and Robert C Miller. Learnersourcing personalized

hints. In Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work &

Social Computing, pages 1626–1636, 2016.

[27] Hyoungwook Jin, Minsuk Chang, and Juho Kim. Solvedeep: A system for supporting subgoal

learning in online math problem solving. In Extended Abstracts of the 2019 CHI Conference on

Human Factors in Computing Systems, pages 1–6, 2019.

[28] Jacob Whitehill and Margo Seltzer. A crowdsourcing approach to collecting tutorial videos–toward

personalized learning-at-scale. In Proceedings of the Fourth (2017) ACM Conference on Learning@

Scale, pages 157–160, 2017.

[29] Philip J Guo, Julia M Markel, and Xiong Zhang. Learnersourcing at scale to overcome expert blind

spots for introductory programming: A three-year deployment study on the python tutor website.

In Proceedings of the Seventh ACM Conference on Learning@ Scale, pages 301–304, 2020.

[30] Piotr Mitros. Learnersourcing of complex assessments. In Proceedings of the Second (2015) ACM

Conference on Learning@ Scale, pages 317–320, 2015.

[31] Shayan Doroudi, Ece Kamar, and Emma Brunskill. Not everyone writes good examples but good

examples can come from anywhere. In Proceedings of the AAAI Conference on Human Computation

and Crowdsourcing, volume 7, pages 12–21, 2019.

[32] Joseph Jay Williams, Anna N Rafferty, Dustin Tingley, Andrew Ang, Walter S Lasecki, and Juho

Kim. Enhancing online problems through instructor-centered tools for randomized experiments. In

Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pages 1–12,

2018.

[33] Brian Brost, Yevgeny Seldin, Ingemar J Cox, and Christina Lioma. Multi-dueling bandits and their

application to online ranker evaluation. In Proceedings of the 25th ACM International on Conference

on Information and Knowledge Management, pages 2161–2166, 2016.

[34] Yanan Sui, Vincent Zhuang, Joel W Burdick, and Yisong Yue. Multi-dueling bandits with dependent

arms. In Proceedings of the Thirty-Third Conference on Uncertainty in Artificial Intelligence, 2017.

[35] Christian Charras and Thierry Lecroq. Handbook of exact string matching algorithms. King’s College

Publications, 2004.

[36] Briana B Morrison, Brian Dorn, and Mark Guzdial. Measuring cognitive load in introductory

cs: adaptation of an instrument. In Proceedings of the tenth annual conference on International

computing education research, pages 131–138, 2014.

[37] John B Biggs and Kevin F Collis. Evaluating the quality of learning: The SOLO taxonomy (Structure

of the Observed Learning Outcome). Academic Press, 2014.

30

Acknowledgment

I would first like to thank my advisor, Juho Kim, for guiding me to grow up as a researcher. I would

like to thank my awesome collaborators, Minsuk Chang, Sally Chen, Hyoungwook Jin, Hyungyu Shin,

and Meng Xia, for their tremendous help throughout this work. I also thank my colleagues in KIXLAB

for their valuable comments.

This work was deeply motivated by my personal experience in learning programming and algorithms.

I was very lucky to get to learn programming and algorithmic problem-solving where almost no one knew

how to program. I want to thank Heondae Kim, who led me to the world of programming. Finally, I am

extremely grateful to my family for their unconditional love and support.

31

Curriculum Vitae in Korean

이 름: 최 갑 도

생 년 월 일: 1996년 12월 23일

학 력

2012. 3. – 2014. 2. 경남과학고등학교

2014. 3. – 2019. 2. 한국과학기술원 전산학부 (학사)

2019. 3. – 2021. 8. 한국과학기술원 전산학부 (석사)

경 력

2019. 3. – 2020. 8. 한국과학기술원 전산학부 조교

연 구 업 적

1. Kabdo Choi, Sally Chen, Hyungyu Shin, Jinho Son, and Juho Kim, “AlgoPlan: Supporting

Planning in Algorithmic Problem-Solving with Subgoal Diagrams”, In Proceedings of the Seventh

ACM Conference on Learning @ Scale.

32

