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Figure 1: Label set refinement workflow using DynamicLabels. The initial label set of the ML practitioner is given to crowd
workers with the feedback collection interface (green), where crowds could make their own labels (Phase 1) and annotate with
ML-practitioner-made labels (Phase 2). The collected feedback is presented to the practitioner with the label set refinement
interface (blue) through three varying levels of analyses, and the practitioner can apply crowd-made labels and explore multiple
label sets to refine their label set.

ABSTRACT
Label set construction—deciding on a group of distinct labels—is
an essential stage in building a supervised machine learning (ML)

∗Jeongeon conducted this work during her Master’s program at the School of Comput-
ing, KAIST.
†Jinyeong conducted this work while he was at NAVER CLOVA.

This work is licensed under a Creative Commons Attribution International
4.0 License.

IUI ’24, March 18–21, 2024, Greenville, SC, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0508-3/24/03
https://doi.org/10.1145/3640543.3645157

application, as a badly designed label set negatively affects subse-
quent stages, such as training dataset construction, model training,
and model deployment. Despite its significance, it is challenging
for ML practitioners to come up with a well-defined label set, es-
pecially when no external references are available. Through our
formative study (n=8), we observed that even with the help of ex-
ternal references or domain experts, ML practitioners still need to
go through multiple iterations to gradually improve the label set.
In this process, there exist challenges in collecting helpful feedback
and utilizing it to make optimal refinement decisions. To support in-
formed refinement, we present DynamicLabels, a system that aims
to support a more informed label set-building process with crowd
feedback. Crowd workers provide annotations and label sugges-
tions to the ML practitioner’s label set, and the ML practitioner can
review the feedback through multi-aspect analysis and refine the
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label set with crowd-made labels. Through a within-subjects study
(n=16) using two datasets, we found that DynamicLabels enables
better understanding and exploration of the collected feedback and
supports a more structured and flexible refinement process. The
crowd feedback helped ML practitioners explore diverse perspec-
tives, spot current weaknesses, and shop from crowd-generated
labels. Metrics and label suggestions in DynamicLabels helped in
obtaining a high-level overview of the feedback, gaining assurance,
and spotting surfacing conflicts and edge cases that could have
been overlooked.
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• Human-centered computing → Interactive systems and
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1 INTRODUCTION
A ‘label’ or a class, is a word or a phrase that explains a piece of data
in a supervised machine learning (ML) model. A group of distinct
labels works together as a ‘label set’ to provide the model with a set
of candidate labels for classification [11]. For example, in classifying
a clothing dataset, a label set may consist of four distinct labels:
top , bottom , outer , and accessory . The label set is provided
to the annotators to construct a training dataset and is utilized as
model inputs and outputs. It is utilized often for classification tasks,
such as the fashion classification model.

Preparing a well-constructed label set is important to build a
successful ML application. Building an ML application involves a
multi-stage process, which includes (1) preparing the raw data, (2)
building a label set, (3) using the label set to annotate the training
data, (4) implementing and training the model, and (5) deploying the
model. Every other stage in the process is highly interconnected
with the label set building stage: an unclearly defined label set
affects the outcome of the annotation, and an indistinct or low-
coverage label set affects the performance of the model, which
subsequently negatively affects the experience of the user in the
deployment stage [26].

When building label sets for classification models, ML practi-
tioners usually refer to existing labeled datasets or theories (e.g.,
referring to existing psychology taxonomies for emotion recog-
nition models) to come up with the label set [9], and iteratively
validate and refine it with additional data [23]. The iterative refine-
ment is essential for constructing a high-quality label set in many
real-world situations. For example, applying a pre-established label
set to real-world data requires revision of the label set to accurately
represent the distribution of the data. In addition, building a label
set from scratch for a domain without an established taxonomy

requires a significant amount of feedback and consensus-building
among ML practitioners. With multiple iterations, ML practitioners
collect bad signals (e.g., low coverage, unclear distinction) on the
label set and revise with the signals to prevent possible downstream
issues, which is critical to the success of the ML application [23].

To further understand the practices and challenges of building la-
bel sets with iterative refinements, we conducted a formative study
with eight ML practitioners who have experience constructing label
sets from scratch. ML practitioners, even with existing references
or domain experts, found revision cycles to refine and verify the
label set to be important and necessary. During this process, they
found it challenging to collect large-scale, fresh-perspective feed-
back to improve the label set. They also found it difficult to extract
meaningful insights from the feedback and confidently decide on
an optimal label set, due to many different aspects (e.g., clarity of
each label, distribution of the data, clear boundary between the
labels) they have to consider along with the uncertainty of each
improvement decision.

To support collecting meaningful feedback and making informed
decisions for refining the label set, we propose the idea of invit-
ing crowd workers to provide feedback about the label set from
varying perspectives, inspired by successful feedback mechanisms
in the past to aid expert workflow [10, 21, 33], and leverage those
feedback in designing interactions to better understand the data
and make sufficient refinements. With the crowd as potential users
of the deployed model, having the crowd’s collective opinions and
suggestions on the ML practitioner-built label set will guide the re-
finements. Providing analysis support through crowd feedback will
help ML practitioners make a more confident and knowledgeable
refinement to the label set.

To explore the proposed idea, we present DynamicLabels, a novel
system that supports ML practitioners to iteratively construct their
label set with label feedback collected from the crowd. When an
ML practitioner provides an initial version label set, crowd workers
produce feedback by annotating with the ML practitioner’s label set
and making their own label set with the assigned data through the
feedback collection interface. With the collected label feedback and
suggestions, the ML practitioner is provided with multiple-aspect
feedback analyses and a playground to test and iterate on their
label set in the label set refinement interface.

We conducted a 2-day within-subjects study comparing Dy-
namicLabels with the baseline annotation system to examine how
DynamicLabels supports an informed label set refinement with
crowd feedback. A total of 16 ML practitioners used two types of
datasets (natural scene images and event fliers) for a multi-class
classification model to construct and refine two label sets through
a round of iteration. The feedback collection interface of Dynami-
cLabels enabled collecting large-scale, diverse feedback from the
crowd, which participants identified as meaningful and useful in
understanding the crowd’s perspectives and the weaknesses in
their label set to make refinements. The refinement interface of
DynamicLabels enabled a high-level understanding of the feedback,
encouraged flexible refinements to be made, and supported a struc-
tured refinement process. In addition, it helped the participants
spot possible issues and examine various refinement options. We
also discuss how DynamicLabels can support various types of data
as well as the goals of ML practitioners. In addition, we suggest
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further utilization of the crowd feedback in making better-informed
decisions, potential development to DynamicLabels in supporting
automated and advanced support, and discuss how DynamicLabels
supports the construction of a user-centered model.

Our contributions are as follows:
• DynamicLabels, a system that supports ML practitioners’
label set construction process with crowd feedback and feed-
back analysis. DynamicLabels consists of a feedback collec-
tion interface that collects annotation and label suggestions
on the ML practitioner-built label set, and a label set re-
finement interface that supports ML practitioners to make
comprehensive refinement decisions.

• Findings from the formative interview with ML practitioners
that examines the iterative verify-refine cycle of the label
set construction process and the existing challenges.

• Findings from a within-subjects study that compares Dy-
namicLabels with a baseline system—a crowd annotation
system—using two datasets, which shows that DynamicLa-
bels supports an exploratory and structured refinement pro-
cess, and an in-depth analysis of how participants utilized
crowd feedback in making label set refinements.

2 RELATEDWORK
To situate our research, we first investigate existing approaches
and challenges in the label set construction process. Then, as this
work utilizes crowd feedback to support ML practitioners’ label set
building, we discuss how crowdsourcing is used to aid expert work.
We also review decision-making supports enabled by large-scale
data and visual analytics.

2.1 Label set construction for multi-class
classification

When training a multi-class classification model, the ML practi-
tioner should prepare an annotated dataset. Without external refer-
ences, constructing a label set is more challenging as there is no
standard practice in categorizing contents for a multi-class label set.
One commonly used approach is applying clustering algorithms,
such as LDA [1] and EM with GMM model [34]. These algorithms
work in an unsupervised manner and categorize data points to
compose clusters. However, these algorithms are mostly limited
to numerically represented structured data. When the data con-
tents are complicated and unstructured, other additional numer-
ically abstracting algorithms or models are required to use these
algorithms. Furthermore, they often fail at achieving reliable per-
formance because these algorithms may not work perfectly. In
addition, machine-generated clusters may not have appropriate
representations or labels for human understanding.

To mitigate the issues from machine-generated label sets, pre-
vious work has invited humans to participate in the taxonomy
or label set construction process [2, 7–9]. Cascade [9] presents a
crowdsourcing workflow where workers provide suggestions and
vote for the best descriptions over iterations to generate reliable
categories with the crowds. Alloy [8] suggests a human-machine
hybrid workflow to cluster text clips. A machine categorizes the
text clips leveraging the salient keywords identified by crowd work-
ers, then they put additional effort into clustering machine-failed

clips. However, they rely entirely on the crowd and the machine,
which can leave out practical considerations that anML practitioner
could make with intuition and experience. In addition, Revolt [7]
leverages disagreement of crowds’ annotation on a data instance to
build label sets. They motivate that the labels and the descriptions
created from disagreements can support an understanding of po-
tential ambiguities in the label set. This creates more opportunities
for ML practitioners to review and apply subjective labels, but is
only investigated in binary classification scenarios.

In this work, we extend from prior works supporting the label
set construction process with human work. DynamicLabels investi-
gates the label set process after considering multi-stakeholders’ (the
crowd’s and the ML practitioner’s) perspective and for multi-label
classification which is more complex. To our best knowledge, this
is the first work that investigates label set construction from the
ML practitioners’ perspective, with crowds as feedback givers.

2.2 Collaborating with the crowd to support
expert work

We define the label set construction as an open problem where no
one best solution exists, so offering a diverse range of responses
would help ML practitioners find an optimal label set satisfying
their needs. Previous studies have shown that crowd inputs can
help expert work as feedback [10, 21, 33] and inspiration for im-
provements [3, 15, 29].

Previous work leveraged crowd input as feedback to expert work.
Voyant [33] collected structured crowd feedback on visual designs
by providing five feedback types to the crowd. ProtoChat [10] col-
lectedmultiple levels of feedback including utterance-level feedback
and overall conversation feedback by asking questions while testing
the conversation. CrowdCrit [21] introduced key sources in visual
design for the crowd to refer to in making a critique, to collect
detailed and actionable feedback.

Other work emphasizes the importance of incorporating aggre-
gated crowd opinion in high-level concept or design of a product
whose end user is a wide range of the public. Zhang et al. [37] asks
the crowd to evaluate and cluster search results to present quality
and satisfactory search results. Sutton and Lawson [29] proposed
democratizing emoji design and selection by reflecting on how the
public recognizes and uses emojis. Brambilla et al. [3] proposed a
collaborative development process of Domain-Specific Modeling
Languages in which end users and crowd workers are invited to
provide feedback on diverse concepts of the language. In addition,
Perspective [28] provided a set of auxiliary images and guiding
questions to identify a diverse set of atypical images.

Our work is inspired by the approach of inviting the crowds
as feedback provider to expert work, successfully investigated in
various domains including designers ([10, 21, 29, 33]) and engineers
([3, 28]). DynamicLabels collects crowd annotations which can
illustrate potential problems in the ML practitioner-built label set
(e.g., confusion between labels or limited coverage of the label
set). In addition, by asking crowds to design their own label set,
DynamicLabels collects natural feedback with fresh perspectives on
the label set. This allows ML practitioners to explore and examine
various opportunities in early-stage.
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2.3 Data-driven decision-making support
To make an informed decision with crowd feedback, ML practition-
ers need to understand the feedback thoroughly. Many previous
work has explored ways to present data in a way that users can eas-
ily comprehend and utilize [13, 33, 36]. Voyant [33] automatically
generates a word cloud with the collected feedback which is more
helpful. Decipher [36] aggregates multiple feedback and provides
a visualization tool to help the interpretation. Mudslide [13] helps
teachers interpret the students’ muddy points by visualizing stu-
dents’ feedback on lecture slides. Some studies have emphasized
the importance of presenting a multi-faceted data analysis beyond
aggregation [18, 32]. OpinionSeer [32] provides analysts with an
interactive opinion visualization to easily explore the mined opin-
ions. Kairam and Heer [18] used clustering techniques to leverage
disagreement between crowd workers and showed that identified
patterns could illustrate the worker characteristics as well as po-
tential task problems.

Data-driven decision-making also enables users to consider vari-
ous alternatives before making a decision. For conference session
scheduling, Cobi [19] uses preference and constraints on metadata
and presents the preview of changes in the number of conflicts for
each move or assignment action that users consider. ConceptVec-
tor [24] supports an interactive construction of lexicon-based con-
cepts by showing relevant documents and keywords regarding
concepts the user considers. In designing a content-based image
retrieval system for pathologists, Cai et al. [6] introduced tools that
users can refine the image search by region, example, and concept.

Our label set refinement interface is inspired by previous work
that supports a thorough understanding and consideration of var-
ious alternatives in decision-making, but is investigated in the
unique context of label set construction. The label set refinement
interface of DynamicLabels presents varying levels of crowd feed-
back, ranging from raw crowd annotation to estimated coverage
and confusion, so that users can consider diverse aspects of the label
set simultaneously to help users comprehend different aspects of
the collected feedback. Also, users can preview the consequence of
each change before making a refinement and construct and compare
multiple versions of the label set.

2.4 Visual analytics for exploring and
improving noisy data

In tasks such as ML model construction where a large volume of
noisy data is utilized, experts often face difficulties in effectively
understanding and improving the quality of the data if necessary. To
support this process, many prior work has explored visual analytics
as a plausible approach.

A line of work [5, 35] takes an automatic approach to correct-
ing label errors and improving the performance of the classifier.
Bäuerle et al. [5] categorizes three potential labeling errors and
presents an automatic error detection approach to identify and
resolve such errors. In addition, Yang et al. [35] proposes a visual
analysis method, FSLDiagnotor, to automatically predict underlying
causes for few-shot classifiers and improve them.

Another line of work involves human judgments in the pro-
cess and supports effective exploration [17, 25, 30] and correction
[20, 38] of necessary data. In supporting data exploration, Willett et

al. [30] provide analysts with color clustering of crowd-generated
explanations to quickly assess the collected data, and Park et al.
[25] provides multiple views for crowdsourced medical annotation
results to gain insights into the collected data. Moreover, Hoque et
al. [17] utilizes a self-supervised learning approach to extract visual
concepts to understand data at scale with minimal human effort.
Other work takes an additional step to streamline the process by
supporting the refinement of such data, where Liu et al. [20] utilizes
three unique visualizations (confusion, instance, and worker) to
assist experts in verifying uncertain instance labels and unreliable
workers and LabelVizier [38] presents a human-in-the-loop work-
flow that assists in spotting and correcting incorrect annotations.

However, while the above-mentioned approaches concentrate on
enabling a more accurate and efficient process, our work focuses on
observing a complete end-to-end process of label set construction.
DynamicLabels follows the approach of utilizing visual analytics
to explore and make refinement decisions by supporting the explo-
ration of crowd feedback with multiple-level analyses.

3 FORMATIVE STUDY
To understand the practice and challenges of ML practitioners in
building and refining label sets for multi-class classification models,
we conducted an hour-long interview with eight ML practitioners.

3.1 Procedure
The recruitment was done through various AI/ML communities on-
line. The participants consisted of two ML research engineers, three
ML engineers, two ML graduate researchers, and one AI planning
product manager, and all had one or more experiences building
label sets and datasets from scratch (Detailed descriptions in Ta-
ble 1). The tasks they worked on were classification and object
detection tasks, but the type of dataset varied from OCR tasks (in-
volving business cards, receipts, and invoices), NLP tasks (involving
online articles, chat messages, video transcript), to computer vi-
sion tasks (involving book covers, supermarket products, objects
for autonomous driving). The size of the dataset they constructed
ranged from thousands to ten-thousands, and the number of labels
in the label set ranged from 10s to even 30s. The participants were
compensated with KRW 50,000 (USD 40) for the interview.

The interview was conducted in a semi-structured format. We
asked questions regarding their past label set construction experi-
ence, the aspects they consider important in building a label set,
and the challenges and needs in constructing and refining label
sets. For participants with multiple label set construction experi-
ences, we additionally asked questions to compare and contrast the
challenges and the experiences.

3.2 Practice
General process. All participants described label set building as

one of the most challenging processes in constructing a training
dataset, as the process involves coming up with an entirely new
label set (i.e., coming up with a set of clearly described labels as well
as detailed descriptions of each label) which involves numerous
decisions. Even with relevant taxonomies or experts in the domain,
the participants mentioned that additional modifications are crucial
for the purpose of ML model construction such as granularity or
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Table 1: Background information of formative study participants.

PID Occupation # of Label Set Building
Experience Primary Type of Dataset

P1 ML research engineer 6 Document data (business cards, legal documents)
P2 ML research engineer 2 Invoices
P3 AI planning product manager 3 Invoices, receipts
P4 ML engineer 5 Book covers, online articles
P5 ML engineer 3 Chat messages
P6 ML engineer 1 Grocery images
P7 ML graduate researcher 1 Video transcripts
P8 ML graduate researcher 1 Objects for autonomous driving

defining each label. For example, P7 (video context classification)
referred to information classification taxonomy for initial label
set construction, but had to largely modify the label set to fit to
video context. P5 (psychological disabilities classification) worked
with a professional psychologist but had to redefine the labels with
more distinctive criteria considering the model. P8 described such
modifications as “a decision area for the model builder to make.”

The verify-refine cycle. The participants described their practice
of iteratively refining the label set as going through verify-refine
cycles. They first sample a small proportion of the data to construct
an initial version of the label set. Then, they sample a larger amount
of data and use the data to annotate with the label set. By looking
at the annotations made, they decide whether the current label
set is clear and appropriate to construct label sets and models.
When the feedback from the verification shows issues with the
label set (e.g., too many incorrect annotations, mixed use of labels),
the participants make refinements. They mentioned that this cycle
continues until no major issues are found in the label set, then
proceeds to annotate to build the dataset. When there is more than
one person involved in the construction process (e.g., as a team
or with external annotators), they would compare and discuss the
conflicts in the annotation.

Importance of a well-constructed label set. The participants also
emphasized the importance of building a robust label set that can
prevent latent issues, especially defining each label clearly and
distinctly from each other while covering all edge cases. If not,
wrong annotations can be made due to a misunderstanding of labels,
potentially leading to biased dataset construction, poor quality of
the model, and bad user experience with deployment. While some
issues can be handled on the model side using existing techniques
such as data augmentation, sometimes starting again from scratch
is costly but inevitable. Considering the cost, they commented that
they would rather iterate early in the label set construction (P2).

3.3 Challenges
Following the iterative nature of the label set construction, we
identified three key challenges that ML practitioners face in the
refinement process.

3.3.1 Lack of helpful feedback to improve the label set. To improve
their label set, it is common for ML practitioners to go through mul-
tiple feedback loops. The most prevalent way to collect feedback

on the label set is by annotating using the constructed label set and
spotting problematic data that cannot be covered or has conflicts.
With the spotted data, the ML practitioner would make refinements
to the label set until they are convinced that all major issues are
resolved. While this approach helps in collecting problematic data
and making refinements by adding labels or new descriptions for
edge cases, the participants mentioned the limited help that an-
notations can provide. When the annotation is done by the ML
practitioners themselves, it is more difficult to spot uncovered or
conflicting data due to biases towards certain labels. P4 mentioned
that “even if they go through multiple iterations within the team,
there are always unexpected questions asked by the annotators.”
To get fresh feedback on the label set, ML practitioners sometimes
recruit external annotators. This is more effective than having the
team annotate as the problematic data are collected based on the
annotator’s perspective. However, often the ML practitioners “end
up adding a bunch of rule-based descriptions” (P2), which results in
inefficiency and confusion for the annotators in making the training
dataset later. In addition, recruiting external annotators to perform
annotation can be a troublesome and costly process (P7).

3.3.2 Difficulty in comprehending meaningful insights from the feed-
back. As mentioned previously, constructing an optimal label set
is difficult due to the many aspects (e.g., clear distinction of the
labels, clear description of the labels) and multiple stakeholders
(e.g., annotators, the requester of the model, users of the model) that
need to be considered together. While each ML practitioner has a
set of criteria they consider important, there is no clear guideline on
making an optimal label set, making it difficult for them to decide
on the best label set. Thus, they rely heavily on feedback in the
construction process.

This complex nature of label set construction makes extracting
high-criticality insights from feedback challenging. When feedback
about a label set is collected in the form of issues or annotation
results, ML practitioners need to examine each piece of feedback and
organize them to come upwith a concrete revision item. However, it
is challenging for them to both find critical feedback from a bunch of
collected feedback and group them into a meaningful revision item.
More specifically, P2 mentioned that “edge cases that lead to adding
a description is relatively easy, while [those] that lead to a change
in hierarchical structure and definition is very difficult to spot and
decide.” For conflicting labels, the participants mentioned that when
annotators use a different label than their original intention, they
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know that something is confusing. However, it is difficult to decide
whether the situation is common and should be prioritized.

3.3.3 Difficulty in utilizing the insights to make satisfactory changes.
AfterML practitioners organize key insights from the feedback, they
need to apply the insights to modify the label set. Understanding
the insights does not mean that a suitable modification can be made
to the label set, as a complex set of criteria must be considered. As
a result, ML practitioners are often not sure about their changes
and their consequences.

ML practitioners try other approaches to increase certainty in
the decision-making process such as discussing with a team of ML
practitioners. However, this can be time-consuming and difficult
to reach a consensus. Even when a consensus is reached, there is
no guarantee that the decision is optimal. The only way to know
whether the decision is optimal or not is by getting to the later
process of the ML model construction process (e.g., dataset con-
struction, model training) and seeing if any issues occur. Without
being able to check, participants struggled and felt less confident
in choosing the right moment to proceed to dataset construction,
and stated “I’m afraid that the label set will end up creating issues
later in the model building process” (P3).

3.4 Design Goals
Based on the interview results, we came up with the following
design goals for a system that addresses the challenges ML practi-
tioners face in iteratively building and refining label sets.

3.4.1 Collect helpful feedback on the label set from the crowd. ML
practitioners identified a need for collecting nutritious feedback in
their label set construction process to find problems in the label
set and make appropriate refinements. Specifically, the participants
mentioned the need to receive feedback from fresh perspectives,
that more actively suggest possible changes, and on a larger scale
to address as many issues as possible. Through crowdsourcing, a
group of people having fresh, diverse perspectives can be recruited
to collect large-scale feedback on the label set (C1). In addition, the
crowd can also provide their own labels as suggestions to support
the refinement process as well (C3).

3.4.2 Provide multi-aspect analysis to derive meaningful insight.
One major characteristic of label set construction is that there is
no best practice for an optimal label set. Thus, ML practitioners
face difficulty interpreting and obtaining meaningful insight from
the feedback they collect. During the interview, participants stated
that they mainly get a sense of problematic labels by examining
the feedback in varying aspects. Likewise, showing the collected
feedback in multiple aspects (e.g., highlighting conflict, showing
edge cases, providing a summary) can support ML practitioners to
thoroughly understand the feedback and select ones to prioritize.

3.4.3 Help understand possible changes and consequences in the
label set. Even after extracting meaningful insights from the feed-
back, ML practitioners struggle to make confident changes to the
label set due to the uncertainty of their action consequence. Ac-
tively supporting ML practitioners with possible label candidates
or showing them the consequence of the label set with the changes

will help the refinement process be more informed, and will lower
the barrier to iterate on the label set.

4 PROPOSED SYSTEM: DYNAMICLABELS
We present the design of DynamicLabels, a system that aims to
support ML practitioners’ label set construction. DynamicLabels
supports iterative refinement of the label set through two separate
interfaces: the feedback collection interface and the label set
refinement interface. The former is provided to the crowd to
collect annotations and label suggestions on the ML practitioner-
built label set, and the latter is provided to the ML practitioners for
refinement with multiple analyses of crowd feedback.

Overall label set construction workflow and the role of each
interface in DynamicLabels are described in Figure 1. In Dynami-
cLabels, label sets are constructed in tree form (As in Appendix A.3
Figure 11), consisting of labels and groups to group the labels.
Each label includes a label name and a description 1. As for the
scope of research, we allow a single label to be assigned to each
image to simulate the simplest form of label set.

4.1 Feedback collection interface
For the crowd workers to use the feedback collection interface, the
practitioner needs to have a constructed label set beforehand. This
is similar to the practice in real-life settings, where the practitioners
first build an initial label set.

The crowd is asked to provide feedback through two phases:
(1) providing label suggestions by making the crowd’s own la-
bel set and (2) annotating with the ML practitioner-built label set
(Fig. 1-Feedback Collection Interface). Two types of feedback are
collected: passive (annotation results) and active (new label creation
as suggestions), where an active suggestion aims to collect diverse
perspectives on the label set. 2

4.1.1 Phase 1 - Providing label suggestions by making the crowd’s
own label set. Crowd workers start from the Phase 1 task: creating
their own label set (Fig. 2). They are first asked to take a look at 30
assigned images (Fig. 2-b) and come up with a set of labels (Fig. 2-a).
Then, they are instructed to use the labels to make annotations
(Fig. 2-c).

4.1.2 Phase 2 - Annotating with the ML practitioner-built label set.
Crowd workers then proceed to the next phase and use the ML
practitioner-built label set to annotate the same 30 images (Fig. 3). In
addition to the ML practitioner-built label set (Fig. 3-a), the workers
are provided with an additional others label to annotate images
that do not fit into the provided label set to spot edge cases. For
each image labeled others , the workers are asked to provide a
brief reason (Fig. 3-d) to justify their choice.

4.1.3 Post-processing of crowd feedback. Crowd annotations and
crowd-made labels are post-processed to provide meaningful analy-
ses. To avoid suggesting redundant crowd-made labels, we merged

1Following the label format from Google documentation (https://cloud.google.com/ai-
platform/data-labeling/docs/label-sets)
2To prevent biases, the crowd is asked to build their own label set before annotating
with the ML practitioner-built label set.
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a

b c

Phase 1: Make and Annotate with Your Label Set

Figure 2: Phase 1 of the feedback collection interface. The crowd workers are instructed to check the assigned images through
(b) a grid of images on the bottom left and make their own label set on the (a) top component by adding, revising, and deleting
the labels. For created labels, they can select the images in (b) to annotate, which will show up in (c), under each label.

a

b c

d

Phase 2: Annotate with Another Label Set

Figure 3: Phase 2 of the feedback collection interface. The crowd workers are instructed to take a look at the (a) ML practitioner’s
label set and use the labels to annotate the (b) assigned images. Annotations will show up in (c), under each label. For images
annotated using the “others” label, the workers are asked to provide a (d) brief reason each as an additional step.

multiple crowd-made labels into one if they are identical after stem-
ming and lemmatizing.

As each crowdworkermakes their own labels based on 30 images,
the number of crowd annotations, or the number of images, for each
crowd-made label is limited to 30 at most. To help ML practitioners
better estimate the coverage and potential confusion of crowd-made

labels, we established extended annotation for crowd-made labels.
We first established similarity relationships between crowd-made
labels and ML practitioner-made labels. For each crowd worker,
we calculated the Jaccard similarity coefficient for each pair of a
crowd-made label and an ML practitioner-made label, based on the
crowd worker’s annotation of 30 images for ML practitioner-made
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Crowd Label View

Figure 4: Overview of the label set refinement interface. The (a) current version label set is displayed at the top left, along
with an (b) overview of the collected feedback. By clicking the labels in (a) or top conflicts and unlabeled images in (b), the ML
practitioner can see a (c) detailed view. On the bottom right, you can see the (d) crowd label view. During the refinement, you
can save different versions of the label sets, which are displayed through the (e) saved label sets.

labels and crowd-made labels. For pairs with a similarity higher
than 0.8, we assumed that the crowd label and the ML practitioner-
made label are similar. Then, for each ML practitioner-made label,
we filtered out images whose majority vote (of crowd annotation)
match the label and established extended annotation between those
images and crowd-made labels with high similarity with the ML
practitioner-made label.

4.2 Label set refinement interface
When a sufficient amount of feedback is collected for each image,
the ML practitioner can revise their label set through the label set
refinement interface (Fig. 4) with the following components: Your
label set, Overview, Detailed view, Crowd label view, and Saved
label sets. The interface supports reviewing and understanding the
feedback with three different analyses (Fig. 4-b,c,d), and adopting
the feedback to make changes with crowd-made labels (Fig. 5).

4.2.1 Showing varying levels of analysis for the collected feedback.
When the ML practitioner enters the label set refinement interface,
they can find their initial label set on the top left, under “Your
label set”. Right next to it is an overview (Fig. 4-b) that shows a
summary created with the crowd feedback. Inside the overview, we
provide four metrics motivated by the formative study, (1) Coverage:
number of images with annotation, (2) Conflict: number of images
annotated with multiple labels, (3) Top conflicts: top 3 label pairs
with the highest number of conflicts, and (4) Unlabeled images:
number of images without annotation to spot the main issue in
their label set. The metrics are re-calculated when any changes

are made to the label set. These metrics help ML practitioners
understand how each label would be perceived and understood by
the crowd and the coverage of labels as a set.

For the ML practitioner to understand the collected annotation
in detail, they can select label(s), top conflicts, or unlabeled images
to see a detailed view (Fig. 4-c). Here, the ML practitioner can
see images annotated with the selected label(s) (current label set),
images annotated using the conflicting labels (top conflicts), or
images that are not labeled (unlabeled images) on the left. On the
right, they can see possible refinement suggestions—a list of crowd-
made labels that overlap the most with the selected set of images.

On the bottom right, the ML practitioner can explore refinement
options, through an analysis of the crowd-made labels through the
crowd label view (Fig. 4-d). DynamicLabels shows crowd-made
labels in two different aspects: (1) Most common labels and (2)
Labels by each worker. The Most common labels component shows
the top 10 frequently-made crowd labels, and the Labels by each
worker component shows a list of crowd-made label sets, sorted by
the number of labels made.

4.2.2 Providing refinement support with crowd-made labels. To sup-
port a more informed refinement, we allow ML practitioners to
make additions or replacements to their label set using crowd-made
labels. The refinement actions can take place from refinement sug-
gestions or labels by each worker, illustrated in Figure 5.

On each refinement action, we display the action consequence
modal (right of Fig. 5), where the change in the overview (the
number of labels, coverage, conflict) is shown before making the
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a

#1: Applying crowd-made labels from Detailed View

#2: Applying crowd labels from Crowd Label View
Crowd Label View

Figure 5: Two possible ways to apply crowd-made labels to the current label set. In the top example, the ML practitioner can
select (a) two labels in the current label set ( city and countryside ) to see a detailed view. From the refinement suggestions in

the detailed view, the ML practitioner can (b) select crowd-made labels ( Manmade ) and click on the action (replace) to trigger
the action consequence modal and make refinement decisions. In the bottom example, the ML practitioner can (c) click the
plus icon next to the crowd-made label ( Organisms ) to add the label, which will trigger the action consequence modal.

change. The ML practitioner can use the model to decide whether
to apply the refinement or not. In addition to the detailed view, the
ML practitioner can add crowd-made labels individually through
the Crowd label view component (Fig. 4-d). The same action conse-
quence modal is shown for this refinement as well. The ML practi-
tioner can also directly add new labels, edit existing labels, or delete
existing labels (Fig. 4-a), while the overview metrics stay the same.

4.2.3 Creating and exploring multiple label set candidates. On the
bottom left, there is a saved label sets component (Fig. 4-e), which
enables exploration of potential candidates with version control.

5 STUDY DESIGN
We conducted a 2-day study with 16 ML practitioners to investigate
how DynamicLabels assists the ML label set construction process,
through a within-subjects study comparing DynamicLabels to the
baseline system (Described in Section 5.2.2). We chose this study
design because of high variance in ML practitioners’ machine learn-
ing expertise, previous label set/dataset construction experience,
and perception of crowdsourcing/crowd workers.

We aimed to answer the following research questions:
(1) Can crowd workers produce helpful feedback with the feed-

back collection interface?
(2) How do ML practitioners use crowd feedback to refine their

label sets?
(3) How do ML practitioners use the refinement interface in

DynamicLabels to make informed refinement decisions?
For the first RQ, we compare DynamicLabels of the collected

feedback with that of the baseline system. For the third RQ, we

compare and additionally explore how ML practitioners utilized
the label set refinement interface through our suggested system. For
the second RQ, we do not compare DynamicLabels with baseline
but derive common patterns of ML practitioners utilizing crowd
feedback in both conditions.

5.1 Participants
We recruited 16 participants by making an open call in several
universities’ online communities and social media targeting ML
practitioners. Participation was limited to those with experience
(1) manually constructing or utilizing label sets for ML models
and (2) conducting industry or research projects using multi-class
classification models that require label sets with multiple labels.
Among 16 participants, 3 were undergraduate students, 7 were
graduate students, and 6 were industry workers. All participants
had experience making label sets for classification models. We
describe detailed demographics and the task they used for the study
in Appendix A.1. Each participant was compensated KRW 120,000
(USD 94) for a total of 4.5-hour 2-day participation.

5.2 Study Setup
5.2.1 Task and Datasets. For the study, we asked participants to
design a label set for a multi-class classification model. The partic-
ipants each defined a specific task they would use the model for
and were asked to improve their label set through a single refine-
ment cycle. We selected two types of data: natural scene image
dataset [39] and event flier dataset (manually collected by the au-
thors). We refer to the natural scene image dataset as scene and
the event flier dataset as flier from below. We chose datasets that
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Figure 6: How the feedback was provided to the practitioners in the refinement interface of the baseline system. On the (a)
label view, the user can see each label with images whose majority winner is the label and those without majority winners. On
the (b) image view, the user can see raw annotations and majority voting results for each image. The (c) majority label column
on the image view can be clicked to sort or filter results.

do not require a high level of domain expertise for the crowd to
understand while having a varied modality, scene having images
only, and flier having images and texts.

From each dataset, we randomly sampled 200 images for the
study. Among the 200, we randomly selected 50 images for the
initial label set construction, and all 200 images for collecting crowd
feedback and the refinement stage. We decided on the two numbers
(50 and 200) based on the formative practice, where practitioners
normally conduct the first iteration with hundreds of data.

5.2.2 Baseline System. Our baseline system (Figure 6) is designed
with reference to the verify-refine feedback loop described during
the formative study, where (1) crowd workers annotate each image
to one of the ML practitioner-designed labels, and (2) the raw anno-
tations and majority voting results are presented in the refinement
phase (Figure 6).

5.2.3 Procedure. The study was conducted with two sessions to
simulate a single iteration of label set construction (Detailed pro-
cedure in Figure 7). Each participant conducted the task in the
baseline condition for one dataset and DynamicLabels condition
for the other dataset. The order and the image types assigned to
the conditions were counterbalanced and randomly assigned.

In the first session, the participants first created an initial version
of the label set with 50 images. Constructed label sets were used
to collect crowd feedback (DynamicLabels) or crowd annotation
(baseline) for 200 images. After each label set construction, we asked
the participants to fill out a 7-point Likert scale survey (1 = Strongly
disagree, 7 = Strongly agree) regarding the construction process.

After the participants finished constructing the two initial version
label sets, we conducted a semi-structured interview regarding
the construction process, the challenges in the process, and the
participants’ expectations of crowd feedback.

In between sessions 1 and 2, we collected crowd feedback (Dy-
namicLabels) and annotations (baseline) on the label sets that par-
ticipants constructed through Amazon Mechanical Turk 3. For each
label set, we recruited 34 crowd workers, and each image was an-
notated by five different workers. Each worker was assigned 30
images with a 24-image overlap with the previous worker. The
workers were paid $8.0 per hour for their work. We limited partici-
pation to U.S. workers who had completed at least 1000 HITs with
an approval rate of at least 97%.

In the second session, the participants were instructed first to
look at the raw data of the collected feedback/annotation and rate
the data on a 7-point Likert scale to evaluate the helpfulness of
the collected data, dimensions including good quality, large-scale,
diverse opinions/perspectives, usefulness/meaningfulness of the
data. The participants then refined their label set with the crowd
feedback (DynamicLabels) or the crowd annotations (baseline) col-
lected. After each refinement task, we asked the participants to
fill out a 7-point Likert scale regarding the refinement process, di-
mensions including whether the process was structured, whether

3https://www.mturk.com
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* The order and data type for each condition were counterbalanced among participants.
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Crowd data evaluation * Label set refinement *
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Figure 7: Tasks and procedure for each session. In session 1, each participant creates two initial label sets for each dataset.
The label sets are given to the crowd workers to collect annotation or feedback depending on the condition. In session 2, the
participant refines their label set with the collected crowd data presented.

uncertainties were considered, whether alternatives were consid-
ered, and whether confident decisions were made (modifying Qual-
ity Decision-Making Procedure (QDMP) [4]). Afterwards, we con-
ducted a semi-structured interview with the participant regarding
the overall refinement process, utilization of collected crowd feed-
back/annotation, utilization of features in the refinement interface,
and the refinement process and the final label set. After complet-
ing the two refinement tasks, we asked questions comparing the
refinement process using DynamicLabels and the baseline system.

5.3 Measures
We collected and analyzed the following data: crowd feedback,
participants’ session 1&2 label sets and refinement logs, task ob-
servations and interview responses, and survey results on crowd
feedback/annotation and label set construction/refinement process.

Crowd annotations. We measure the collected crowd feedback
in terms of diversity, helpfulness, and quality. We use the total and
unique number of crowd-made labels, and the unique number of
labels used to annotate a single image to measure the diversity, and
survey and interview responses on crowd feedback/annotation to
measure the helpfulness.

As a quality measure, we measured the accuracy of crowd anno-
tations. We first filtered out 52 out of 1,073 workers who showed
clear trolling behavior. 4 Then, we randomly sampled 2,000 crowd
annotations for participant-made labels (500 for each dataset and
condition) and 1,000 crowd annotations with crowd-made labels
(for DynamicLabels condition, 500 for each dataset) among 47973
annotations in total. With 3,000 sampled annotations, two of the
authors coded the accuracy. As the collected labels were subjective,

4Those who used two or fewer ML practitioner-made labels to annotate 30 images or
made out-of-context labels (e.g., making jacket or example1 in flier) were excluded.

we considered annotations that appropriately describe or represent
each image as correct (e.g., considering both buildings and city
correct for the left image in Figure 9).

Refinement actions. We extracted each participant’s refinement
actions from session logs and recordings. Then we categorized each
refinement action into seven categories: three label changes (add,
revise, delete), one description-level change, and three group-level
changes (add, revise, delete).

There were cases where multiple refinement actions were made
to achieve one high-level refinement (i.e. split and merge). To ana-
lyze such high-level refinement actions made by participants, we
grouped refinement actions made for one high-level split and merge
refinement. Three of the authors analyzed three (out of 32) sessions
together and then analyzed the remaining sessions individually.

We also recorded whether each refinement action was made
based on crowd-made labels. In addition to direct use (adding or
replacing with) of crowd-made labels, we also recorded actions
where participants adopted crowd-made labels or descriptions.

Interview responses and session observations. Participants’ think-
aloud and interview responseswere transcribed and analyzed through
an open coding process, followed by focused coding. Two authors
first individually developed a set of codes. Then, the two authors
collapsed the developed codes into themes by identifying similar
codes under each research question.

6 RESULTS
We first present an overview of the study results and then discuss
each RQ in detail. The overview presents descriptive statistics of
the label sets that participants made in sessions 1 and 2, refinements
made in session 2, and the crowd labels and annotations collected
for each participant’s session.
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6.1 Descriptive Statistics
6.1.1 Label set construction and refinements. In session 1, the par-
ticipants constructed an initial label set with 50 images. The median
number of labels was 7 (min: 3, max: 11) for scene and 9.5 (min: 4,
max: 14) for flier. The initial label set construction on average took
21.4 minutes (𝜎=6.8) for scene and 41.9 minutes (𝜎=16.4) for flier.

In session 2, the participants refined their label set using the
crowd annotations (baseline) or feedback (DynamicLabels) col-
lected with 200 images. Table 2 shows the median number of labels
and groups in the initial and revised label sets, and the number
of net changes made in the labels and groups for each condition
and dataset. Participants generated more labels with flier dataset
(median: 9.5 with min: 4, max: 14) than with scene dataset (median:
7 with min: 3, max: 11). However, within each dataset, there was no
statistically significant difference in the number of labels, groups,
and changes between conditions.

Participants spent significantly more time refining the label sets
with DynamicLabels than baseline and with event than with scene
(two-way repeated ANOVA, F=8.38 with p<0.05 between condi-
tions and F=4.84 with p<0.05 between datasets). With scene dataset,
participants spent 16.8 (𝜎=10.6) minutes for the baseline and 19.5
(𝜎=11.4) minutes for DynamicLabels to refine their label sets. For
the flier dataset, the average time spent was 17.4 (𝜎=13.1) minutes
for the baseline and 32.4 (𝜎=16.3) minutes for DynamicLabels.

Table 3 shows the median number of refinement actions made
in each condition for each dataset. With the baseline, a median of
8.5 (min: 2, max: 24) and 9.5 (min: 2, max: 23) refinement actions
were made by participants scene and flier datasets, respectively.
With DynamicLabels, participants made a median of 7 (min: 0,
max: 25) and 11 (min: 5, max: 15) refinement actions for scene and
flier, respectively. The specific refinement actions made by each
participant under each condition are shown in Figure 10. Figure 11
shows an illustrative example of label set refinement made with
DynamicLabels.

6.1.2 Crowd feedback. Between sessions 1 and 2, the crowd made
annotations (baseline) or feedback—annotations and label sugges-
tions (DynamicLabels)—using the feedback collection interface. Ta-
ble 4 summarizes the crowd feedback collected for a single label set.
For each ML practitioner-made label set, crowd workers made an
average of 1053.63 and 1023.75 annotations for scene and flier, and
969.25 and 1023.75 annotations for scene and flier in the baseline
system and DynamicLabels, respectively. In addition, for Dynam-
icLabels the workers made 179.75 labels (72.13 unique labels) for
scene and 199.25 labels (106.00 unique labels) for flier on average.
The accuracy of annotations with ML practitioner-made labels was
88.59% (scene), 69.18% (flier) with the baseline, and 90.52% (scene),
72.88% (flier) with DynamicLabels. The accuracy of annotations
with crowd-made labels was 91.60% in scene and 73.40% in flier.

For the baseline task, the average time spent was 827.57 seconds
(𝜎 = 1044.30) in scene and 1770.96 seconds (𝜎 = 1484.30) in flier.
For the DynamicLabels task, the average time spent was 1269.08
seconds (𝜎 = 1401.17) in scene and 2181.93 seconds (𝜎 = 1679.29) in
flier. While the phase 1 task in DynamicLabels can be more mentally
demanding than phase 2, requiring workers to create new labels,
the time spent is similar to or less than twice the time for that of
baseline. We presume that this was because the workers utilized the

same set of images in phases 1 and 2, decreasing the time needed
to understand and become familiar with the data in phase 2.

6.2 RQ1: Can the crowd produce helpful
feedback with the feedback collection
interface?

Feedback from the crowd—both annotation and crowd-made labels—
contained diverse viewpoints and helped participants understand
the various viewpoints of the crowd, some they had never expected
before, and found it meaningful and useful in making refinements.

6.2.1 Diversity of Crowd-made Labels. A single crowd worker on
average created 5.58 labels for scene and 6.18 labels for flier, sum-
ming up to on average 179.97 labels (scene) and 199.25 labels (flier)
created per ML-practitioner’s label set. When we counted the num-
ber of unique labels after lemmatization, the number of unique
labels was 72.13 labels for scene, and 106.00 labels for flier. Con-
sidering that the average final number of labels that participants
made was around 7 to 10, around 10x labels were provided to the
participants per label set.

Crowd workers’ diverse viewpoints were captured with the num-
ber of labels they created/utilized for a single image (Figure 8, ex-
amples in Figure 9). For crowd-made labels, on average 3.77 labels
(SD=0.43, event) and 4.41 labels (SD=0.47, flier) were used to anno-
tate a single image, whereas for ML practitioner-built labels, on
average 2.07 labels (SD=0.39, event) and 3.32 labels (SD=0.46, flier)
were used. The difference between the number of crowd-made la-
bels and ML practitioner-built labels used was significant for both
data types (t(398)=40.95, p < .0001 for scene, t(398)=23.83, p < .0001
for flier), exhibiting a wider perspective of the crowd in making
their own labels, an aspect of helpful feedback mentioned in the
formative study.

In follow-up interviews regarding the crowd feedback, partici-
pants noted that the crowd-made labels helped them make various
interpretations of the crowd workers in perceiving and recognizing
the datasets. P15 commented that “through the crowd-made labels,
I can see how people perceive and categorize the datasets, which I
cannot understand through looking at the consequent annotations.”

6.2.2 Perceived Helpfulness. All participants commented that the
crowd feedback was meaningful and useful in making refinements
to the label sets. P14 said, “I was able to see a difference in my
understanding and the crowd’s understanding of the label, [...] the
annotation is different from what I expected. However, this will
be helpful [to me in the refinement] as this tells me that my label
is poorly defined.” Participants stated that seeing the crowd-made
labels for each image in DynamicLabels makes up for the difficult-to-
understand annotations, functioning as reasons. For example, P12
was confused about why a running flier was not being annotated as
activity rather than sports , but understood the reason by seeing
exercise and yoga labels made by the workers.
Participants especially liked the varying granularity of the crowd-

made labels in DynamicLabels. P1 perceived the workers’ label sets
as “an evolution of the label sets from the most general to the most
specific.” They browsed through the crowd-made labels multiple
times for opportunities to bring them to their own label sets.
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Table 2: Median number of labels and groups made in Sessions 1 and 2 and the median number of net changes in the label set,
for each dataset and condition. Participants created label sets with more labels and a higher range in flier compared to scene,
while there was no difference in the labels, groups, and net changes between DynamicLabels and baseline.

Natural Scene Event flier

Session 1 Changes (net) Session 2 Session 1 Changes (net) Session 2Added Deleted Revised Added Deleted Revised

Baseline # of labels Median
[Min, Max]

6
[3, 10]

1.5
[0, 6]

1
[0, 7]

2.5
[0, 5]

7
[3, 10]

9
[5, 16]

1.5
[0, 8]

1.5
[0, 9]

2
[1, 6]

8.5
[6, 13]

# of groups Median
[Min, Max]

1
[0, 6]

0
[0, 1]

0
[0, 1]

0
[0, 1]

1
[0, 6]

0
[0, 4]

0
[0, 3]

0
[0, 2]

0
[0, 2]

0
[0, 3]

DynamicLabels # of labels Median
[Min, Max]

7
[5, 11]

2
[0, 4]

3
[0, 1]

0.5
[0, 4]

7
[5, 10]

9
[4, 14]

2
[0, 6]

1.5
[0, 4]

1.5
[0, 10]

10
[6, 15]

# of groups Median
[Min, Max]

0.5
[0, 4]

0
[0, 2]

0
[0, 1]

0
[0, 0]

0.5
[0, 4]

0
[0, 1]

0
[0, 3]

0
[0, 1]

0
[0, 0]

0
[0, 3]

Table 3: Median number of refinement actions made by participants in each condition for each dataset (Median [Min, Max]).

Label Description Group TotalAdd Delete Revise Revise Add Delete Revise

Natural Scene Baseline 1
[0, 5]

0
[0, 6]

2.5
[0, 8]

3.5
[0, 9]

0
[0, 1]

0
[0, 1]

0
[0, 1]

8.5
[2, 24]

DynamicLabels 2
[0, 8]

2
[0, 9]

1.5
[0, 6]

0.5
[0, 2]

0
[0, 1]

0
[0, 1]

0
[0, 0]

7
[0, 25]

Event Flier Baseline 0.5
[0, 8]

1.5
[0, 5]

3
[1, 9]

1
[0, 7]

0
[0, 3]

0
[0, 4]

0
[0, 0]

9.5
[2, 23]

DynamicLabels 2.5
[0, 5]

1.5
[0, 8]

1
[0, 5]

3
[0, 11]

0
[0, 1]

0
[0, 2]

0
[0, 0]

11
[5, 15]

Table 4: Average number of crowd feedback collected per single label set (Mean [Min, Max]): number of crowd labels, number
of unique crowd labels, number of annotations with crowd-made labels, number of annotations with ML practitioner-made
labels, for each dataset and condition.

Natural Scene Event flier
Baseline DynamicLabels Baseline DynamicLabels

# of crowd labels - 179.75 [143, 206] - 199.25 [143, 229]
# of unique crowd labels - 72.13 [47, 92] - 106.00 [83, 137]
# of annotations with
crowd-made labels - 969.38 [770, 1026] - 991.00 [813, 1031]

# of annotations with
ML practitioner-made labels 1053.63 [990, 1294] 969.25 [784, 1024] 1023.75 [1021, 1030] 989.63 [812, 1028]
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Figure 8: Overall distribution of the average number of labels used to annotate one image. The left chart shows the average
number of ML practitioner-made labels used, and the right chart shows the average number of crowd-made labels used for a
single image.
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Figure 9: Two example images in the scene dataset. Five
different labels ( civilization , city , town , buildings ,

metrocity ) were made for the left scene image consisting
of two tall buildings and a sky in the background, and three
labels ( forest , hills , trees ) for the right scene image illus-
trating a trail inside a forest with trees.

6.3 RQ2: How do ML practitioners use crowd
feedback to refine their label sets?

Both crowd annotations and crowd-made labels were utilized to
help the participants understand and apply the feedback as re-
finements. The crowd annotations helped ML practitioners to (1)
understand the crowd’s general opinions and perspectives and (2)
spot the weakness of their label sets, and the crowd-made labels
helped them (3) explore and apply relevant ones to their label sets.

6.3.1 Understanding the crowd’s general opinions and perspectives.
Participants mentioned that they could observe both converging
and diverging opinions in the crowd feedback. Collective opinions
were visible through label suggestions or most common crowd-made
labels, and the participants compared their label set with the crowds’
labels to see the similarity of their labels to the general crowd’s
labels. P3 mentioned “I am usually afraid of bias, especially when
building a label set on my own. Seeing that many of the crowd
have made similar labels with mine, I am more confident that [this
is the] right direction.” Further, P16 said that “looking at the most
common labels helps to deal with the ambiguity in constructing a
label set by oneself, and if there is a label that many crowd workers
made, then that shows the necessity of that particular label.”

In contrast, participants also observed the diverging opinions
of the crowd in the collected annotations and labels. While there
were overlapping crowd-made labels, participants found the labels
to be overall diverging, which informed them how an image can be
perceived differently by the workers. P13 said, “by looking at the
crowd annotation results for labels and images I was unsure of in
session 1, I am more confident that my label set should be defined
more clearly.”

6.3.2 Understanding the weakness of their label set. They were
also able to realize the weaknesses of their label set through the
feedback. This was mostly done by looking at the actual annotated
images using their label set. P2 commented, “I would not have
realized how poorly built my label set is without looking at the
annotation results”, and made major changes (adding 3, revising 3,
deleting 1 label) to their label set in session 2. A common weakness
identified by participants was the lack of good label descriptions,

found by looking at the detailed view of each label, and ambiguous
boundaries between labels, found by looking at the top conflicts.
P9 commented, in flier, that they “would not have known that yoga
fliers could [be perceived as] the ‘nature’ category without crowd
annotations.” They changed the description for nature , from ‘Any
poster which the main topic is about nature’ to ‘Any poster about
plants, forest, and nature’ to better specify and communicate the
boundary of the label.

6.3.3 Exploring alternative labels and applying perspectives of the
crowd. Participants were also able to incorporate more perspec-
tives from the crowd into their label sets. As DynamicLabels made
crowd-made labels more visible throughout the entire refinement
process, the participants were able to easily refer to the refinement
suggestions, most common labels, or each worker’s labels. A big
portion of adding/revising refinements (scene: 35.1%, flier: 29.0%)
in DynamicLabels utilized crowd-made labels. On the other hand,
in baseline, no participants directly referenced crowd expressions
(from ‘reasons for others’) in adding/revising labels.

Participants were also able to make more satisfactory refine-
ments by referring to the crowd-made labels in DynamicLabels.
In baseline, participants eventually got a sense of the labels that
needed to be revised by extracting summative information from
the annotation results, but the next challenge they faced was in
making satisfactory refinements. Participants struggled to come
up with satisfactory label names, which led to more label name
changes happening in the baseline system. For example, in the
baseline, P10 revised a single label three times, from snow to
snow/glacier without mountain , extreme cold with snow and

glacier , then to extreme cold with snow, glaciers, and mountains
and explicitly said that the crowd-made labels would have been
helpful to decide the label name.

As a result, participants made more changes in label name in
the baseline (with a median of 2.5 for scene 3 for flier) than in the
DynamicLabels (with a median of 1.5 for scene and 1 for flier) The
difference between conditions is statistically significant (two-way
ART ANOVA [12, 31], F=5.34 with p<0.05).

6.4 RQ3: How do ML practitioners use the
refinement interface in DynamicLabels to
make informed refinement decisions?

Throughout the study, we were able to observe the distinctive
benefits of DynamicLabels over the baseline system in making
more informed refinement decisions. When asked to compare the
two conditions on how they helped their refinement decisions, most
participants (13/16) rated DynamicLabels better than baseline.

The results state that DynamicLabels supports (1) a high-level
understanding of the feedback with metrics, (2) better assurance
through examining multiple options, (3) a structured refinement
process. In addition, DynamicLabels (4) encouraged a more flexible
refinement and (5) surfaced issues that might have been missed in
comparison to the baseline. Such benefits supported participants to
make more confident, efficient refinements with crowd feedback.
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6.4.1 Metrics support understanding of and refinement from the
feedback. The most frequently identified strength of DynamicLa-
bels was the existence of the metrics (coverage, conflict) in the
Overview component. Participants liked how the metrics summa-
rized the collected annotations and described the metrics as an
efficient and intuitive way to understand their label set without
looking at the raw data. P1 mentioned that, in the baseline, they had
to make much more judgments by themselves, such as understand-
ing the reason behind images with no majority winner, deciding
whether to change the label or not by estimating the expected effect
of the change, and verifying whether the changes can fix the issues
by going through the images again.

Among the metrics, the participants particularly found the con-
flict metric helpful and many (10/16) aimed at reducing the number
of conflicts during the refinement task. They complimented the
intuitiveness of the metric, in that “it intuitively shows the labels
that are controversial to the crowd (P5)” and utilized the metric to
identify which refinements should be prioritized. When a particular
label existed in all three top conflicts (e.g., career & socializing ,
career & volunteering , sports & career for P9 in flier), the
participants realized that the label can be confusing to the crowd
and began their refinement by clarifying and examining the feed-
back from that label (e.g., career ).

6.4.2 Examining and experimenting with various refinement options.
With DynamicLabels, participants were able to examine various
refinement options before making a decision. With the consequence
modal in DynamicLabels that shows the expected changes in the
metrics for each refinement action, participants were able to ex-
amine each refinement action they considered before applying it.
Participants found this consequence modal helpful, as knowing the
expected change in the overview helped them make the decision
more confidently. In addition, P13 mentioned that “the (action con-
sequence) modal prevented them from making a wrong refinement
choice.” When P13 tried to replace the label manmade for the
conflict between the labels city and countryside , they saw the
rise in the conflict and decided to take back the decision. They later
merged the two labels into the label manmade . Even P3, who
made no refinements with DynamicLabels, examined two refine-
ments they considered but decided not to apply them.

6.4.3 Establishing a structured refinement process. The refinement
process with DynamicLabels was perceived to be more structured
than with the baseline. With DynamicLabels, participants began
their refinement process from the overview, then looked into the
detailed view for further understanding, and referred to the crowd-
made labels whenever they needed more assurance or references
when making refinement decisions. Meanwhile, with the baseline,
participants went back and forth between the label view and the
image view until they identified the need for change. P6 noted that
“in [v1 (baseline)], deciding on the starting or ending points was
very challenging as I have to check the image and the annotations
repeatedly to understand the outcome of the annotations.”. The
participants found this implicitly conveyed workflow helpful, as
they were able to “prioritize the refinement decisions (P15).” P4 also
described DynamicLabels as supporting a more structured process

that he could follow to figure out if it was the boundary of the label
or the label name that needed to be changed, resulted in a quicker
refinement with similar confidence.

6.4.4 Encouraging flexible refinement. Participants noted that hav-
ing various forms of crowd feedback in DynamicLabels helped
them understand the relationship between labels, such as potential
conflict or inclusion among labels. During the refinement session,
P5 said that "by seeing the number of conflicts between expo and
social and going through images with the conflict, I decided to
split those labels into more [specific] ones”.

Participants also noted that with DynamicLabels, they could
focus on how their label set represents the data, whereas they
focused on clarifying each label and description in the baseline
system. For example, P16 made three merge refinements (e.g., merg-
ing city street and buildings into city ) with DynamicLabels
whereas no high-level refinements were made with the baseline.
P13 alsomentioned that “[they] would not have combined city and
countryside if [they] had not seen the label suggestion manmade
after selecting both labels.

With both datasets, more participants made at least one high-
level refinement in the DynamicLabels condition (6 out of 8) than
in the baseline condition (3 out of 8). With both dataset, the median
number of high-level refinements made by participants was 0 (min:
0, max: 3) in the baseline and 1 (min: 0, max: 5) in the DynamicLabels
Table 5 summarizes the number of participants who made the split
and merge refinement(s) in each condition and dataset.

Table 5: Number of participants who made high-level refine-
ments in each condition for each dataset

Natural Scene Event Flier
Split Merge Total Split Merge Total

Baseline 2 1 3 1 3 3
DynamicLabels 2 5 6 3 4 6

6.4.5 Surfacing conflicts and edge cases that might have been over-
looked. In addition to the refinements made, the participants were
also able to spot possible conflicts and edge cases that they might
have overlooked. When refining with the baseline, most partici-
pants made refinements centered around the issues that they ex-
pected. P4 mentioned, “I checked that the labels that I assumed to
be problematic actually had issues by looking at the annotations,
and only revised those labels.” However, when refining with Dy-
namicLabels, participants identified unexpected conflicts, and were
able to understand where the conflicts were coming from and make
suitable changes. Sometimes, participants appreciated the surfacing
of unexpected issues even when they did not make refinements
accordingly. P7 commented “If there were no crowd data, I would
have made refinements solely based on my subjective opinions.
Even if I did not reflect all crowd opinions, being able to see them
helps me understand potential issues better.”

In DynamicLabels, P4 also created more labels by looking at
individual crowd-made labels, commenting that “the crowd helped
in detecting edge cases in the 200 images.” They added the labels
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cave and desert at the end of their refinement, after seeing im-
ages annotated with these labels and realizing their current label
set couldn’t cover them.

7 DISCUSSION
7.1 Potential use of DynamicLabels in different

domains
We believe that DynamicLabels can be generally expanded to do-
mains that do not require special expertise, given the assumption
that most crowd workers are the general public. Among them, we
suggest a few domains where the benefit could be further amplified.
For subjective domains where rules are decided based on collec-
tive human judgments (e.g., sentiment classification (P3)), the ML
practitioner can effectively understand the general crowd’s con-
verging opinions and identify a convincing distinction between
labels. For complicated domains where having a large number of
labels is necessary (e.g., receipt information extraction (P15)), the
practitioner can use DynamicLabels to identify potential edge cases.
If they have access to a group of domain experts, they could utilize
DynamicLabels for a comprehensive understanding of the data with
experts’ opinions. For example, P7 mentioned that if they could use
DynamicLabels with a group of graduate students, they want to try
label set building for topic classification of research papers.

7.2 Providing various forms of crowd feedback
and giving more control to ML practitioners
over them

In DynamicLabels, we present crowd feedback in various aspects
through overview, detailed view, and crowd label view). In our study,
ML practitioners flexibly utilized these features in combination
to meet their needs, which can change over the process of under-
standing issues and the evidence behind them. At the same time,
some participants expressed the need to see raw crowd feedback,
such as raw annotations of each image and crowd-made labels and
annotations before post-processing. Seeing that the participants
made use of multiple features of their choice and were not reluctant
to examine more data with increasing complexity, presenting them
with a more dynamic version of analyses that covers a wide variety
of crowd feedback will be useful in making confident refinements.

Also, while the collected feedback was provided to the ML prac-
titioners to explore, participants expressed the need for more direct
control over the collected feedback to reflect in the analysis. For ex-
ample, participants wanted to filter out trolling workers’ feedback
or give higher weights to certain workers to explore how the con-
flict changes with more reliable workers’ opinions valued. Inspired
by Jury Learning’s approach [14] in allowing the model builder to
compose a group of juries and their opinions, DynamicLabels can
have ML practitioners focus on a particular group’s perspectives to
construct the label set. Participants also wished to have more con-
trol over the crowd annotations by fixing annotations they thought
were incorrect to indicate that particular labels or images had been
examined. With this control, ML practitioners can make sure that
all feedback is considered and applied.

7.3 Expanding the support in DynamicLabels
for more advanced, automated label set
refinements

In the current design of DynamicLabels, the crowd generates their
feedback solely on their own, and refinement supports primarily
rely on the ML practitioners’ ability to make the final decision, such
as in the action consequencemodal where theML practitioner needs
to confirm the action. As our goal was to examine the end-to-end
effect of label set refinement with crowd feedback, we intentionally
chose a basic form of support for less complexity, which could be
further strengthened through existing approaches (e.g., LLMs and
visual analytics) and long-term adaptation.

To support a more streamlined crowd feedback generation pro-
cess, we can utilize large-language models for their ability to gener-
ate and synthesize to streamline the process. LLMs can collaborate
with the crowd to help alleviate the burden of having to generate
labels and annotate all assigned data by recommending labels or
providing initial annotation for the crowd to correct. This could
support the crowd to focus on generating helpful feedback. How-
ever, this must be carefully designed so that the initial feedback of
the crowd is not hindered by LLM’s work [22].

In supporting an informed refinement decision, the key is to opti-
mize between making an accurate decision and an efficient decision.
For supporting accurate decisions, annotations that need to be re-
annotated with the change of label could be automatically detected
and reflected, by using an approach similar to the error detection
approach in Bäuerle et al. [5] or LabelVizier [38]. For supporting
efficient decisions, we imagine an additional module where the
user’s exploration focus from provided visual analytics could be
more easily reflected in refinement suggestions. For example, if the
ML practitioner aims to minimize conflicting labels for their task,
the visual exploration could focus on detecting overlaps or potential
conflicts. For long-term or larger-scale use cases, the suggestions
could be made adaptive in terms of the core metrics and important
aspects of the data, as previous work [20, 25] emphasizes the benefit
of having diverse types of analyses for contextualized support for
different data and task type.

7.4 Designing a more human-centered model
with the crowd

As the label set constitutes the primary structure of the model,
aligning it with the user’s mental model earlier in the label set
construction stage can be effective in incorporating the potential
user’s mental model into the model. An interesting transition of the
participants’ behaviors we saw in session 2 was that they were con-
sidering and reflecting more on the crowd’s opinions, contrary to
session 1 where they focused on creating a clear distinction among
the labels for better model training. P12 commented, “In session 1,
I mainly built my label set considering the ML model by focusing
on the semantic aspects of the images. However, during session 2, I
additionally considered the annotators, and ended up splitting the
labels more and grouping the labels for easier understanding. P12
was worried about the task becoming difficult for the model, but
still thought of this consideration of the user valuable.

We believe that DynamicLabels’s impact can be enhanced far
beyond building label sets with the crowd opinion, but further in
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incorporating the crowd’s—or the real users’—opinions in the pro-
cess of building machine learning applications. For example, in the
dataset construction stage, the crowd can provide additional expla-
nations or rationales for each annotation, which can be utilized to
train the model to generate more human-like explanations or logic
in a similar way to humans. In addition, crowd feedback can be used
to collect large-scale opinions about the performance of large mod-
els and to come up with human-centered metrics to evaluate those
models. When crowd feedback is utilized in the later stages of model
building (e.g., model building, model evaluation), the crowd can
naturally learn about how the ML model functions while providing
feedback, which enables a natural human-AI interaction.

8 LIMITATIONS & FUTUREWORK
We acknowledge several limitations of this work and discuss possi-
ble future work.

System design. While we applied quality control methods by pro-
viding the crowd workers with tutorial tasks or warnings on poor
work, the accuracy of the collected feedback was lower than the ML
practitioners’ expectations. Subsequently, some participants lost
trust in the crowd feedback, hindering them from actively utilizing
the provided interface or ending upmaking passive refinements.We
believe that additional quality control methods such as an attention-
checking task with a gold standard [16] could improve the feedback
quality. Further, a more complex crowdsourcing workflow such as
worker deliberation methods (as proven effective in [27]) to identify
which specific cases are more diverse or require additional attention
could help the ML practitioner prioritize the core issues.

We also did not incorporate any machine learning approaches in
post-processing or generating the analyses of the review interface,
as they caused latency in the system. Future works could incor-
porate such approaches and investigate how to optimally utilize
automatic techniques for a more efficient yet well-thought-out label
set construction.

Study setting. In the study, we did not communicate the purpose
of the dataset or the model to the crowd, which would have led to
the feedback being inherently diverse. Including that information
would have resulted in higher quality and relevant feedback, but
also may have hindered the feedback from containing fresh and
natural perspectives. Investigating task designs to embed a clear
purpose of the ML practitioner but also extract fresh and diverse
feedback could be valuable as the next steps of this research. To
measure the effect of crowd feedback and the label set refinement
interface, we conducted a comparison study with many factors (e.g.,
the number of images used, amount of crowd feedback) controlled
throughout. Since participants exhibited different patterns in uti-
lizing crowd feedback, we wish to observe the long-term effects of
DynamicLabels by testing the system in a more realistic setting.

In addition, the study focused on investigating whether Dynam-
icLabels successfully supported an informed label set construction
process, and did not validate the quality of the label set. While
the ML practitioners were satisfied with the changes they made, a
larger, longer-term study with more iterations to investigate the
outcome of the workflow and its performance in the later processes
of the ML model construction is a future step.

9 CONCLUSION
In this paper, we present DynamicLabels, a system that supports
the process of label set construction with crowd feedback and inter-
active feedback analysis. Our study with 16 participants shows that
DynamicLabels enables a more exploratory, flexible, and structured
refinement process with fine-grained analysis and crowd-made la-
bels. The crowd feedback helped the participants understand the
general crowd’s opinions and the weaknesses of their label set, and
actively utilized the crowd-made labels for refinements. DynamicLa-
bels suggests a new approach to building label sets for ML models,
by incorporating the crowd’s—or the general user’s—feedback to
reflect the user’s diverse opinions and perspectives.
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A APPENDIX
A.1 Participant Demographics
In Table 6, we describe detailed demographics for each participant.

Table 6: Detailed demographic information of each participant including occupation, prior domain of experience, and task
order with dataset, condition, and task defined. We provided the two datasets to the users and asked them to identify a task
before the beginning of Session 1. For occupation, Grad indicates graduate student, Undergrad indicates undergraduate student,
and Industry indicates industry workers.

PID
(Occupation) Prior domain of experience Task Order: Dataset (Condition, Task Defined)

P1
(Grad) Action Classification (1) Scene (Baseline, Background video generation from input script)→

(2) Flier (DynamicLabels, Events suggestions from user preference)
P2

(Industry) Image Segmentation (1) Scene (Baseline, Display scene image which suits the atmosphere)→
(2) Flier (DynamicLabels, Reference searching for flier creators)

P3
(Industry) Sentence Structure Classification (1) Flier (Baseline, Searching for similar events through category)→

(2) Scene (DynamicLabels, Searching for similar scene images)
P4

(Undergrad) Footprint Classification (1) Scene (DynamicLabels, Searching for similar scene images)→
(2) Flier (Baseline, Reference searching for design elements)

P5
(Industry)

Text Classification;
Stress Level Prediction

(1) Flier (DynamicLabels, Events suggestions from user preference)→
(2) Scene (Baseline, Recommending computer wallpapers)

P6
(Grad)

Sensor Data Classification;
Speech Data Classification

(1) Scene (Baseline, Scene detection for automatic image editing)→
(2) Flier (DynamicLabels, Searching for similar events through category)

P7
(Grad) Topic Evaluation Classification (1) Flier (Baseline, Events suggestions from user preference)→

(2) Scene (DynamicLabels, Automatic categorization of captured images)
P8

(Grad)
Video Classification;

Bounding Box Detection
(1) Scene (DynamicLabels, Data for text-to-image generation model)→
(2) Flier (Baseline, Estimating cost for flier characteristics)

P9
(Undergrad) Image Classification (1) Flier (DynamicLabels, Recommending other events through category)→

(2) Scene (Baseline, Searching for similar scene images)
P10

(Undergrad) Tweet Emotion Classification (1) Flier (DynamicLabels, Searching for similar events through category)→
(2) Scene (Baseline, Location detection from scene images)

P11
(Grad) Pattern (Trajectory) Classification (1) Flier (Baseline, Searching for similar events through category)→

(2) Scene (DynamicLabels, Location detection from scene images)
P12

(Industry) Diagnosis Classification (1) Flier (Baseline, Searching for similar events through category)→
(2) Scene (DynamicLabels, Region identification from scene images)

P13
(Industry)

Emotion Classification;
Video Classification

(1) Scene (DynamicLabels, Region identification from scene images)→
(2) Flier (Baseline, Interpretation of events with text and image)

P14
(Grad)

Disease Classification Task;
Mask Detection

(1) Scene (Baseline, Recommending computer wallpapers)→
(2) Flier (DynamicLabels, Searching for similar events through category)

P15
(Grad) Emotion Classification (1) Flier (DynamicLabels, Searching for similar events through category)→

(2) Scene (Baseline, Categorization for scene image searching)
P16

(Industry) Text Intention Classification (1) Scene (DynamicLabels, Region identification from scene images)→
(2) Flier (Baseline, Categorization of fliers for advertisement display)
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A.2 Label Set Refinement Logs
In the below table (Figure 10, we describe the number of groups and labels for each participant in sessions 1 and 2, and the refinement
actions they made in between.

Participant

Natural Scene Images

Participant

Event Flyers

# of Group # of Labels # of Groups # of Labels

Session 1 Add Delete Revise Session 2 Session 1 Add Delete Revise Session 2 Session 1 Add Delete Revise Session 2 Session 1 Add Delete Revise Session 2

Baseline

P1 6 0 0 0 6 10 2 2 5 10 P3 0 0 0 0 0 13 3 8 2 8

P2 2 0 0 0 3 8 3 1 3 10 P4 2 2 1 0 1 7 1 2 5 6

P5 0 0 0 0 0 3 0 0 3 3 P7 0 0 0 0 0 5 1 0 1 6

P6 0 0 0 0 0 5 1 0 1 6 P8 0 0 0 0 0 9 0 1 1 8

P9 0 0 0 0 0 5 3 1 2 7 P11 4 0 0 0 3 16 4 9 2 11

P10 2 1 1 0 2 9 6 7 0 8 P12 0 0 0 0 3 6 8 3 2 11

P14 0 0 0 0 0 4 0 0 4 4 P13 0 0 0 0 0 9 0 0 6 9

P15 2 0 0 1 2 7 1 2 2 7 P16 0 1 1 0 0 12 2 1 1 13

Dynamic 
Labels

P3 1 0 0 0 1 7 0 0 0 7 P1 0 0 0 0 0 14 3 2 0 15

P4 2 2 1 0 3 8 4 3 2 9 P2 0 3 0 0 3 14 1 0 10 15

P7 0 0 0 0 0 11 2 3 1 10 P5 1 0 1 0 0 7 2 2 0 7

P8 0 0 0 0 0 7 1 3 1 5 P6 0 0 0 0 0 11 2 3 1 10

P11 2 0 0 0 2 6 0 1 1 5 P9 0 0 0 0 0 11 0 0 3 11

P12 0 0 0 0 0 6 4 4 0 7 P10 0 1 0 0 1 6 4 0 2 10

P13 0 0 0 0 0 5 2 2 0 5 P14 0 0 0 0 0 4 6 4 0 6

P16 4 1 1 0 4 11 2 4 0 9 P15 0 1 0 0 1 7 2 1 3 8

Figure 10: Number of groups and labels in sessions 1 and session 2 for each participant in each data type, and the number of
groups and labels added/deleted/revised in between the sessions.

A.3 Example Label Set Refinement
Figure 11 demonstrates P15’s initial and final label set, as well as the refinements.

sports

dance

music

education

arts

social

party

Session 1 Label Set Session 2 Label Set

sports

dance

events

education

arts

social

books

music

job/career
education

Groups LabelsLabels

Add

Revise

Delete

Figure 11: An illustrative example of how one participant’s label set changed in sessions 1 and 2 (P15). Two labels (education,
social) are deleted, a label is revised (from social to events), and two labels (books, job/career) are added and grouped with a
newly added group (education)
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