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Figure 1: Cells, generators, and lenses is a design framework for object-oriented interaction with large language models (LLMs).
Input units, model instances, and output spaces are represented as interactive objects: cells, generators, and lenses, respectively.
By integrating these objects in their designs, designers can create interfaces that support users to flexibly create, modify, and
link these objects to iterate and experiment with diverse configurations for the generative process of LLMs.

ABSTRACT
Large Language Models (LLMs) have become the backbone of nu-
merous writing interfaces with the goal of supporting end-users
across diverse writing tasks. While LLMs reduce the effort of man-
ual writing, end-users may need to experiment and iterate with
various generation configurations (e.g., inputs and model parame-
ters) until results meet their goals. However, these interfaces are not
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designed for experimentation and iteration, and can restrict how
end-users track, compare, and combine configurations. In this work,
we present “cells, generators, and lenses”, a framework to designing
interfaces that support interactive objects that embody configura-
tion components (i.e., input, model, output). Interface designers can
apply our framework to produce interfaces that enable end-users to
create variations of these objects, combine and recombine them into
new configurations, and compare them in parallel to efficiently it-
erate and experiment with LLMs. To showcase how our framework
generalizes to diverse writing tasks, we redesigned three different
interfaces—story writing, copywriting, and email composing—and,
to demonstrate its effectiveness in supporting end-users, we con-
ducted a comparative study (N=18) where participants used our
interactive objects to generate and experiment more. Finally, we
investigate the usability of the framework through a workshop with
designers (N=3) where we observed that our framework served as
both bootstrapping and inspiration in the design process.
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1 INTRODUCTION
Large language models (LLMs)—e.g., ChatGPT [70], GPT-4 [71],
PaLM [14], LLaMa [89]—have enabled users to write without actu-
ally writing. Users can delegate the manual effort of producing text
to these models to increase productivity [11], inspire new ideas [12],
or quickly “sketch” passages [16]. Besides shouldering the effort of
producing text, LLMs can also enhance auxiliary processes such
as editing [25, 52], feedback exchange [43, 91], or reflection [20].
However, when using these models, users are faced with a new
task: manually configuring the model’s generative process to pro-
duce desired outputs. Namely, users need to compose the inputs
to the model [41, 84] (e.g., prompt engineering [102]) and adjust
the model’s parameters [53] (e.g., increase the temperature to gen-
erate more out-of-distribution text). Furthermore, users may want
to configure how they view and explore the generated outputs
based on their goals and tasks [18, 64]—e.g., using a list to carefully
read specific edits or a spatial visualization to quickly compare the
similarity between rough drafts. Thus, to accomplish their writing
goals with LLMs, users need to configure the whole generation
process—input, model, and output.

However, due to the black box and non-deterministic nature of
LLMs, users can struggle to interpret why the models generated
certain outputs and how one can “correct” them [78]. Users may
then need to repeatedly experiment with generation configurations
to understand their effect [15, 61, 87]—expending significant effort.
In creative tasks, iteration (i.e., repeatedly developing an idea) and
experimentation (i.e., enumerating and testing diverse ideas) are
integral to understanding and exploring the design space [19, 80].
Thus, beyond the goal of understanding the models, users need to
iterate and experiment with generation configurations to open up
the vast space of writing alternatives that they can produce.

Despite the user needs for iterating and experimenting, LLM-
powered writing interfaces largely adhere to the design of conven-
tional text editors. These interfaces typically provide end-users with
only one text area for inputs, which is frequently shared with the
output, and one control panel to configure global settings for the pa-
rameters [1, 69, 85, 109]. To test different inputs and parameters in
this type of interface, the user has to try each configuration one-by-
one while overwriting previous configurations. As configurations

are overwritten, the end-user cannot store previous configurations
(i.e., versioning) to return to them if future iterations do not result
in satisfying outputs [97], which introduces friction and hinders
experimentation. Furthermore, these interfaces do not allow end-
users to prototype configurations in parallel [24], which can create
hurdles for comparing the effects of different configurations or
combining aspects of the configurations for further iteration and
experimentation. These limitations call for interfaces to move away
from the designs of conventional text editors, and move towards a
new paradigm that focuses on facilitating end-users’ configuration
of LLMs’ behavior.

In this work, we introduce a design framework for interfaces that
support object-oriented interaction with LLMs through cells, gener-
ators, and lenses (Fig. 1). Unlike existing interfaces where end-users
interact with one input area, parameter setting, and output space,
our framework proposes how interfaces can reify [8] the generation
components so end-users can compose configurations by interact-
ing with persistent, multiplicable, and composable objects. Within
this framework, each object becomes its own configuration sandbox
where end-users can experiment and iterate with changes, without
affecting other configurations that they have created. Furthermore,
our framework describes how interfaces can support end-users to
flexibly assemble and reassemble these objects into diverse con-
current configurations—supporting parallel prototyping [24] and
mix-and-match between configurations. Interface designers can
use the framework to create interfaces that support their end-users’
iteration and experimentation in their target writing tasks.

To demonstrate the value of our framework, we evaluate it ac-
cording to three dimensions: generalizability (can it be applied to
diverse writing tasks?), effectiveness (can it support end-users’ it-
eration and experimentation?), and usability (can designers use
and apply our framework?). First, to demonstrate how our frame-
work can generalize, we applied it to design three interfaces that
support diverse tasks: (1) story writing, (2) copywriting, and (3)
email composing. Second, to evaluate effectiveness, we conducted
a controlled study (N=18) where we investigated how end-users’
iteration and experimentation is affected by the ability to create and
compose multiple configuration objects. We observed that, when
using our framework-based interface, participants were encouraged
to generate more outputs, experiment with more inputs, and use
generated outputs more substantially in their final writing. Finally,
to demonstrate the usability of our framework, we conducted a
workshop where we invited designers (N=3) and asked them to
re-design existing writing interfaces with our framework. We found
that the framework bootstrapped designers by illustrating concrete
ways to design interactions for iteration and experimentation, and
inspired them to reify other aspects of their interfaces to further
support end-users.

Our framework aims to guide the design of a new line of inter-
faces that enable object-oriented interaction with LLMs to support
end-users’ iteration and experimentation with generation config-
urations. To bootstrap the design and development of interfaces
based on our framework, we release our interface components
for cells, objects, and lenses as an open-source ReactJS library:
https://github.com/kixlab/llm-ui-objects.
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2 BACKGROUND AND RELATEDWORK
To exhibit the broader design space and the underlying shared
themes, we survey interfaces for a broad range of generative models.
Then, as our work focuses on LLMs, we review work on interfaces
for these models. Finally, we review work on human-AI writing
tools.

2.1 Interactions with Generative Models
To help users to better leverage the potential of generative models,
a significant amount of research has investigated how users wish
to use these models. This body of work demonstrated that the
“ideal” form to use these models changes with the type of user,
their goals, and the task. For example, several studies demonstrated
that it is integral for the user to lead the model [61, 68], while
others demonstrated that there are benefits in the model taking
the lead [18, 37]. Beyond who leads, research has identified several
other trade-offs: producing more generations increases exploration
but decreases efficiency [11], and more unexpected generations can
provide inspiration but can also seem less useful [18, 53, 108]. Due
to these user-dependent factors, prior work [31, 35, 41] argues that
how generative models are used should adapt according to users’
changing goals. This highlights the need to support user-driven
configuration in interfaces for generative models.

Existing interfaces for generative models have focused on fa-
cilitating the configuration of each component of the generation
process: input, model, and output. On input, GANSliders [22] and
GANSpace [40] support goal-driven input customization for GANs
through visual feedforward sliders and semantic controls, respec-
tively. Also, to facilitate input iteration, Opal [59] and 3DALL-E [60]
modularize user inputs into keywords and provide keyword sug-
gestions to facilitate composition of inputs for image generation.
Regarding model parameters, Louie et al. [61] and Zhou et al. [118]
provide more interpretable parameters to help users control gener-
ated outputs. More recently, TaleBrush [16] supports more seamless
control over parameters by allowing users to sketch how the param-
eter should change or “flow” through a story. Finally, on outputs,
DreamLens [64] allow users to navigate hundreds of generated 3D
models through multiple, customizable views (e.g., gallery view,
attribute grid view). While these approaches support configuration
of each component in the generative process, no work has investi-
gated how to support configuration of component combinations.
Our work proposes a framework that guides the design of inter-
faces that can facilitate inter-component customization and can be
extended to support these prior approaches for intra-component
customization.

2.2 Interfaces for Large Language Models
Given a prompt as input (i.e., an instruction that may contain ex-
amples of expected outcomes), LLMs can generate text that follows
this prompt. and even perform previously unseen tasks through
zero and few-shot learning. Due to the opportunities presented by
these capabilities, HCI researchers have designed an assortment of
interfaces that leverage LLMs to support a variety of user tasks be-
yond writing, such as information seeking and consumption [5, 92],
learning [55, 57, 63], and prototyping [49, 74, 76]. However, as the
effectiveness of LLMs is significantly affected by minor variations

in the input prompts, researchers have also proposed interfaces
to facilitate the task of creating these inputs (i.e., prompt design
or engineering). PromptMaker [46] and BotDesigner [112] allow
users to create prompt templates and test them with different in-
puts. Expanding on these ideas, PromptIDE [83] allows the user
to automatically create and evaluate prompt variations, and Scat-
terShot [101] supports an iterative loop of evaluating prompts and
identifying effective examples to add to the prompts. Beyond sin-
gular prompts, AI Chains [102] and PromptChainer [100] allow
users to iterate on multi-step prompts using interactive chains of
prompts.

While our work and these approaches hold the same goal of
supporting iteration with LLMs, they focused only on the input
component of the generative process—e.g., users cannot test model
parameters in PromptIDE [83]. Additionally, all of these existing
approaches propose point solutions to be used by developers and
ML practitioners during prompt engineering. On the other hand, our
work proposes general guidelines for interfaces that are designed
to support end-users’ iteration on all three generation component
during writing tasks.

2.3 Human-AI Writing Support Tools
Advancements in natural language processing (NLP) has enabled
the creation of tools that can support a diverse array of writing tasks
and processes. For example, researchers have proposed human-AI
writing tools for story writing [16, 18, 109], screenplay writing [66],
poetry [33], and argumentative writing [91, 115]. Each of these tools
leverages AI to support different aspects of the writing process. A
large portion of these approaches provide automatic continuations
to enhance writers’ productivity [18, 53, 82] with several of these
allowing writers to control the type of continuations that are gen-
erated by providing additional instructions [21, 109] or through
visual sketches [16]. Other tools support auxiliary processes dur-
ing writing such as ideation [31, 32, 75, 116], revision [25, 56], and
reflection [20, 91]. Our work builds on these prior literature by
proposing a general design framework for human-LLM writing
tools that can be applied to a variety of writing tasks with the goal
of supporting the processes of iteration and experimentation.

3 CELLS, GENERATORS, AND LENSES
To design writing interfaces that support iteration and experimen-
tation with LLMs, this work proposes a design framework that
conceptualizes the components of generation configurations as in-
teractive objects. The framework describes how to design interfaces
that encapsulate these objects and the interactions that can be sup-
ported on and between these objects. Prior work has demonstrated
how elevating task elements (e.g., visual attributes [105], spatial
selections [106], text passages [39]) into interactive objects can sim-
plify and facilitate users’ workflows [7, 17, 103, 107]. By supporting
object-oriented interaction, interfaces can allow end-users to main-
tain task elements, which would have previously been transient,
as persistent objects that can be reused and composed into new
combinations [104]. Further, with persistent and composable ob-
jects, end-users can combine these into multiple parallel prototypes,
which could prevent fixation and encourage experimentation [44].
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Additionally, if end-users are able to create and maintain alterna-
tives in parallel, they can readily compare these alternatives to solve
problems [30] and understand the task in greater depth [9].

Inspired by the advantages of reifying task elements into reusable
objects [8], in this work, we investigate how to reify the compo-
nents of generation configurations into persistent, multiplicable,
and composable objects. Specifically, we first conducted a system-
atic literature survey of prior work on interactions with LLMs to
identify user needs, challenges, and design insights. Furthermore,
we also review work on other types of generative models as HCI
researchers have investigated diverse models prior to LLMs and
these share various similarities. Then, based on this survey, we
propose a design framework for interactive objects for LLMs that
consists of cells, generators, and lenses. These three objects respec-
tively represent the input, model, and output—the main configura-
tion components for LLMs. By employing our design framework,
designers can create interfaces that allow end-users to (1) create
and maintain multiple variations of these generative components as
objects, and (2) link them to each other to assemble and re-assemble
various configurations in parallel.

3.1 Cells
Cells (Fig. 2) are object representations of discrete input units—i.e.,
fragments of text. For example, a cell can represent a sentence, a
phrase, or a word. With respect to LLM prompts, a cell can also
represent an instruction line (e.g., a specification) or an example
of the expected behavior. Our decomposition of input into cells
is analogous to how computational notebooks decompose code
into cells, which has been shown to be effective in supporting
flexible customization and testing [58, 96]. Below, we describe and
justify two interactions that designers should support regarding
cells, create and assemble.

3.1.1 Create. Users can create new cells to populate with differing
inputs, or copy existing cells and edit them into various versions
of the same input. With existing interfaces, users have to over-
write previous inputs when testing new variations as they are
frequently only presented with a single input area, usually a text
box [1, 69, 109]. In contrast, by interacting with cells, users can

create

Cell

modify

copy

assem
ble

Figure 2: Cells are object representations of input units (e.g.,
sentences). To create variations of inputs, users can create,
copy, modify, and assemble cells. Cells that have been assem-
bled together are shown connected by blue edges.

create and maintain various generation inputs that they can ex-
periment with—allowing them to more easily answer their own
“what if” questions about the effect of inputs on outputs [56, 84, 86].
For example, if a user is composing a poem generating prompt
that specifies requirements such as topic and form, they can create
alternative cells for each requirement (e.g., one cell for “haiku” and
one for “sonnet”). In certain tasks, the generated output in one
interaction turn can become part of the input for the next turn (e.g.,
generating continuations that are added to a story). In these cases,
the generations themselves can become cells and allow the user
to test how different generated outputs affect future generations
(e.g., generating alternative storylines). As multiple text fragments
can occupy significant screen space, designers can provide mecha-
nisms to “minimize” cells in their interfaces. However, to prevent
occluding the content of cells and hindering users’ access [8], cell
minimization should be designed such that it hints at the content
by, for example, only decreasing font size or summarizing the text
into keywords.

3.1.2 Assemble. Our framework suggests that interfaces should
split the input text into interactive cells as prior generative in-
terfaces showed that partitioning can facilitate iteration on in-
puts [4, 10, 94, 102]. As units, cells can then be assembled together
into generation inputs (e.g., sentences into an essay and require-
ments into a prompt) which allows users to quickly assemble input
variations [6, 59] or to mix-and-match the variants [101, 111]. Fi-
nally, disentangling inputs also helps users to “lock” portions of the
input and experiment with the effects of each portion separately—
encouraging systematic testing [112]. This portion-wise experimen-
tation can allow users to interactively align generations with their
intentions [2, 117] and to more intuitively gain an understanding
of the models [78, 110]. Designers can provide different forms of
interaction for cell assembly based on the task and how cells are
used. For example, the user could assemble cells by dropping them
into a container, by selecting cells from multiple parallel configu-
rations to mix-and-match, or by drag-and-dropping between cells
to create the links. As cells can represent different types of text
fragments (e.g., line, phrase), interfaces should have pre-defined
rules that dictate how these text fragments are concatenated once
cells are assembled. For example, an interface that represents lines
as cells should assemble them by concatenating the text with line
breaks, and one that represents phrases as cells should concatenate
them with spaces.

3.2 Generators
Generators (Fig. 3) are object representations of model settings (i.e.,
type of LLM and parameter values).

3.2.1 Create. With generators, the user can create several model
instances and separately modify each one (i.e., choose a different
model and/or parameters) to experiment with their effects. Prior
work on various types of generative models has revealed that dif-
ferent models and parameters can satisfy different user needs as
they can produce different results [38, 48, 62]. Regarding writing
and LLMs, Lee et al. [53] found that different parameter settings
can fulfill different writing goals (e.g., diverging vs converging),
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and Chung et al. [15, 16] argued that interfaces should facilitate pa-
rameter adjustment to support writers’ control over the generative
process. But, in existing interfaces, users cannot modify the under-
lying parameters [83, 109] or can only customize one global set of
parameters [1, 33, 34, 61, 69, 81]. In comparison, designing inter-
faces with generators can allow users to simultaneously maintain
several model instances, where each addresses a different sub-task
or need [41]. Additionally, as the effect of configuration changes
cannot be fully predicted due to the black box and non-deterministic
nature of LLMs, users need to iteratively test different configura-
tions and, as they iterate, may want to return previously tested
configuration [97]. By reifying model configurations into gener-
ators, users are able to use these objects to maintain previously
promising configurations—i.e., versioning. Similar to cells, genera-
tors should also be designed such that they visually hint at their
parameter settings and also support efficient access to edit these
parameters.

3.2.2 Link. Generators can be freely linked to different cells or cell
ensembles to produce outputs. These links can be many-to-many
to help the user test various combinations of inputs and model
parameters. For example, users can link the same cell to multiple
generators to compare the effects of different parameter settings,
or link multiple cells to one generator to experiment with a range
of inputs. Designers can create interfaces that make the linking
process explicit (i.e., the user drag-and-drops between cells and
generators to create links) or implicit (i.e., the user selects cells to
use as input and then clicks on a generator to use its configurations
to generate).

3.2.3 Track. As objects, generators can also keep track of their
individual history of parameter changes, generated outputs, and
linked cells used as input. To support this history, interfaces can
log all of the generation events (i.e., input text, parameter settings,

Generator

create

parameter T

parameter T

generations

parameter N
lin

k

modify

track

E T

P N

E T

P N

E T

P N

Figure 3: Generators are object representations of generative
model instances (i.e., the type of model and its parameters).
Users can create generators, modify their parameters, and
then link them to one or multiple cells to generate outputs.
Generators display their parameter settings in their faces
(represented as letters in the diagram). Additionally, genera-
tors can maintain their own history to help users track how
parameters have increased and decreased, and what genera-
tions resulted from these changes.

and an array of generated outputs) for each generator. With this
tracking, users can examine and explore their iterative process to
carry out sensemaking on how parameters affected the resulting
generated outputs [3].

3.3 Lenses
Lenses (Fig. 4) are object representations of spaces that represent and
visualize the generations produced. For example, these can include
a list [18], a gallery [88], or a real-time confidence visualization [65].

3.3.1 Link. By linking generators to lenses, users can represent
the generation outputs in diverse ways. Effective representations
of the generations support the exploration of the generations and
sensemaking of the models’ capabilities [28, 95, 114, 118]. How-
ever, as revealed by work on human-AI writing interfaces, the
“most effective” representation can be dependent on two dimen-
sions. First, the user’s needs: when brainstorming storylines, for
example, visually representing the generated story arc can help
with sensemaking [16] but, when choosing the next sentence for
a story, a list of generations allows the user to concretely com-
pare them [31, 109]. Second, the generation amount (i.e., length
or number of alternatives): as they write, users may want to see
longer or more alternatives and, due to the increased reading cost,
interfaces need to provide user’s with different ways to parse and
examine these [11]. Thus, our framework suggests interfaces to
include a variety of lenses to help users customize how they visual-
ize and explore generations (e.g., linking a generator to a suitable
lens, switching between lenses, or comparing generators by linking
them to one lens).

3.3.2 Assemble. Lenses can also be assembled together to view the
same generation outputs through multiple representations [64, 82].
For example, a list lens and a sentiment scatterplot lens (i.e., predicts
sentiment of text) could be joined to allow the user to explore both
the content and sentiment of generated text. As users consider
various characteristics or metrics when making sense of generation
outputs [23], allowing them to assemble lenses can support more
comprehensive sensemaking.

Lens

assemble

E T

P N

E T

P N

E T

P N

lin
k

Figure 4: Lenses are object representations of output spaces
that represent and visualize generations from linked genera-
tors (e.g., a list or a 2D grid). Lenses can be assembled together
to visualize the same generations in multiple ways.
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4 APPLYING THE FRAMEWORK
To illustrate how our framework can generalize to diverse writ-
ing tasks, we applied it to design and develop three interfaces for
different tasks: story writing, copywriting, and email composing.
Specifically, we exhibit how cells, generators, and lenses can be
adapted into interface design to support end-users iteration and
experimentation in the context of specific tasks. We designed these
interfaces based on existing ones that support the same tasks to
demonstrate how the interaction changes when our framework
is applied. To gain a preliminary understanding about how end-
users could use our interfaces to iterate and experiment, we invited
two participants to use each interface (total N=6, 3 female, 3 male),
where all participants had previous writing experiences and at least
a basic understanding of machine learning (ML). We describe these
preliminary observations after describing each interface. Further-
more, through the development of these interfaces, we modularized
UI components for cells, generators, and lenses and have packaged
these into an open-source ReactJS library1. In contrast to frame-
works such as LangChain [13] that facilitate the development of
backends for LLM applications, we hope that this library can foster
wider adoption of our framework by facilitating the development
of frontends for LLM-powered interfaces.

4.1 Copywriting Interface
Our copywriting interface (Fig. 5) allows end-users to create adver-
tisements from a couple of product specifications. The interface was
designed based on copywriting tools [18, 45, 99] that provide forms

1https://github.com/kixlab/llm-ui-objects

where end-users specify requirements for the desired advertise-
ment (e.g., tone, audience) and an LLM then attempts to generate it.
By offloading the effort of writing to the model, end-users can use
these tools to produce various alternatives for their advertisements.
However, as end-users can only interact with a single form, every
edit overwrites previous specifications and can hinder end-users’
abilities to recall previous attempts or to iterate on these attempts
by combine them.

To address these issues, we applied our framework to design a
new copywriting interface. In this interface, end-users can create
and maintain specification alternatives as cells, and then assemble
these into new combinations (Fig. 5a). To allow end-users to test var-
ious model parameters, the interface allows them to create multiple
generators, each with its own parameter settings (Fig. 5b). Finally,
to help end-users navigate the advertisements they generated, the
interface provides two lenses that are assembled together to al-
low navigation based on content, similarity, sentiment, or emotion
(Fig. 5c).

4.1.1 Composing the Specifications. In our copywriting interface,
end-users compose specifications for their desired advertisement
(e.g., product description, tone, keywords) by creating and editing
cells in the prompt area (Fig. 5a). In each line, the user can specify
a different specification type (e.g., “tone”), and then create multi-
ple variations for that specification by adding or copying cells in
that line (e.g., “informative, friendly” or “comical, humorous”). By
selecting a cell for each line or not selecting any for some lines, the
user can mix-and-match different specification sets to use as inputs
when generating.

Figure 5: The copywriting interfaces allows end-users to provide a set of specifications to generate advertisements by creating
and editing cells (a). In the generator tray (b), end-users can create multiple generators and modify their parameters (d-1). Then,
by clicking on a generator, end-users can generate advertisements that are presented in a list (c-1) or a 2D space (c-2), and rated
according to their predicted emotion or sentiment. To look back on how the parameters of each generator where changed and
what outputs it generated, end-users can also browse through the history of each generator (d-2).

https://github.com/kixlab/llm-ui-objects
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4.1.2 Generator Tray. Under the prompt area, the interface shows
the tray of generators where end-users can create, copy, and main-
tain multiple settings for the model’s parameters (Fig. 5b). Each
generator presents four parameters that the user can modify: engine
(i.e., the model type and version), temperature (i.e., the degree to
which out-of-distribution tokens are generated), presence penalty
(i.e., penalty on the probability of generating tokens that have al-
ready been generated), and best of (i.e., number of candidate outputs
to generate from which the model returns the “best”).2 Generators
show the current value for each parameter in its face and users can
change these value by clicking on a parameter to reveal a control
panel (e.g., dropdown menu, slider). By clicking on a generator, the
user can start generating outputs with that generator’s parameters
and the currently selected specifications as the input, which are
concatenated with line breaks. To look back on how parameter
changes may have affected the outputs, end-users can open the
history panel to browse through the generator’s individual log of
parameter changes and generated outputs (Fig. 5d-2).

4.1.3 Lenses: List, Space, and Rating. Initially, end-users are pre-
sented with the list lens (Fig. 5c-1, left) which presents generations
as a list of text entries that are grouped at two levels: the input that
was used, and the parameters that were used. This two-level group-
ing can help end-users distinguish where they made changes to the
generation configurations and compare generations across groups.
To explore generations based on their similarities and differences,
end-users can toggle the space lens (Fig. 5c-2, left) where outputs
are presented as dots in a 2D space where closer dots represent
more semantically similar outputs. Next to the toggleable list-space
lens, end-users can view a different representation of the outputs
through the rating lens (Fig. 5c-1 and Fig. 5c-2, right). The rating
lens provides a high-level impression of the generated advertise-
ments based on their emotion (i.e., joy, sadness, anger, optimism)
or sentiment (i.e., positive, negative, neutral)—the user can toggle
between these two options. If the end-user finds a generated adver-
tisement that they like, they can click on it to copy it to the text
editor (Fig. 5e) where they can then edit and combine it with other
generations.

4.1.4 Use Cases. For the copywriting interface, the two partici-
pants were asked to write advertisements for two imaginary prod-
ucts: an AI-based language teaching service, and a super-insulated
tumbler. To generate fragments that had the “tone” that they desired,
participants created various specifications in individual cells: the
portion of the advertisement that should be generated (P1, P2), the
target audience (P2), or adding generated fragments as examples
(P1). Further, participants experimented with various specification
sets by copying, modifying, and assembling different cells. By ex-
perimenting with the cells and generators, participants were also
able to better understand the effect of inputs and parameters on the
generations. For example, at the beginning of the session, P4 tried
only experimenting with one cell that had “keyword” as the prefix,
and mentioned how this allowed her to learn how that specific cell
affected the output. Also, both participants iterated by alternating

2Among the parameters provided by the OpenAI API, these were identified to be
the most useful parameters by end-users in our preliminary studies.

their experimentation between cells and generators: experiment-
ing with generators until outputs appeared adequate, reusing that
generator with different cells until outputs defied expectations, and
then debugging by testing different generators again—resembling
more systematic testing [112]. Regarding the lenses, both partic-
ipants used the rating lens to quickly compare generations from
diverse configurations, and then used the list lens to identify specific
phrases that they liked.

4.2 Email Composing Interface
During email composition, as the end-user frequently has a con-
crete idea of what to write, the LLM can instead help with how
to write it (e.g., changing the tone, paraphrasing). To support this,
existing LLM-powered interfaces for emails [27, 52] provide des-
ignated “brushes” that allow end-users to select text and perform
specific generative functions on the selected text [47]. However,
these existing interfaces do not allow end-users to design their own
LLM-powered brushes to satisfy their personal needs.

To enable greater customization, we applied our framework to
envision an email composing interface (Fig. 6) that packages cells,
generators, and lenses into brushes—allowing the user to design
their own reusable LLM-powered brushes by iteratingwith these ob-
jects (Fig. 6b). For each brush, end-users can assemble cells to specify
the brush’s purpose (Fig. 6c), set multiple generators, and choose
their preferred lens to show the generated outputs (Fig. 6e). We
considered that, compared to copywriters, email writers would be
more task-driven and less inclined to explore various cell-generator-
lens permutations. Thus, we limited linking to one-to-many where
each brush can only house one cell ensemble and one lens, but
multiple generators. This design limits end-users to consider one
input alternative at a time but, with a single click of a brush, they
can simultaneously test multiple generators and compare them in
one visual space.

4.2.1 LLM-Powered Brushes. To the right of the text editor (Fig. 6a),
the user can create and manage the LLM-powered brushes (Fig. 6b).
To use a brush, the user simply clicks on the corresponding button
or, if a brush performs actions on user-selected text (e.g., paraphrase
a chosen phrase), the user should first select text in the editor. To
modify the configurations behind a brush, the user can hover over
a brush and click on the right arrow to display its configurations.

4.2.2 Composing the Prompt. Similarly to the copywriting sys-
tem, end-users configures the input for the brush by using cells
to represent individual specifications (Fig. 6c). A difference is that
this interface provides two additional types of cells: “selection” and
“whole text”. When the input is assembled, a “selection” cell is trans-
formed into an input line by concatenating the user-written prefix
with text that the user selects in the editor, and a “whole text” cell
concatenates the prefix with all of the text in the editor.

4.2.3 Generator Set. Each brush can hold several generators (Fig. 6d),
which function like those in the copywriting interface. When a
brush is used, the interface generates outputs with the parameters
of each contained generator—with the same specification cells as
input.
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Figure 6: In the email composing interface, end-users can write an email in the text editor (a), and create dedicated LLM-powered
brushes that can be configured to perform specific generative functions (b). For each of these brushes, the user composes
an instruction prompt with cells (c), sets multiple generators (d), and selects between the list, space (e-3), or plot lenses (e-2)
to present the outputs. When the user clicks on a brush, the model runs according to the designed configuration, generates
outputs, and displays these in a hovering lens.

4.2.4 Lens: List, Space, and Graph. After an LLM-powered brush
is clicked, the generated outputs are shown in a lens that hovers
over the text editor. For each brush, the user can choose between
three lenses: list, space, and plot. The plot lens (Fig. 6e-2) presents
generations as dots in a scatter plot where the axis represents
the output’s score for a sentiment or emotion class. By setting
what class to use for each axis, the user can choose their preferred
“metrics” to explore the outputs with (Fig. 6e-1).

4.2.5 Use Cases. For the email writing interface, the two partici-
pants were instructed to write an email to a professor apologizing
for not attending lectures, but asking for a passing grade in the
course. Both participants mostly designed LLM-powered brushes
that refined sentences or phrases in their emails (e.g., “change the
text to be more persuasive” or “change text to be more professional” ).
For each brush, both participants createdmultiple generators as it al-
lowed them to quickly identify the parameters that worked best for
that brush’s function—supporting efficient testing and evaluation.
Compared to the other participant, one participant tested larger
sets of generators simultaneously and was able to more quickly
pinpoint what component of the pipeline he needed to iterate on.

4.3 Story Writing Interface
LLMs have also been employed for story writing. Various inter-
faces [1, 43, 69, 109] provide end-users with a text editor where
they can write a story and then use an LLM to generate continu-
ations for their story. While these interfaces can help end-users
to quickly develop one plotline, they can struggle to manage and
iterate on multiple plotlines in parallel as they would have to juggle

alternatives in and out of the single editor. However, as identified
by Dow et al. [24], parallel prototyping can prevent fixation and
lead to higher quality and creative outputs.

By applying our framework, we introduce a story writing inter-
face (Fig. 7) that partitions stories into cells to enable writers to
assemble these into branching and parallel plotlines (Fig. 7b). In
this interface, end-users can experiment with and compare configu-
rations by linking cells to multiple generators (Fig. 7c) and linking
multiple generators to the same lens (Fig. 7d-3).

4.3.1 Branching and Parallel Paths of Cells. Next to the text editor,
the user can view the tree representation of cells (Fig. 7b). Each
cell represents a sentence and it is presented only with a keyword
extracted from its content to prevent the screen from becoming
excessively busy. Paths down the tree represent ensembles of sen-
tences or, in other words, separate plotlines that the end-user has
created. To view and edit the text of a plotline in the editor (Fig. 7a),
end-users can click on a cell in the tree to ensemble all of the down
the tree up to the selected cell. End-users can add more cells to
create more branching paths by typing continuations in the editor,
copying cells, or connecting cells to one another.

4.3.2 Linking Paths to Generators. The user can also extend a path
by generating continuations. For this, end-users can drag-and-drop
link a cell and one or more generators by drag-and-drop (Fig. 7c).
When the user clicks on a generator, it will take the text in the path
down to the linked cell as input to generate outputs.

4.3.3 Lenses: List, Space, and Peek. The user can choose between
three lenses in this interface: list (Fig. 7d-1), space (Fig. 7d-2), or
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Figure 7: With the story writing interface, end-users can explore multiple, alternative plotlines. The user can create multiple
plotlines by creating branching cells in a tree representation (b). Each cell contains a story sentence and is represented as a
block enclosing a keyword extracted from the sentence. The most opaque block is the currently selected cell and it is shown
highlighted in the editor. The user can create multiple generators (c), and then drag-and-drop between cells and generators to
link them. Then, by clicking on a generator, the user can generate continuations to the linked cell which are then displayed in
three types of lenses: list lens, space lens, or peek lens (d).

peek lens (Fig. 7d-3). The peek lens automatically extends the story
from the linked cell by periodically generating a new sentence—
until the user clicks on the generator again to stop it. When the
end-user clicks on a generated output in any lens, it is added as a
new cell that branches out of the cell that was used as input.

4.3.4 Use Cases. For the story writing interface, the two partic-
ipants were asked to write a story based on a starting sentence.
Through the objects, the participants were able to explore mul-
tiple plotlines. P6 generated multiple branches from the initial
story prompt which they then developed individually with the
same generator. Similarly, P5 created two branches, but developed
each with a different generator to simultaneously test possible plot-
lines and model parameters. In terms of lenses, both participants
used the peek lens to develop plots that they found interesting but
did not know how to progress, and used the list and space lens
to build on plots more deliberately. Both participants initially ex-
panded horizontally—developing multiple plotlines with various
generators—and mentioned how this helped them quickly identify
both promising configurations and plotlines.

4.4 Implementation
We implemented the three interfaces using HTML, CSS, JavaScript,
and ReactJS. The text editors were built using the SlateJS library3. To
request and post-process the generations, we built a backend server
with Flask that obtained generations through the OpenAI API4.
The HuggingFace Transformers library [98] was used to process

3https://docs.slatejs.org/
4https://openai.com/api/

the generations for sentence similarity [29], sentiment [77], and
emotion [67]. The KeyBERT technique [36] was used to extract
keywords for the story writing interface.

5 EVALUATION
To investigate the effectiveness of cells, generators and lenses in sup-
porting end-users’ iteration and experimentation, we conducted
a between-subjects study where we compared our copywriting
interface against a baseline that only provides one modifiable con-
figuration. For this study, we focused on copywriting as a task, as
we expected that this task would require substantial experimenta-
tion and iteration: the writer needs to effectively transmit a message
with a limited set of sentences. In this study, participants were asked
to write two advertisements, back-to-back, based on the provided
product descriptions. In this study, we posed the following three
research questions:

• RQ1. Can cells, generators, and lenses promote users’ experi-
mentation and iteration with various generation configura-
tions?

• RQ2. How are users’ generative processes affected by the
presence of cells, generators, and lenses?

• RQ3. How do cells, generators, and lenses affect users’ percep-
tions about the generative model and their final outcomes?

5.1 Participants and Apparatus
We recruited 18 participants (3 female, 15 male, age M=21.7 and
SD=1.9), all of whom reported being comfortable with English
reading and writing, and interest in creative writing. All of the par-
ticipants had prior experiences with AI-based writing support tools
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(e.g., grammar checkers, autocomplete), but had no experiences
writing with LLMs.5 Participants were randomly divided into the
treatment group, which used our copywriting interface, and the
control, which used a baseline. Although similar to our interface,
the baseline (Figure 8) limited end-users to one input alternative
per line, one set of parameter settings, and only a list representation
of outputs. This baseline resembles existing interfaces for LLMs
where end-users can only work with one configuration and must
continuously overwrite it to iterate and experiment.

During the task, participants were asked to write advertisements
for two products from a crowd-founding site6: a plant-based jerky,
and a portable air conditioner. Participants were provided with the
descriptions available on the funding pages of each product. To
provide participants with a starting point and help them under-
stand how they could prompt the model, we also provided them
with a basic advertisement generation prompt (see Supplementary
Materials).

5.2 Study Procedure
The study took place face-to-face while strictly following COVID-19
guidelines. Participants were provided with a laptop that had their
assigned interface open. After reading and signing the informed
consent form, participants first received a short explanation of
the generative model they would be interacting with in the study,
and a short tutorial on how to use their assigned interface. After
the walkthrough, participants received the description of the first
product. The order in which participants saw each product was
also counter-balanced. Participants were then given 15 minutes to
read the product description and use the given interface to write
an advertisement that was two to five sentences long. After the
allocated time, participants completed a short survey. After the
survey, participants proceeded to the second product: they used the
interface to write an advertisement for 15 minutes and completed

Figure 8: The baseline interface resembles our copywriting
interface, but presents the users with only one cell per in-
struction line, one generator, and one lens.

5The study was conducted in early 2022 before the widespread adoption LLMs
due to models like ChatGPT.

6https://kickstarter.com

the same survey. After the second advertisement and survey, a short
interview was conducted where participants were asked about their
experience.

5.3 Measures
For measures, we collected participants’ survey responses after
each advertisement. Similar to prior work [53, 54, 109], we asked
participants to rate their agreement on a 7-point Likert scale (1:
Strongly Disagree, 7: Strongly Agree) with the following statements:

• Helpful: "I found the AI helpful."
• Ease: "I found it easy to write the advertisement."
• Experiment: "I felt that I experimented with various ideas and
generated alternatives."

• Iterate: "I felt that I iterated various times on ideas and the
generation process."

• Pride: "I’m proud of the final advertisement."
• Unique: "The advertisement I wrote feels unique."

Additionally, we measured quantitative metrics related to par-
ticipants’ generation processes. For each advertisement written by
participants, we measured the number of times that they generated,
and the number of different unique inputs and unique parameter
settings that were used to generate. Additionally, to measure the
degree to which participants accepted the models’ generations, we
calculated the similarity between their final advertisements and the
generated suggestions. While prior work [53] evaluated acceptance
of AI generations by measuring the proportion of generations that
were selected, in our study, we saw that participants frequently
used fragments from generations without explicitly copying them
with the interface. Thus, we calculated the BLEU score [73]—a
measure used to evaluate the similarity between a piece of text
and references—between participants’ final advertisements and
the generations they received. Additionally, to evaluate whether
participants saw diverse or similar generations, we measured the
Self-BLEU score [119], a metric frequently used to measure the
diversity of generated outputs. The Self-BLEU score calculates the
average BLEU score between each generation and all other genera-
tions.

5.4 Results
Overall, our results demonstrated that our copywriting interface en-
couraged participants to generate more, with more diverse inputs,
and, as a consequence, make greater use of the generated outputs in
their final advertisements. These findings suggest that supporting
object-oriented interaction for generation configuration, which is
enabled by applying our framework, could support iteration and
experimentation with LLMs. However, the benefits of the frame-
work might have been moderated by the difficulties in modifying
the individual configuration components. For the statistic analysis
of measures, we conducted a Shapiro-Wilk test to determine if the
data was parametric (noted with "P") or non-parametric (noted
with "NP"). Then, we compared conditions with an independent
T-test (if the data was parametric) and a Mann-Whitney U test (if
non-parametric).
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5.4.1 Generate More and With More Inputs. Our results indicate
that treatment participants generated more and with a greater va-
riety of inputs. Participants in the treatment condition generated
significantly more times (M=9.78, SD=3.07) than those in the control
condition (M=6.33, SD=3.77, p=0.006). Additionally, participants in
the treatment condition generated with a significantly higher num-
ber of unique inputs (M=5.89, SD=1.66) than those in the control
condition (M=3.06, SD=2.17, p<0.000).

As creating multiple cells allowed treatment participants to main-
tain various alternative inputs, they were less inclined to fixation
and more prone to experimentation. We observed in the study that
both treatment and control participants dedicated significant time
to “set up” their inputs at the start of the task. Before generating for
the first time, participants carefully read the product descriptions
and thoroughly edited the template input provided. However, af-
ter set up, most control participants only made a minimal number
of edits to their initial input. For example, P10C (participant 10,
Control condition) mentioned, “I didn’t really change the text in
the [input] much. I felt that I had set all my desired instructions and
didn’t think about adding new instructions because I thought it would
be enough with [what I had].” In contrast, treatment participants
mentioned that the ability to create multiple cells encouraged them
to experiment with different inputs, even if they were not confi-
dent that it would yield better results. P7T (Treatment condition)
mentioned, “I set multiple options for each line because I didn’t know
specifically what I wanted so I could have various sets of options to
[experiment with].” Similarly, P9T mentioned how having multiple
cells encouraged him to test more inputs beyond his initial one
him: “[I would] have multiple [cells] and then just toss words in. If
you relied too much on your first [set of cells], it wouldn’t be efficient.”
This comment suggests that supporting the creation of multiple
objects in the interface allowed participants to perform parallel
prototyping [24].

5.4.2 Barriers to Modifying Inputs and Parameters. Despite treat-
ment participants testing more inputs with multiple cells, the possi-
bility of creating multiple generators did not significantly increase
their experimentation with parameters. We observed no significant
difference in the number of unique parameter settings used by treat-
ment participants (M=4.17, SD=2.93) and by control participants
(M=3.04, SD=2.50, p=0.936). While some treatment participants
mentioned how using multiple generators helped them experiment
and “find the best combo” of parameters (P1T), the majority felt that
it was challenging to test parameters as it was difficult to predict
the effect of changes. Specifically, participants mentioned that the
function of the parameters was “not explicit” (P6C), and that decid-
ing between continuous values made changes feel “arbitrary” (P9T).
This difficulty in predicting and evaluating the effect of parame-
ters is analogous to the understanding and information barriers in
end-user programming [51].

Similarly, although treatment participants did experiment with
more inputs, modifying inputs was also not a simple task. While
the effect of input changes was easier to predict and distinguish,
participants mentioned that deciding on how to change the input
could be challenging. For example, P8C mentioned, “I didn’t know
what [input] could have done what I wanted to do here.” Unlike model
parameters that had well-defined sets of values (e.g., a numerical

value within a given range), participants could not think of how
to change the inputs. Due to this, several participants expressed
how they would want the interface to provide keywords (P2C) or
suggest prompts (P12C) on how to change the input. As discussed
by Zamfirescu-Pereira et al., this challenge of identifying how to
modify or add to LLM inputs (i.e., prompts) resembles the selection
barriers in end-user programming [51].

5.4.3 Higher Adoption of Generated Outputs. Analysis of partic-
ipants’ generations and their final advertisements revealed that
treatment participants made greater use of the LLM’s generations
in their writing process. The BLEU scores showed that the advertise-
ments of treatment participants were significantly more similar to
their generations (M=0.884, SD=0.125) when compared to the simi-
larity between the advertisements and generations of control partici-
pants (M=0.768, SD=0.196, p=0.045). This result suggests that, due to
how treatment participants generated and experimented more with
cells, generators, and lenses, they were able to produce outputs that
they were more satisfied with and more willing to incorporate into
their final writing. The self-BLEU score for the similarity between
received generations revealed no significant differences between
the generations of treatment participants (M=0.712, SD=0.119) and
those of control participants (M=0.680, SD=0.139, p=0.438). This
indicates that the two groups of participants saw generations that
were similarly diverse. However, considering that treatment partic-
ipants generated more and thus saw more generated outputs, this
could also suggest that treatment participants had a larger pool
of different generations available to use—the pool size was bigger
but with the similar degree of diversity. Thus, this implies that
treatment participants used cells, generators, and lenses to explore a
wider portion of the generation space.

5.4.4 Subjective Perceptions. According to the survey results (Ta-
ble 1), both groups indicated positive perceptions regarding the
LLM’s helpfulness and their final advertisements (i.e., pride and
uniqueness)—with no significant differences between the two con-
ditions. For most participants, the study was their first experience
interacting with an LLM and theywere surprised by the high quality
of the results. For example, P1T mentioned how some of the gener-
ated outputs were “perfect” and P10C described how the model was
“really good” compared to other models they had tested before. The
novelty of the model and its performance led to positive ratings
from most participants.

The survey results also revealed that treatment participants rated
the task to be relatively easy (i.e., mean rating close to 6) and had
no significant difference with control participants (“Ease” in Tab. 1).
Considering that treatment participants generated more, tested
more inputs, and also had to interact with more cells, generators
and lenses, these results suggest that our framework might have re-
duced effort in other sub-tasks (e.g., remembering previous inputs).
This finding is further supported by considering how, as treatment
participants generated more, they also had to read through more
outputs, which was effortful and time-consuming. Although partici-
pants did use the various lenses to browse through the outputs, they
ultimately resorted to using the list lens to read each generation to
ensure that they did not overlook any promising outputs. P11T said,
“At some point, I generated 10 or more sentences and [...] it took a long
time to read through them.” Also, P7T noted how it would be useful
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Helpful Ease Experiment Iterate Proud Unique

Treatment 5.889 (0.936) 5.944 (0.911) 4.778 (1.133) 5.222 (1.356) 5.722 (0.650) 4.500 (1.118)
Control 6.222 (0.711) 6.000 (0.667) 5.333 (1.155) 5.111 (1.197) 5.278 (1.044) 4.056 (1.353)
p-value 0.307 0.960 0.082 0.755 0.195 0.304

Table 1: Mean and standard deviation (in parentheses) of participants’ subjective ratings across conditions. Ratings showed no
significant differences between the perceptions of treatment and control participants.

if the lenses surfaces specific aspects of the outputs that could be
improved. Considering how all of the participants checked outputs
for desirable characteristics (e.g., keywords, creative staring lines),
these results indicate a need for lenses that can efficiently represent
different user-desired characteristics.

Surprisingly, despite quantitative measures indicating that treat-
ment participants generated more and with more unique inputs,
there was no significant difference in their perceptions on their
amount of experimentation and iteration. Several participants in
both conditions mentioned how the generative model would fre-
quently return similar outputs. For example, P17T mentioned that
“most of the time the AI was generating similar text”. Due to the
aforementioned barriers in modifying inputs and model parame-
ters, participants were frequently unable to control the model to
generate more diverse outputs. Considering that participants in the
treatment condition generated more frequently and experimented
with more inputs, it is possible that they developed higher expecta-
tions that the model would return diverse outputs. However, as the
model did not fully match their expectations, this resulted in them
perceiving that they experimented less than they actually did.

6 DESIGNWORKSHOP
Finally, we evaluate our framework in terms of usability: can in-
terface designers, beyond ourselves, effectively use and apply our
framework to design writing interfaces that support end-users’
iteration and experimentation? For this purpose and gain expert
critiques about our framework, we conducted a workshop where
we invited interface designers to follow our framework and design
writing interfaces that support object-oriented interaction.

6.1 Participants
We focused our recruitment on graduate students in the field of
HCI with prior experience designing interfaces and using LLMs
for writing. Through recruitment posts in online communities of a
technical university, we recruited three designers (1 female, 2 male,
age M=27.7 and SD=4.7). All participants were graduate students in
industrial design (2 M.S., 1 Ph.D.) and currently conducting research
in HCI. The participants provided samples of previous designs,
which included interfaces for ride-sharing, social communities, and
journaling. Participants’ previous experiences with LLM ranged
from use for composing emails or translating to actually developing
LLM-powered interfaces.

6.1.1 Study Procedure. Participants were first provided with an
introduction to the workshop, including a brief reminder about
LLMs and an explanation of our design framework—i.e., its motiva-
tion, the interactive objects and their possible interactions, and the

three interfaces we designed. After the introduction, participants
were asked to choose the AI-powered writing interface that they
would re-design. Participants were provided with three interface
options, where each supported a different writing task and writing
process: poetry [90], screenplay [66], or essay [20]. Then, we pro-
vided participants with a link to a Figma7 document that contained
screenshots of the interface to re-design, a summarized explana-
tion of our design framework, and pre-made design components
for cells, generators, and lenses. Participants were then asked to
design a new interface by adapting the basic workflow and features
supported in the chosen reference interface, but by applying our
framework to integrate cells, generators, and lenses. We decided on
this type of re-design task as our goal was to see if designers could
apply our framework to incorporate the objects into interface de-
signs, instead of observing whether they could ideate new designs
from scratch. After designing for one hour, we concluded with a
group interview where each participant described their design, how
they used the framework, and their experiences of applying the
framework.

6.2 Findings
Overall, designers could apply our framework to design LLM-powered
writing interfaces with the goal of supporting end-users’ iteration
and experimentation. We observed that our framework not only
bootstrapped participants’ design process by supplying the inter-
active objects as design materials, but also encouraged them to
consider how they could further modularize their envisioned end-
users’ generative process to support iteration and experimentation.
In this section, we describe how each participant integrated and
designed each of our framework’s objects, and the reasoning behind
their designs. Finally, we present participants’ overall perception
of our framework. We denote the designers as DP (designer for the
poetry writing interface), DS (for screenplay), and DE (for essay).

6.2.1 Cells. Designers integrated cells into their designs in diverse
ways to support iteration and experimentation. Specifically, all de-
signers envisioned interfaces where end-users could create multiple
versions of inputs and assemble them differently each time they
generated. Designers reflected that this would help end-users to
“create diverse variations and compare the generated results” (DS).
Beyond this, designers also envisioned novel ways for desinging or
using cells. For example, DP envisioned that the LLM could help
users “think of inputs” by brainstorming and generating them for
the end-users to use as cells. Additionally, DS designed an interac-
tion where end-users could select individual sentences from cells to
use the selection as temporary cells to help end-users “experiment

7https://www.figma.com/
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with diverse inputs at the sentence-level”. Finally, DE mentioned that,
in essay writing, “what content to include is more defined and that,
instead, the writer needs help to assemble this content.” Thus, his
interface “extended cells” to contain drafts of paragraphs, rather
than shorter text-like phrases.

6.2.2 Generators. In terms of generators, all participants produced
designs that supported multiple generators with their differences
in how they envisioned that generators would be linked to cells.
DS’s design resembled our storywriting interface where end-users
link individual cells to generators, while DE’s design resembled our
email composing interface where end-users create multiple genera-
tors and all of them are used when generating. Unlike our designs,
DP envisioned that end-users would chain configurations [102],
where generated outputs from one configuration step would used
as inputs for the next. Thus, as he expected that “[the effect of each
step] would be affected by each generator’s configurations”, he de-
signed the interface to allow end-users to create multiple generators
at each generation step.

6.2.3 Lenses. All of the participants produced designs where lenses
were assembled to provide end-users with various views of the
output. Both DP and DS designed interfaces that enabled end-users
to use multiple assembled lenses to “explore” (DP) and “evaluate”
(DS) generated outputs. To provide further control, DE’s essay
writing interface was envisioned to provide two views for generated
outputs: a draft view, which displayed text, and an analysis view,
where end-users could customize how they analysed generations
by “adding [lenses] that they prefer” from a set of pre-defined lenses.

6.2.4 Framework as Design Material and Inspiration. As illustrated
by their application of cells, generators, and lenses, designers were
able to apply our framework to design LLM-powered writing in-
terfaces with the intention of supporting iteration and experimen-
tation. Regarding the framework, designers noted how them, by
thinking in terms of the framework, they were able to “determine
how [they could] facilitate end-users use of LLMs in the interfaces
they design” (DS). Particularly, participants felt that the cells and
generators were “concrete” and “detailed” (DE)—serving as action-
able design materials. However, perceptions regarding the lenses
were mixed. Both DS and DE mentioned that “it was not clear how
the [different] lenses could be used [...] and where they could be used”
(DS) due to how there is greater “freedom” on how they can be
designed (DE). Thus, they both mentioned that they required more
time to think about how to incorporate lenses into their designs. In
contrast, DP mentioned how “how having less concrete guidance on
how to design lenses granted designers with more flexibility” about
what type of views to support and how. These comments indicate
that, while more concrete examples for lenses should be incorpo-
rated into the framework, a more abstract description can allow
designers to adapt lenses for their intended tasks.

Beyond facilitating the integration of cells, generators, and lenses
into their designs, participants noted how the framework inspired
them to consider how they could further modularize the generative
process in their interfaces. DE mentioned how the framework “in-
spired” him to design his essay writing interface to enable end-users
to maintain multiple versions of their input and generated drafts
as individual “tabs”. In his poem writing interface, DP incorporated

an intermittent step through which end-users test their cells and
generators by generating partial outputs in a sandbox—helping
them identify fruitful configurations before proceeding to generate
the full poem. Similarly, while the existing screenplay writing inter-
face had end-users sequentially generate elements of a screenplay
(e.g., title, characters, setting), DS modularized the generation of
these elements so her end-users could iterate and experiment on
each of these elements individually. Thus, these findings suggest
that, by encouraging an object-oriented perspective, our frame-
work could encourage designers to envision further affordances
and interactions that support iteration and experimentation with
LLMs.

7 DISCUSSION
In this work, we present cells, generators, and lenses, a design frame-
work for supporting object-oriented interaction with LLMs. We
propose that designers can integrate object-oriented interaction
in their interfaces to mitigate end-users’ challenges in interacting
with black box and non-deterministic LLMs, and support iteration
and experimentation during writing.

We comprehensively evaluate our framework according to three
dimensions: generalizability, effectiveness, and usability. For gener-
alizability, we applied our framework to re-design three existing
writing interfaces to illustrate how the framework can be applied
in diverse tasks but also how its application needs to be adapted
for each task. For effectiveness, we conducted a comparative lab
study and observed that end-users could use the interactive objects
to create, combine, and compare diverse generation configurations.
This in turn encouraged them to generate more, experiment more,
and make greater use of generations in their writing—suggesting
higher satisfaction with the generations they produced. Finally,
for usability, a workshop with designers revealed that our frame-
work bootstrapped the design process by providing concrete means
through which designers could facilitate end-users’ configuration
of LLMs. Furthermore, the framework inspired designers to con-
sider how they could further support iteration and experimentation
in their designs, beyond incorporating cells, generators, and lenses.

7.1 Generalizability of the Framework
Instead of contributing one interface that implements cells, gen-
erators, and lenses, we provide a general framework to enable
designers to integrate these objects in diverse interfaces and tailor
them according to the specific writing task. We showcased this
generalizability through the three interfaces we designed and the
three interfaces that participants produced in the designer work-
shop. These designs encompassed the diversity of writing tasks
across various dimensions: short to long artifacts, goal-focused to
open-ended, phased vs dynamic writing processes. As applying our
framework can produce interfaces that help end-users to experi-
ment with LLM configurations and sense-make on their behavior,
we believe that our framework can be beneficial to most writing
tasks where LLMs are beneficial. However, we also observed that
our framework can be most valuable for open-ended writing tasks
as the experimentation with LLM configurations has the added
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benefit of helping end-users explore the design space of text arti-
facts. Thus, applying the framework to writing interfaces for more
open-ended tasks can provide end-users with dual benefits.

Although our work focused on LLMs and writing tasks, we found
that various needs and challenges about LLMs were shared with
other generative models. Future work could investigate how to
extend the concept of object-oriented interaction to a wider range
of generative models, tasks, and types of artifacts. For example, cells
can represent text keywords for text-to-image (TTI) models [59],
image examples for image-to-image (ITI) models [79], or music bars
for music generation [28, 61]. Additionally, by modularizing model
types into generators, one interface can seamlessly interweave
multiple classes of generative models—a necessity in more complex
creative tasks (e.g., songwriting [41, 94] and storyboarding [81,
113]). Finally, interfaces should provide a variety of lenses that are
designed specifically for the type of media that is generated by the
models (e.g., gallery for images, sequence visualizations for music).

7.2 Cells, Generators, and Lenses as Design
Materials

In our workshop, designers mentioned how the cells, generators,
and lenses served as design materials to help them construct inter-
faces for LLMs. Beyond guiding the design of interfaces, we also
present an open-source ReactJS library with the goal of facilitat-
ing the development of these interfaces and widen the adoption
of our framework. We hope that, with this package, developers
can readily build or integrate these components into LLM-powered
writing interfaces to support object-oriented interaction. Beyond
scaffolding designers and developers, we can also envision a future
interface that enable end-users, themselves, to construct writing
interfaces through cells, generators, and lenses. By circumventing
the need for designers or developers, this could enable end-users
to personalize writing interfaces to their own specific needs and
challenges.

7.3 Potential of Object-Orientation: Analyze
and Extend

Beyond supporting iteration and experimentation, we believe that
the abstraction of generation components into objects can have
further implications for the design of LLM-based interfaces. Specif-
ically, we believe that cells, generators, and lenses can be used as
an analytical framework to examine existing LLM-powered inter-
faces by identifying their differences in how they design UI com-
ponents for each generation component, and distilling high-level
design themes or patterns. Furthermore, by encouraging designers
to view LLM-powered interfaces in terms of objects, our frame-
work can motivate designers to transition from point solutions to
more extensible interfaces. If interfaces are modularized into ob-
jects (and shared as open-source), designers can readily adopt and
integrate object designs from other interfaces or, like inheritance
in object-oriented programming, extend and improve on existing
object designs. Designers can also grant this customizability and
extensibility directly to end-users. Instead of deciding on what ob-
jects to incorporate in their interfaces, future designers can create
flexible and customizable interfaces that provide end-users with a
collection of modular objects. Then, end-users themselves could

select, combine, and arrange these objects into personalized writing
environments [50]. As illustrated, we believe our work reveals new
possibilities for LLM-based interfaces and that future work can
further explore this potential of object-based abstraction for LLMs.

7.4 Further Development of the Framework
While we observed the benefits of cells, generators, and lenses, the
design of these objects can be further refined.

7.4.1 Cells: Suggesting Augmentations. During our study, partici-
pants often struggled to identify how to modify cells as they did
not know what language they could use. To help users take more
advantage of cells, future designers can take inspiration from data
augmentation techniques [26] to automatically suggest various in-
put alternatives that end-users can use and combine. Further, future
work could also explore how to leverage end-users’ input iterations
as organic data to train an augmentation suggestion model—similar
to how human feedback has been used to finetune LLMs [70, 72].

7.4.2 Generators: Explainability of Generative Model Parameters.
In our study, participants felt that chanigng model parameters
was easy, but predicting the effect of changes was challenging. As
these parameters were designed based on the technical generation
process of LLMs, they fail to be user-centric as their function and
values can mismatch with users’ mental models. For example, it
is unclear what decreasing “temperature” by 0.1 would do. Future
research could investigate and explore the design space of model
parameters that coincide with human mental models and, thus, are
more user-centric [16, 42, 93, 115].

7.4.3 Lenses: Balancing Integrity and Efficiency. While study par-
ticipants noted how lenses afforded different ways to explore gen-
erations, all of them would eventually default to using the list lens
to read every output to check if they possessed their desired charac-
teristics. However, this meant that significant time was dedicated to
reading and participants had fewer opportunities to explore more
outputs. These findings suggest that lenses should balance integrity
and efficiency: accurately represent user-desired characteristics in
outputs, but also minimize the effort needed to check them. Future
work could investigate this trade-off to explore the design space
and identify effective designs for lenses.

7.5 Limitations
Our work has several limitations which we address in this section.
First, in our user study, we did not evaluate the quality of par-
ticipants’ final writing as we focused on measuring iteration and
experimentation, and measuring quality can be subjective and task
dependent. Future work should investigate the effect of our frame-
work on writing quality in specific tasks. Second, our workshop
task involved re-designing existing interfaces as we focused on
investigating whether designers could apply our framework when
they know what task and process they want to support, However,
future work is needed to investigate how our framework influences
designers’ processes when they are in the ideation stage. Fianlly, as
our work focuses on guiding designers, we did not investigate how
our framework can influence the development stage of interfaces.
We release our component library as open-source and future work
could investigate how developers apply this library.
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8 CONCLUSION
This work introduces a design framework for object-oriented inter-
action of large language models. This framework reifies the input,
model, and output components of generation configurations into in-
teractive objects: cells, generators, and lenses. To portray how these
objects be incorporated into interfaces to support various writing
tasks, we apply the framework to design three writing-support
systems for copywriting, email composing, and story writing. Then,
through a comparative lab study, we evaluated the effect of applying
our framework and observed that an interface designed with our
framework could encourage more experimentation and greater use
of generated outputs in writing. Finally, a design workshop revealed
that designers could successfully follow the framework to construct
interfaces that support iteration and experimentation for various
writing tasks. Beyond these benefits, we believe that the frame-
work’s modularization of configuration components offers a flexible
and extensible way to design and develop generative interfaces—
enabling developers to easily share new cells, generators, and lenses
and the rapid creation of new interfaces by combining these.
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