
Cells, Generators, and Lenses: Design Framework for
Object-Oriented Interaction with Large Language Models

Tae Soo Kim
taesoo.kim@kaist.ac.kr

School of Computing, KAIST
Daejeon, Republic of Korea

Yoonjoo Lee
yoonjoo.lee@kaist.ac.kr

School of Computing, KAIST
Daejeon, Republic of Korea

Minsuk Chang∗
minsukchang@google.com

Google Research
Seattle, Washington, United States

Juho Kim
juhokim@kaist.ac.kr

School of Computing, KAIST
Daejeon, Republic of Korea

Figure 1: Cells, generators, and lenses is a design framework for object-oriented interaction with large language models (LLMs).
Input units, model instances, and output spaces are represented as interactive objects: cells, generators, and lenses, respectively.
By integrating these objects in their designs, designers can create interfaces that support users to flexibly create, modify, and
link these objects to iterate and experiment with diverse configurations for the generative process of LLMs.

ABSTRACT
Large Language Models (LLMs) have become the backbone of nu-
merous writing interfaces with the goal of supporting end-users
across diverse writing tasks. While LLMs reduce the effort of man-
ual writing, end-users may need to experiment and iterate with
various generation configurations (e.g., inputs and model parame-
ters) until results meet their goals. However, these interfaces are not

∗Minsuk conducted this work while at NAVER AI Lab.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0132-0/23/10. . . $15.00
https://doi.org/10.1145/3586183.3606833

designed for experimentation and iteration, and can restrict how
end-users track, compare, and combine configurations. In this work,
we present “cells, generators, and lenses”, a framework to designing
interfaces that support interactive objects that embody configura-
tion components (i.e., input, model, output). Interface designers can
apply our framework to produce interfaces that enable end-users to
create variations of these objects, combine and recombine them into
new configurations, and compare them in parallel to efficiently it-
erate and experiment with LLMs. To showcase how our framework
generalizes to diverse writing tasks, we redesigned three different
interfaces—story writing, copywriting, and email composing—and,
to demonstrate its effectiveness in supporting end-users, we con-
ducted a comparative study (N=18) where participants used our
interactive objects to generate and experiment more. Finally, we
investigate the usability of the framework through a workshop with
designers (N=3) where we observed that our framework served as
both bootstrapping and inspiration in the design process.

https://doi.org/10.1145/3586183.3606833

UIST '23, October 29-November 1, 2023, San Francisco, CA, USA Tae Soo Kim, Yoonjoo Lee, Minsuk Chang, and Juho Kim

CCS CONCEPTS
ˆ Human-centered computing ! Interactive systems and
tools; Interaction design theory, concepts and paradigms ;
Empirical studies in HCI; ˆ Computing methodologies ! Natural
language generation .

KEYWORDS
Generative Models; Large Language Models; Rei�cation; Writing-
Support Tool

ACM Reference Format:
Tae Soo Kim, Yoonjoo Lee, Minsuk Chang, and Juho Kim. 2023. Cells, Gen-
erators, and Lenses: Design Framework for Object-Oriented Interaction
with Large Language Models. InThe 36th Annual ACM Symposium on
User Interface Software and Technology (UIST '23), October 29-November
1, 2023, San Francisco, CA, USA.ACM, New York, NY, USA, 18 pages. https:
//doi.org/10.1145/3586183.3606833

1 INTRODUCTION
Large language models (LLMs)�e.g., ChatGPT [70], GPT-4 [71],
PaLM [14], LLaMa [89]�have enabled users to write without actu-
ally writing. Users can delegate the manual e�ort of producing text
to these models to increase productivity [11], inspire new ideas [12],
or quickly �sketch� passages [16]. Besides shouldering the e�ort of
producing text, LLMs can also enhance auxiliary processes such
as editing [25, 52], feedback exchange [43, 91], or re�ection [20].
However, when using these models, users are faced with a new
task: manually con�guring the model's generative process to pro-
duce desired outputs. Namely, users need to compose theinputs
to the model [41, 84] (e.g., prompt engineering [102]) and adjust
the model'sparameters[53] (e.g., increase thetemperatureto gen-
erate more out-of-distribution text). Furthermore, users may want
to con�gure how they view and explore the generated outputs
based on their goals and tasks [18, 64]�e.g., using a list to carefully
read speci�c edits or a spatial visualization to quickly compare the
similarity between rough drafts. Thus, to accomplish their writing
goals with LLMs, users need to con�gure the whole generation
process�input, model, and output.

However, due to the black box and non-deterministic nature of
LLMs, users can struggle to interpret why the models generated
certain outputs and how one can �correct� them [78]. Users may
then need to repeatedly experiment with generation con�gurations
to understand their e�ect [15, 61, 87]�expending signi�cant e�ort.
In creative tasks, iteration (i.e., repeatedly developing an idea) and
experimentation (i.e., enumerating and testing diverse ideas) are
integral to understanding and exploring the design space [19, 80].
Thus, beyond the goal of understanding the models, users need to
iterate and experiment with generation con�gurations to open up
the vast space of writing alternatives that they can produce.

Despite the user needs for iterating and experimenting, LLM-
powered writing interfaces largely adhere to the design of conven-
tional text editors. These interfaces typically provide end-users with
only one text area for inputs, which is frequently shared with the
output, and one control panel to con�gure global settings for the pa-
rameters [1, 69, 85, 109]. To test di�erent inputs and parameters in
this type of interface, the user has to try each con�guration one-by-
one while overwriting previous con�gurations. As con�gurations

are overwritten, the end-user cannot store previous con�gurations
(i.e., versioning) to return to them if future iterations do not result
in satisfying outputs [97], which introduces friction and hinders
experimentation. Furthermore, these interfaces do not allow end-
users to prototype con�gurations in parallel [24], which can create
hurdles for comparing the e�ects of di�erent con�gurations or
combining aspects of the con�gurations for further iteration and
experimentation. These limitations call for interfaces to move away
from the designs of conventional text editors, and move towards a
new paradigm that focuses on facilitating end-users' con�guration
of LLMs' behavior.

In this work, we introduce a design framework for interfaces that
support object-oriented interaction with LLMs throughcells, gener-
ators, and lenses(Fig. 1). Unlike existing interfaces where end-users
interact with oneinput area, parameter setting, and output space,
our framework proposes how interfaces can reify [8] the generation
components so end-users can compose con�gurations by interact-
ing with persistent, multiplicable, and composable objects. Within
this framework, each object becomes its own con�guration sandbox
where end-users can experiment and iterate with changes, without
a�ecting other con�gurations that they have created. Furthermore,
our framework describes how interfaces can support end-users to
�exibly assemble and reassemble these objects into diverse con-
current con�gurations�supporting parallel prototyping [24] and
mix-and-match between con�gurations. Interface designers can
use the framework to create interfaces that support their end-users'
iteration and experimentation in their target writing tasks.

To demonstrate the value of our framework, we evaluate it ac-
cording to three dimensions:generalizability(can it be applied to
diverse writing tasks?),e�ectiveness(can it support end-users' it-
eration and experimentation?), andusability (can designers use
and apply our framework?). First, to demonstrate how our frame-
work cangeneralize, we applied it to design three interfaces that
support diverse tasks: (1) story writing, (2) copywriting, and (3)
email composing. Second, to evaluatee�ectiveness, we conducted
a controlled study (N=18) where we investigated how end-users'
iteration and experimentation is a�ected by the ability to create and
compose multiple con�guration objects. We observed that, when
using our framework-based interface, participants were encouraged
to generate more outputs, experiment with more inputs, and use
generated outputs more substantially in their �nal writing. Finally,
to demonstrate theusability of our framework, we conducted a
workshop where we invited designers (N=3) and asked them to
re-design existing writing interfaces with our framework. We found
that the framework bootstrapped designers by illustrating concrete
ways to design interactions for iteration and experimentation, and
inspired them to reify other aspects of their interfaces to further
support end-users.

Our framework aims to guide the design of a new line of inter-
faces that enable object-oriented interaction with LLMs to support
end-users' iteration and experimentation with generation con�g-
urations. To bootstrap the design and development of interfaces
based on our framework, we release our interface components
for cells, objects, and lenses as an open-source ReactJS library:
https://github.com/kixlab/llm-ui-objects.

https://doi.org/10.1145/3586183.3606833
https://doi.org/10.1145/3586183.3606833

Cells, Generators, and Lenses: Object-Oriented Interaction with Large Language Models UIST '23, October 29-November 1, 2023, San Francisco, CA, USA

2 BACKGROUND AND RELATED WORK
To exhibit the broader design space and the underlying shared
themes, we survey interfaces for a broad range of generative models.
Then, as our work focuses on LLMs, we review work on interfaces
for these models. Finally, we review work on human-AI writing
tools.

2.1 Interactions with Generative Models
To help users to better leverage the potential of generative models,
a signi�cant amount of research has investigated how users wish
to use these models. This body of work demonstrated that the
�ideal� form to use these models changes with the type of user,
their goals, and the task. For example, several studies demonstrated
that it is integral for the user to lead the model [61, 68], while
others demonstrated that there are bene�ts in the model taking
the lead [18, 37]. Beyond who leads, research has identi�ed several
other trade-o�s: producing more generations increases exploration
but decreases e�ciency [11], and more unexpected generations can
provide inspiration but can also seem less useful [18, 53, 108]. Due
to these user-dependent factors, prior work [31, 35, 41] argues that
how generative models are used should adapt according to users'
changing goals. This highlights the need to support user-driven
con�guration in interfaces for generative models.

Existing interfaces for generative models have focused on fa-
cilitating the con�guration of each component of the generation
process: input, model, and output. On input, GANSliders [22] and
GANSpace [40] support goal-driven input customization for GANs
through visual feedforward sliders and semantic controls, respec-
tively. Also, to facilitate input iteration, Opal [59] and 3DALL-E [60]
modularize user inputs into keywords and provide keyword sug-
gestions to facilitate composition of inputs for image generation.
Regarding model parameters, Louie et al. [61] and Zhou et al. [118]
provide more interpretable parameters to help users control gener-
ated outputs. More recently, TaleBrush [16] supports more seamless
control over parameters by allowing users to sketch how the param-
eter should change or ��ow� through a story. Finally, on outputs,
DreamLens [64] allow users to navigate hundreds of generated 3D
models through multiple, customizable views (e.g., gallery view,
attribute grid view). While these approaches support con�guration
of each component in the generative process, no work has investi-
gated how to support con�guration of component combinations.
Our work proposes a framework that guides the design of inter-
faces that can facilitate inter-component customization and can be
extended to support these prior approaches for intra-component
customization.

2.2 Interfaces for Large Language Models
Given a prompt as input (i.e., an instruction that may contain ex-
amples of expected outcomes), LLMs can generate text that follows
this prompt. and even perform previously unseen tasks through
zero and few-shot learning. Due to the opportunities presented by
these capabilities, HCI researchers have designed an assortment of
interfaces that leverage LLMs to support a variety of user tasks be-
yond writing, such as information seeking and consumption [5, 92],
learning [55, 57, 63], and prototyping [49, 74, 76]. However, as the
e�ectiveness of LLMs is signi�cantly a�ected by minor variations

in the input prompts, researchers have also proposed interfaces
to facilitate the task of creating these inputs (i.e., prompt design
or engineering). PromptMaker [46] and BotDesigner [112] allow
users to create prompt templates and test them with di�erent in-
puts. Expanding on these ideas, PromptIDE [83] allows the user
to automatically create and evaluate prompt variations, and Scat-
terShot [101] supports an iterative loop of evaluating prompts and
identifying e�ective examples to add to the prompts. Beyond sin-
gular prompts, AI Chains [102] and PromptChainer [100] allow
users to iterate on multi-step prompts using interactive chains of
prompts.

While our work and these approaches hold the same goal of
supporting iteration with LLMs, they focused only on the input
component of the generative process�e.g., users cannot test model
parameters in PromptIDE [83]. Additionally, all of these existing
approaches propose point solutions to be used by developers and
ML practitioners during prompt engineering. On the other hand, our
work proposes general guidelines for interfaces that are designed
to support end-users' iteration on all three generation component
during writing tasks.

2.3 Human-AI Writing Support Tools
Advancements in natural language processing (NLP) has enabled
the creation of tools that can support a diverse array of writing tasks
and processes. For example, researchers have proposed human-AI
writing tools for story writing [16, 18, 109], screenplay writing [66],
poetry [33], and argumentative writing [91,115]. Each of these tools
leverages AI to support di�erent aspects of the writing process. A
large portion of these approaches provide automatic continuations
to enhance writers' productivity [18, 53, 82] with several of these
allowing writers to control the type of continuations that are gen-
erated by providing additional instructions [21, 109] or through
visual sketches [16]. Other tools support auxiliary processes dur-
ing writing such as ideation [31, 32, 75, 116], revision [25, 56], and
re�ection [20, 91]. Our work builds on these prior literature by
proposing a general design framework for human-LLM writing
tools that can be applied to a variety of writing tasks with the goal
of supporting the processes of iteration and experimentation.

3 CELLS, GENERATORS, AND LENSES
To design writing interfaces that support iteration and experimen-
tation with LLMs, this work proposes a design framework that
conceptualizes the components of generation con�gurations as in-
teractive objects. The framework describes how to design interfaces
that encapsulate these objects and the interactions that can be sup-
ported on and between these objects. Prior work has demonstrated
how elevating task elements (e.g., visual attributes [105], spatial
selections [106], text passages [39]) into interactive objects can sim-
plify and facilitate users' work�ows [7, 17, 103, 107]. By supporting
object-oriented interaction, interfaces can allow end-users to main-
tain task elements, which would have previously been transient,
as persistent objects that can be reused and composed into new
combinations [104]. Further, with persistent and composable ob-
jects, end-users can combine these into multiple parallel prototypes,
which could prevent �xation and encourage experimentation [44].

UIST '23, October 29-November 1, 2023, San Francisco, CA, USA Tae Soo Kim, Yoonjoo Lee, Minsuk Chang, and Juho Kim

Additionally, if end-users are able to create and maintain alterna-
tives in parallel, they can readily compare these alternatives to solve
problems [30] and understand the task in greater depth [9].

Inspired by the advantages ofreifying task elements intoreusable
objects [8], in this work, we investigate how to reify the compo-
nents of generation con�gurations into persistent, multiplicable,
and composable objects. Speci�cally, we �rst conducted a system-
atic literature survey of prior work on interactions with LLMs to
identify user needs, challenges, and design insights. Furthermore,
we also review work on other types of generative models as HCI
researchers have investigated diverse models prior to LLMs and
these share various similarities. Then, based on this survey, we
propose a design framework for interactive objects for LLMs that
consists ofcells, generators, and lenses. These three objects respec-
tively represent the input, model, and output�the main con�gura-
tion components for LLMs. By employing our design framework,
designers can create interfaces that allow end-users to (1) create
and maintain multiple variations of these generative components as
objects, and (2) link them to each other to assemble and re-assemble
various con�gurations in parallel.

3.1 Cells
Cells(Fig. 2) are object representations of discrete input units�i.e.,
fragments of text. For example, a cell can represent a sentence, a
phrase, or a word. With respect to LLM prompts, a cell can also
represent an instruction line (e.g., a speci�cation) or an example
of the expected behavior. Our decomposition of input into cells
is analogous to how computational notebooks decompose code
into cells, which has been shown to be e�ective in supporting
�exible customization and testing [58, 96]. Below, we describe and
justify two interactions that designers should support regarding
cells,createandassemble.

3.1.1 Create.Users can create new cells to populate with di�ering
inputs, or copy existing cells and edit them into various versions
of the same input. With existing interfaces, users have to over-
write previous inputs when testing new variations as they are
frequently only presented with a single input area, usually a text
box [1, 69, 109]. In contrast, by interacting with cells, users can

Figure 2: Cells are object representations of input units (e.g.,
sentences). To create variations of inputs, users can create,
copy, modify, and assemble cells. Cells that have been assem-
bled together are shown connected by blue edges.

create and maintain various generation inputs that they can ex-
periment with�allowing them to more easily answer their own
�what if� questions about the e�ect of inputs on outputs [56, 84, 86].
For example, if a user is composing a poem generating prompt
that speci�es requirements such as topic and form, they can create
alternative cells for each requirement (e.g., one cell for �haiku� and
one for �sonnet�). In certain tasks, the generated output in one
interaction turn can become part of the input for the next turn (e.g.,
generating continuations that are added to a story). In these cases,
the generations themselves can become cells and allow the user
to test how di�erent generated outputs a�ect future generations
(e.g., generating alternative storylines). As multiple text fragments
can occupy signi�cant screen space, designers can provide mecha-
nisms to �minimize� cells in their interfaces. However, to prevent
occluding the content of cells and hindering users' access [8], cell
minimization should be designed such that it hints at the content
by, for example, only decreasing font size or summarizing the text
into keywords.

3.1.2 Assemble.Our framework suggests that interfaces should
split the input text into interactive cells as prior generative in-
terfaces showed that partitioning can facilitate iteration on in-
puts [4, 10, 94, 102]. As units, cells can then be assembled together
into generation inputs (e.g., sentences into an essay and require-
ments into a prompt) which allows users to quickly assemble input
variations [6, 59] or to mix-and-match the variants [101, 111]. Fi-
nally, disentangling inputs also helps users to �lock� portions of the
input and experiment with the e�ects of each portion separately�
encouraging systematic testing [112]. This portion-wise experimen-
tation can allow users to interactively align generations with their
intentions [2, 117] and to more intuitively gain an understanding
of the models [78, 110]. Designers can provide di�erent forms of
interaction for cell assembly based on the task and how cells are
used. For example, the user could assemble cells by dropping them
into a container, by selecting cells from multiple parallel con�gu-
rations to mix-and-match, or by drag-and-dropping between cells
to create the links. As cells can represent di�erent types of text
fragments (e.g., line, phrase), interfaces should have pre-de�ned
rules that dictate how these text fragments are concatenated once
cells are assembled. For example, an interface that represents lines
as cells should assemble them by concatenating the text with line
breaks, and one that represents phrases as cells should concatenate
them with spaces.

3.2 Generators
Generators(Fig. 3) are object representations of model settings (i.e.,
type of LLM and parameter values).

3.2.1 Create.With generators, the user can create several model
instances and separately modify each one (i.e., choose a di�erent
model and/or parameters) to experiment with their e�ects. Prior
work on various types of generative models has revealed that dif-
ferent models and parameters can satisfy di�erent user needs as
they can produce di�erent results [38, 48, 62]. Regarding writing
and LLMs, Lee et al. [53] found that di�erent parameter settings
can ful�ll di�erent writing goals (e.g., diverging vs converging),

Cells, Generators, and Lenses: Object-Oriented Interaction with Large Language Models UIST '23, October 29-November 1, 2023, San Francisco, CA, USA

and Chung et al. [15, 16] argued that interfaces should facilitate pa-
rameter adjustment to support writers' control over the generative
process. But, in existing interfaces, users cannot modify the under-
lying parameters [83, 109] or can only customize one global set of
parameters [1, 33, 34, 61, 69, 81]. In comparison, designing inter-
faces with generators can allow users to simultaneously maintain
several model instances, where each addresses a di�erent sub-task
or need [41]. Additionally, as the e�ect of con�guration changes
cannot be fully predicted due to the black box and non-deterministic
nature of LLMs, users need to iteratively test di�erent con�gura-
tions and, as they iterate, may want to return previously tested
con�guration [97]. By reifying model con�gurations into gener-
ators, users are able to use these objects to maintain previously
promising con�gurations�i.e., versioning. Similar to cells, genera-
tors should also be designed such that they visually hint at their
parameter settings and also support e�cient access to edit these
parameters.

3.2.2 Link.Generators can be freely linked to di�erent cells or cell
ensembles to produce outputs. These links can be many-to-many
to help the user test various combinations of inputs and model
parameters. For example, users can link the same cell to multiple
generators to compare the e�ects of di�erent parameter settings,
or link multiple cells to one generator to experiment with a range
of inputs. Designers can create interfaces that make the linking
process explicit (i.e., the user drag-and-drops between cells and
generators to create links) or implicit (i.e., the user selects cells to
use as input and then clicks on a generator to use its con�gurations
to generate).

3.2.3 Track.As objects, generators can also keep track of their
individual history of parameter changes, generated outputs, and
linked cells used as input. To support this history, interfaces can
log all of the generation events (i.e., input text, parameter settings,

Figure 3: Generatorsare object representations of generative
model instances (i.e., the type of model and its parameters).
Users can create generators, modify their parameters, and
then link them to one or multiple cells to generate outputs.
Generators display their parameter settings in their faces
(represented as letters in the diagram). Additionally, genera-
tors can maintain their own history to help users track how
parameters have increased and decreased, and what genera-
tions resulted from these changes.

and an array of generated outputs) for each generator. With this
tracking, users can examine and explore their iterative process to
carry out sensemaking on how parameters a�ected the resulting
generated outputs [3].

3.3 Lenses
Lenses(Fig. 4) are object representations of spaces that represent and
visualize the generations produced. For example, these can include
a list [18], a gallery [88], or a real-time con�dence visualization [65].

3.3.1 Link.By linking generators to lenses, users can represent
the generation outputs in diverse ways. E�ective representations
of the generations support the exploration of the generations and
sensemaking of the models' capabilities [28, 95, 114, 118]. How-
ever, as revealed by work on human-AI writing interfaces, the
�most e�ective� representation can be dependent on two dimen-
sions. First, the user's needs: when brainstorming storylines, for
example, visually representing the generated story arc can help
with sensemaking [16] but, when choosing the next sentence for
a story, a list of generations allows the user to concretely com-
pare them [31, 109]. Second, the generation amount (i.e., length
or number of alternatives): as they write, users may want to see
longer or more alternatives and, due to the increased reading cost,
interfaces need to provide user's with di�erent ways to parse and
examine these [11]. Thus, our framework suggests interfaces to
include a variety of lenses to help users customize how they visual-
ize and explore generations (e.g., linking a generator to a suitable
lens, switching between lenses, or comparing generators by linking
them to one lens).

3.3.2 Assemble.Lenses can also be assembled together to view the
same generation outputs through multiple representations [64, 82].
For example, a list lens and a sentiment scatterplot lens (i.e., predicts
sentiment of text) could be joined to allow the user to explore both
the content and sentiment of generated text. As users consider
various characteristics or metrics when making sense of generation
outputs [23], allowing them to assemble lenses can support more
comprehensive sensemaking.

Figure 4: Lensesare object representations of output spaces
that represent and visualize generations from linked genera-
tors (e.g., a list or a 2D grid). Lenses can be assembled together
to visualize the same generations in multiple ways.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Interactions with Generative Models
	2.2 Interfaces for Large Language Models
	2.3 Human-AI Writing Support Tools

	3 Cells, Generators, and Lenses
	3.1 Cells
	3.2 Generators
	3.3 Lenses

	4 Applying the Framework
	4.1 Copywriting Interface
	4.2 Email Composing Interface
	4.3 Story Writing Interface
	4.4 Implementation

	5 Evaluation
	5.1 Participants and Apparatus
	5.2 Study Procedure
	5.3 Measures
	5.4 Results

	6 Design Workshop
	6.1 Participants
	6.2 Findings

	7 Discussion
	7.1 Generalizability of the Framework
	7.2 Cells, Generators, and Lenses as Design Materials
	7.3 Potential of Object-Orientation: Analyze and Extend
	7.4 Further Development of the Framework
	7.5 Limitations

	8 Conclusion
	Acknowledgments
	References

