LMCanvas: Object-Oriented Interaction to Personalize Large
Language Model-Powered Writing Environments

Tae Soo Kim
taesoo.kim@kaist.ac.kr
School of Computing, KAIST
Daejeon, Republic of Korea

Minsuk Chang*
minsuk.chang@navercorp.com
Naver Al Lab
Seongnam, Republic of Korea

ABSTRACT

Large language models (LLMs) can enhance writing by automating
or supporting specific tasks in writers’ workflows (e.g., paraphras-
ing, creating analogies). Leveraging this capability, a collection of
interfaces have been developed that provide LLM-powered tools for
specific writing tasks. However, these interfaces provide limited sup-
port for writers to create personal tools for their own unique tasks,
and may not comprehensively fulfill a writer’s needs—requiring
them to continuously switch between interfaces during writing. In
this work, we envision LMCanvas, an interface that enables writers
to create their own LLM-powered writing tools and arrange their
personal writing environment by interacting with “blocks” in a
canvas. In this interface, users can create text blocks to encapsu-
late writing and LLM prompts, model blocks for model parameter
configurations, and connect these to create pipeline blocks that
output generations. In this workshop paper, we discuss the design
for LMCanvas and our plans to develop this concept.

KEYWORDS

Generative Al, Large Language Models, Writing Support Tools,
Object-Oriented Interaction

ACM Reference Format:

Tae Soo Kim, Arghya Sarkar, Yoonjoo Lee, Minsuk Chang, and Juho Kim.
2023. LMCanvas: Object-Oriented Interaction to Personalize Large Language
Model-Powered Writing Environments. In CHI 2023 Workshop on Generative
Al and HCI), Apr 28, 2023, Virtual. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/XXXXXXX XXXXXXX

1 INTRODUCTION

The advent of large language models (LLMs)—e.g., GPT-3 [4], GPT-
NeoX [3], Jurassic-1 [15], LaMDA [20]—has transformed the writing
process. Instead of manually drafting passages of text, writers can
now hand over this effort to these models and almost instantly

“Minsuk is now at Google.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CHI 23 Workshop on Generative AI and HCI, Apr 28, 2023, Virtual

© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-x-xxxx-XxXX-X/YY/MM.
https://doi.org/10.1145/XXXXXXX.XXXXXXX

Arghya Sarkar
arghya@nyu.edu
New York University
New York, USA

Yoonjoo Lee
yoonjoo.lee@kaist.ac.kr
School of Computing, KAIST
Daejeon, Republic of Korea

Juho Kim
juhokim@kaist.ac.kr
School of Computing, KAIST
Daejeon, Republic of Korea

generate passages from an initial sentence or phrase. Beyond their
generative capabilities, LLMs demonstrate significant few-shot and
zero-shot performance [4] meaning that they are able to perform
previously unseen tasks with only an instruction and/or a couple
of examples—i.e., a prompt. By leveraging this ability of LLMs,
writers can potentially automate or augment specific tasks in their
workflows by using adequate prompts and, thus, further facilitate
the writing process. For instance, based only on prompt examples
provided for GPT-3 [17], writers can use LLMs to correct grammar,
create an outline, produce analogies, or even change the point-of-
view of a scene.

To seize the opportunity presented by LLMs, an assortment of
products and interfaces have been created that leverage these mod-
els to provide writers with specific tools that automate steps in their
writing workflows. For example, tools such as WordTune [11] and
NotionAl [12] provide editing buttons that the user can click after
selecting text to automatically rewrite it, change its tone, summa-
rize it, elaborate on it, etc. Additionally, a variety of LLM-powered
copywriting tools [1, 7] have also been created that provide writ-
ers with a variety of template forms that they can fill to generate
specific types of writing (e.g., video description or script, blog intro-
duction, article headline). Similarly in academia, various interfaces
have been designed to leverage LLMs to support specific tasks: gen-
erate various forms of figurative language [5], summarize a writer’s
writing [8], brainstorm and combine ideas [9], or propagate writing
edits across a story [14].

While the proliferation of these LLM-driven tools means that
various writing tasks can now be supported, the individual needs
and challenges of writers might not be fulfilled by these tools.
Due to their type of writing, their fluency with a language, or
other factors such as their style and workflow, a writer may have
specific needs and challenges during their writing process. However,
while existing interfaces provide a general set of tools, they provide
limited or no support for the writer to create their own tools to
support their unique tasks. Further, an interface may not provide a
comprehensive set of tools that supports all of the writer’s tasks and,
thus, the writer may need to constantly switch between multiple
interfaces to support their workflows. As a result, the writer needs
to scatter and adapt their writing workflow across a variety of
interfaces.

https://doi.org/10.1145/XXXXXXX.XXXXXXX
https://doi.org/10.1145/XXXXXXX.XXXXXXX

CHI ’23 Workshop on Generative Al and HCI, Apr 28, 2023, Virtual

In this work, we envision a canvas-based interface that enables
writers to create their own personalized LLM-driven tools and con-
figure them into one cohesive writing environment. Inspired by
object-oriented interaction [2, 6, 10, 22—24] and block-based pro-
gramming [18], we present the design for LMCanvas, an interface
that enables users to interact with text and model blocks to flexi-
bly create and arrange LLM-powered tools. Through the interface,
users can create text blocks to encapsulate both their writing and
LLM prompts, keep drafts as separate blocks, and organize them in
the canvas. By connecting text blocks to model blocks (i.e., blocks
that represent a set of model configurations), users can create LM
pipelines, tools, that generate outputs as text blocks based on the
input text and model block. After creating a set of tools, the user can
flexibly arrange them in the canvas to create a writing environment
customized to their needs and preferences. In this workshop paper,
we discuss our design of the envisioned LMCanvas and future work
to develop this concept.

2 LMCANVAS: DESIGN CONCEPT

In our envisioned interface, LMCanvas, writers can create four
types of objects in an infinite canvas: text blocks, model blocks, and
pipeline blocks. All of these blocks can be flexibly moved, copy-
pasted, deleted, and connected to each other. Below, we detail the
specific interactions that we aim to support for each type of block.

2.0.1 Text Blocks. In the canvas, the writer can create text blocks,
which are objects that the writer can type text into and edit. When
writing with LLMs, text can represent different types of content:
actual writing, prompts, examples for prompts, generated outputs,
etc. By compartmentalizing text into modular blocks, our interface
allows the writer to flexibly organize and structure these different
forms of text in their writing environment. For example, the writer
can use a text block as their main text editor, maintain text blocks on
the side containing alternative versions for certain paragraphs, and
keep a text block with a prompt template to reuse when creating
LLM-powered tools.

To support flexible use of text blocks, we design the following
interactions specific to these blocks. Resizing allows the writer to

Concatenate Split

This is a text object !

and they can be combined This is a text object and they can be combined

This is a text object

This is a text object and they can be combined and they can be combined

Input Translate the text from Translate the text from
English to French. English to French.
Input: hello Input: hello
a phrase to Output: bonjour Output: bonjour
translate
to french Input: this is a dog Input: this is a dog

Output: c'est un chien Output: c'est un chien

Input: aphrase to Input: a phrase to
_‘—l Output: translate —| translate to french
to french Output:

Figure 1: Illustrations for the concatenate, split, and input
interactions supported in text blocks.

Kim et al.

change the format of text blocks for different types of usage (e.g., a
larger block for a text editor) or to decrease their size to decrease
clutter in the screen. When the writer decides that they do not
have to keep two text blocks separate anymore (e.g., decided on
the final versions for the first two verses of their poem), they can
concatenate these blocks by drag-and-dropping one text block
into the other. Alternatively, if the writer needs to modularize or
separate certain parts of a text (e.g., to only draft one part of a
paragraph), they can split off text by selecting it and dragging it
outwards—creating a new text block. To allow writers to create
reusable LLM-powered tools, the interface allows the user to create
text blocks to which they can input other text blocks. Specifically,
the user types the “[[input]]” command in a text block to create an
“input prong”. Then they can attach other blocks into this prong to
replace the “[[input]]” command with the content of the attached
text block. Finally, as writers may want writing support tools to act
on selected text (e.g., generate metaphor for selected phrase or edit
selected text to be shorter), the interface also allows users to create
select blocks by typing the “[[select]]” command in a text block.
The content of these blocks are replaced by any text that the user
selects in the canvas.

2.0.2 Model Blocks. LLMs possess various parameters that control
the generation process. For example, the temperature parameter
determines the probability of the model generating more out-of-
distribution or improbable text. Prior work has demonstrated that,

Model Block Configure
"Z‘\"* 0.7
Presence TopN o7
024§ 2
Connect Translate the text from EHZRE 0.7

English to French.

Input: hello
Output: bonjour

Input: this is a dog
Output: c'est un chien

a phrase to Input: a phrase to
translate —l translate to french
to french Output:

Plpellne Translate the text from _D
English to French.
Block
Input: hello A 0.7
Output: bonjour Presence | TopN
- 02§ 2
Input: this is a dog

Output: c'est un chien

a phrase to Input: a phrase to
translate | translate to french
to french Output:

Figure 2: Model blocks represent a set of parameter config-
urations that the writer can configure, copy, and reuse. By
connecting model blocks to text blocks, writers can create
pipeline blocks that allow them to generate outputs based
on the nested text and parameters.

LMCanvas: Object-Oriented Interaction for Language Model-Based Writing

Continue Chaining
It was a dark and stormy night, Write a scary Generate |Q
and | was out driving, looking story about a ——
for a place to stop and get coffee shop Engine
some coffee. | saw a sign up ’ A BO7Z
ahead that said "Coffee Shop," +
so | turned off the main road I [linput]] Pressnce —
and followed the winding 0.2 2

driveway until | came to a
small, dilapidated building
nestled in the trees.

[[select]] —-|

English to French.

Input: hello
Output: bonjour

Translate the text from Write a poem in —'D
English that USes | ——
I the following i
A 0.7 French phrase. 0.7
Presence | TopN on . Presence] TopN
Input: this is a dog 02 2 — TSE,[[IJPU‘,]I 02§ 2

Output: c'est un chien

Input: [[input]]

CHI ’23 Workshop on Generative Al and HCI, Apr 28, 2023, Virtual

Figure 3: The output container of pipeline blocks can be connected to text blocks to add generations as continuations, or to the

input prongs of text blocks to chain pipelines.

when writing with LLMs, different configurations of these parame-
ters can satisfy different user needs [13]. Thus, to support writers
to set, test, and reuse parameter configurations, LMCanvas allows
users to create multiple model blocks with different combinations
of parameters (Figure 2). These blocks represents an instance of pa-
rameter configurations that the writer can reconfigure by clicking
on a parameter and using the displayed widgets to change its value.

2.0.3 Pipeline Blocks. To generate text with the LLM, the user can
connect a text block to a model block to create a pipeline block
(Figure 2). When a writer clicks on “generate” in a pipeline block,
the interface uses the nested text block as input and the model block
as the parameter configurations to generate an output, which is
presented as a text block. To test multiple inputs and parameter
configurations, the writer can also expand a pipeline block by
adding additional text and model blocks. In this case, when the
pipeline block generates, it produces a generation for each pairing
of text and model blocks inside the pipeline block.

By default, each time a pipeline block generates, it adds the gen-
eration as a text block in the output container—the box containing
“1” that prongs out of the pipeline block as seen in Figure 2. How-
ever, through drag-and-drop, the writer can connect this output
container to (1) a text block to add the generations from the pipeline
as continuations to that text block (left in Figure 3), or (2) an input
prong to chain multiple pipeline blocks together and create more
complex tools [21] (right in Figure 3). Additionally, if the writer
connects the output of a pipeline to a select block, the interface
replaces any text selected across all text blocks in the canvas with
the generation produced by the pipeline. These various forms of
connecting pipeline blocks can enable the writer to create a variety
of tools from the same basic blocks.

3 FUTURE WORK

In this workshop paper, we outlined the foundational objects and
interactions that we aim to support in our envisioned LMCanvas.
Our goal with this interface is to enable writers to more effectively
leverage LLMs by personalizing their use to fit their unique work-
flows, needs, and challenges. At the current stage of the project,
we have developed an initial prototype that supports the three
objects presented in this paper and their basic interactions. With
this prototype, we are planning to conduct formative studies to un-
derstand the various tools that writers can create with LMCanvas,
the benefits and drawbacks of the interfaces, and additional blocks

and interactions that writers might need. Based on the findings, we
plan to improve and expand on the concept. Beyond the directions
for improvement to be distilled from the formative study, there are
additional future directions that we plan to pursue with LMCanvas.

First, an additional benefit of representing writing as text blocks
is that this can enable the interface to maintain a separate history
for each text block. With this modularized history, writers can check
on and revert changes for only specific parts of their writing, and
they can also reflect back on their generation attempts by seeing
what inputs and parameter configurations were previously used.
We are planning to implement this modularized history for text
blocks and to enable users to interact with it—e.g., dragging the
text input that generated a text block out from the history and into
the canvas.

Second, in future versions of LMCanvas, we aim to support
various types of output containers for pipeline blocks. Currently,
the prototype only supports containers that keep generated text
blocks as a list. However, when dealing with a large quantity of
generated outputs, writers may need alternative methods to look at
and explore generated outputs. For example, generations could be
encoded in a scatterplot [16] to enable the writer to visualize the
output space.

Finally, identifying effective prompts (i.e., prompt engineering) is
a major hurdle in leveraging LLMs. While tools have been designed
to facilitate this in well-defined tasks where there is a “ground-
truth” [19], there is limited work that investigated how to sup-
port prompt engineering in open-ended and more creative tasks.
Through our initial versions of LMCanvas, we aim to investigate
mechanisms to facilitate prompt engineering in open-ended writ-
ing and to incorporate these into the interface. For example, the
interface could allow writers to drag-and-drop text blocks into
pipeline blocks as positive or negative examples, and leverage these
in the back-end to produce outputs more aligned to the writers’
preferences.

ACKNOWLEDGMENTS

This work was supported by KAIST-NAVER Hypercreative Al Cen-
ter.

REFERENCES

[1] Jasper AL 2022. Jasper - AI Copywriter | AI Content Generator for Teams. Retrieved
Feb 23, 2023 from https://www.jasper.ai/

[2] Michel Beaudouin-Lafon. 2000. Instrumental Interaction: An Interaction Model
for Designing Post-WIMP User Interfaces. In Proceedings of the SIGCHI Conference

https://www.jasper.ai/

CHI ’23 Workshop on Generative Al and HCI, Apr 28, 2023, Virtual

(5

[10

[11
[12

[13

[14

[15

(16

(17

[18

[19

=

]

]

]

]

]

]

on Human Factors in Computing Systems (The Hague, The Netherlands) (CHI "00).
Association for Computing Machinery, New York, NY, USA, 446-453. https:
//doi.org/10.1145/332040.332473

Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence
Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler,
USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben
Wang, and Samuel Weinbach. 2022. GPT-NeoX-20B: An Open-Source Autore-
gressive Language Model. (2022).

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
arXiv:2005.14165 [cs.CL]

Tuhin Chakrabarty, Vishakh Padmakumar, and He He. 2022. Help me write a
poem: Instruction Tuning as a Vehicle for Collaborative Poetry Writing. arXiv
preprint arXiv:2210.13669 (2022).

Marianela Ciolfi Felice, Nolwenn Maudet, Wendy E. Mackay, and Michel
Beaudouin-Lafon. 2016. Beyond Snapping: Persistent, Tweakable Alignment
and Distribution with StickyLines. In Proceedings of the 29th Annual Sympo-
sium on User Interface Software and Technology (Tokyo, Japan) (UIST ’16). As-
sociation for Computing Machinery, New York, NY, USA, 133-144. https:
//doi.org/10.1145/2984511.2984577

CopyAlL 2022. Copy.ai: Write better marketing copy and content with AL Retrieved
Feb 23, 2023 from https://www.copy.ai/

Hai Dang, Karim Benharrak, Florian Lehmann, and Daniel Buschek. 2022. Beyond
Text Generation: Supporting Writers with Continuous Automatic Text Summaries.
In Proceedings of the 35th Annual ACM Symposium on User Interface Software and
Technology. 1-13.

Giulia Di Fede, Davide Rocchesso, Steven P Dow, and Salvatore Andolina. 2022.
The Idea Machine: LLM-based Expansion, Rewriting, Combination, and Sugges-
tion of Ideas. In Creativity and Cognition. 623-627.

Han L. Han, Junhang Yu, Raphael Bournet, Alexandre Ciorascu, Wendy E. Mackay,
and Michel Beaudouin-Lafon. 2022. Passages: Interacting with Text Across
Documents. In Proceedings of the 2022 CHI Conference on Human Factors in
Computing Systems (New Orleans, LA, USA) (CHI °22). Association for Computing
Machinery, New York, NY, USA, Article 338, 17 pages. https://doi.org/10.1145/
3491102.3502052

AI21 Labs. 2022. WordTune | Your personal writing assistant and editor. Retrieved
Feb 23, 2023 from https://www.wordtune.com/

Notion Labs. 2022. Notion AL Retrieved Feb 23, 2023 from https://www.notion.
so/product/ai

Mina Lee, Percy Liang, and Qian Yang. 2022. CoAuthor: Designing a Human-AI
Collaborative Writing Dataset for Exploring Language Model Capabilities. CoRR
abs/2201.06796 (2022). arXiv:2201.06796 https://arxiv.org/abs/2201.06796
Yoonjoo Lee, Tae Soo Kim, Minsuk Chang, and Juho Kim. 2022. Interactive
Children’s Story Rewriting Through Parent-Children Interaction. In Proceedings
of the First Workshop on Intelligent and Interactive Writing Assistants (In2Writing
2022). 62-71.

Opher Lieber, Or Sharir, Barak Lenz, and Yoav Shoham. 2021. Jurassic-1: Technical
Details And Evaluation. Technical Report. Al21 Labs.

Justin Matejka, Michael Glueck, Erin Bradner, Ali Hashemi, Tovi Grossman, and
George Fitzmaurice. 2018. Dream Lens: Exploration and Visualization of Large-
Scale Generative Design Datasets. Association for Computing Machinery, New
York, NY, USA, 1-12. https://doi.org/10.1145/3173574.3173943

OpenAl 2022. Examples - OpenAI AP Retrieved Feb 23, 2023 from https:
//platform.openai.com/examples/

Mitchel Resnick, John Maloney, Andrés Monroy-Hernandez, Natalie Rusk, Evelyn
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silverman, et al. 2009. Scratch: programming for all. Commun. ACM 52, 11 (2009),
60-67.

Hendrik Strobelt, Albert Webson, Victor Sanh, Benjamin Hoover, Johanna Beyer,
Hanspeter Pfister, and Alexander M. Rush. 2022. Interactive and Visual Prompt
Engineering for Ad-hoc Task Adaptation with Large Language Models. https:
//doi.org/10.48550/ARXIV.2208.07852

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kul-
shreshtha, Heng-Tze Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, YaGuang
Li, Hongrae Lee, Huaixiu Steven Zheng, Amin Ghafouri, Marcelo Menegali,
Yanping Huang, Maxim Krikun, Dmitry Lepikhin, James Qin, Dehao Chen,
Yuanzhong Xu, Zhifeng Chen, Adam Roberts, Maarten Bosma, Yanqi Zhou,
Chung-Ching Chang, Igor Krivokon, Will Rusch, Marc Pickett, Kathleen S. Meier-
Hellstern, Meredith Ringel Morris, Tulsee Doshi, Renelito Delos Santos, Toju
Duke, Johnny Soraker, Ben Zevenbergen, Vinodkumar Prabhakaran, Mark Diaz,
Ben Hutchinson, Kristen Olson, Alejandra Molina, Erin Hoffman-John, Josh Lee,
Lora Aroyo, Ravi Rajakumar, Alena Butryna, Matthew Lamm, Viktoriya Kuzmina,
Joe Fenton, Aaron Cohen, Rachel Bernstein, Ray Kurzweil, Blaise Aguera-Arcas,

[21

[22

[24

Kim et al.

Claire Cui, Marian Croak, Ed Chi, and Quoc Le. 2022. LaMDA: Language Mod-
els for Dialog Applications. CoRR abs/2201.08239 (2022). arXiv:2201.08239
https://arxiv.org/abs/2201.08239

Tongshuang Wu, Michael Terry, and Carrie J. Cai. 2021. AI Chains: Transparent
and Controllable Human-AI Interaction by Chaining Large Language Model
Prompts. CoRR abs/2110.01691 (2021). arXiv:2110.01691 https://arxiv.org/abs/
2110.01691

Haijun Xia, Bruno Araujo, Tovi Grossman, and Daniel Wigdor. 2016. Object-
Oriented Drawing. In Proceedings of the 2016 CHI Conference on Human Factors
in Computing Systems (San Jose, California, USA) (CHI ’16). Association for
Computing Machinery, New York, NY, USA, 4610-4621. https://doi.org/10.1145/
2858036.2858075

Haijun Xia, Bruno Araujo, and Daniel Wigdor. 2017. Collection Objects: Enabling
Fluid Formation and Manipulation of Aggregate Selections. In Proceedings of the
2017 CHI Conference on Human Factors in Computing Systems (Denver, Colorado,
USA) (CHI ’17). Association for Computing Machinery, New York, NY, USA,
5592-5604. https://doi.org/10.1145/3025453.3025554

Haijun Xia, Nathalie Henry Riche, Fanny Chevalier, Bruno De Araujo, and Daniel
Wigdor. 2018. Datalnk: Direct and Creative Data-Oriented Drawing. Association
for Computing Machinery, New York, NY, USA, 1-13. https://doi.org/10.1145/
3173574.3173797

https://doi.org/10.1145/332040.332473
https://doi.org/10.1145/332040.332473
https://arxiv.org/abs/2005.14165
https://doi.org/10.1145/2984511.2984577
https://doi.org/10.1145/2984511.2984577
https://www.copy.ai/
https://doi.org/10.1145/3491102.3502052
https://doi.org/10.1145/3491102.3502052
https://www.wordtune.com/
https://www.notion.so/product/ai
https://www.notion.so/product/ai
https://arxiv.org/abs/2201.06796
https://arxiv.org/abs/2201.06796
https://doi.org/10.1145/3173574.3173943
https://platform.openai.com/examples/
https://platform.openai.com/examples/
https://doi.org/10.48550/ARXIV.2208.07852
https://doi.org/10.48550/ARXIV.2208.07852
https://arxiv.org/abs/2201.08239
https://arxiv.org/abs/2201.08239
https://arxiv.org/abs/2110.01691
https://arxiv.org/abs/2110.01691
https://arxiv.org/abs/2110.01691
https://doi.org/10.1145/2858036.2858075
https://doi.org/10.1145/2858036.2858075
https://doi.org/10.1145/3025453.3025554
https://doi.org/10.1145/3173574.3173797
https://doi.org/10.1145/3173574.3173797

	Abstract
	1 Introduction
	2 LMCanvas: Design Concept
	3 Future Work
	Acknowledgments
	References

