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Figure 1: A user can search videos based on structures of procedural knowledge using the search interface of Surch. (a) Procedural
Graph: structures of surgical procedures are represented in a graph format. The user can search videos based on graph-based
interactions. (b) Path View Option: the user can adjust the level of detail of the graph, displaying all paths or only common
paths. (c) Video Filters: the user can filter the videos based on two basic filters, video length and year of upload filters. (d) Video
List and Text-Based Search Bar: the user can browse the list of surgical videos and input keywords to search videos.
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ABSTRACT
Video is an effective medium for learning procedural knowledge,
such as surgical techniques. However, learning procedural knowl-
edge through videos remains difficult due to limited access to pro-
cedural structures of knowledge (e.g., compositions and ordering of
steps) in a large-scale video dataset. We present Surch, a system that
enables structural search and comparison of surgical procedures.
Surch supports video search based on procedural graphs generated
by our clustering workflow capturing latent patterns within surgi-
cal procedures. We used vectorization and weighting schemes that
characterize the features of procedures, such as recursive structures
and unique paths. Surch enhances cross-video comparison by pro-
viding video navigation synchronized by surgical steps. Evaluation
of the workflow demonstrates the effectiveness and interpretability
(Silhouette score = 0.82) of our clustering for surgical learning. A
user study with 11 residents shows that our system significantly im-
proves the learning experience and task efficiency of video search
and comparison, especially benefiting junior residents.

CCS CONCEPTS
• Human-centered computing → Interactive systems and
tools; Empirical studies in HCI.
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1 INTRODUCTION
Procedural knowledge is knowledge about how to do something,
for example, how to carry out a sequence of operations or actions
[74, 105]. Learning procedural knowledge consists of two main
steps: grasping a conceptual overview of a procedure’s structure
and mastering individual steps in that procedure [31, 65]. In this
regard, video is a helpful aid because it contains the overall flow of
procedural steps and demonstrates intricate details of techniques
that are difficult to document or verbally explain [6, 30].

This is particularly true for surgery, a domain where videos
are growing in popularity as learning materials for residents (sur-
geons in training) and medical students as they learn surgical proce-
dures [18, 80, 120]. However, the conceptual structure of procedural
knowledge such as compositions and step ordering is latent and
not easily accessible in the UI for surgical video. This is because
it is costly to extract semantic information from surgical data via
domain experts and difficult to capture meaningful structural fea-
tures from large-scale video data as they become a series of pixels
once the video is encoded. In addition, existing video interfaces do
not support a focused comparison of critical skills for each surgical
step, which is important in learning procedural knowledge.

To address these challenges, we first conducted iterative inter-
views with six surgeons and thirty residents, aiming to investigate

the current practice and challenges of video-based surgery learning.
Our results revealed that search and comparison were the most chal-
lenging and costly tasks associated with learning surgery through
video, corroborating our assessment that current platforms offered
limited support for learning procedural knowledge from videos.
Residents’ main pain point was the limited access to semantic in-
formation while searching videos and the lack of support for cross-
video reference and comparison. The residents wanted a semantic
video search function based on surgical phases and approaches (e.g.,
anterior or posterior approach in robotic prostatectomy). They also
sought to compare the approaches and techniques in a wide range
of surgical cases to be prepared for various situations, but existing
video interfaces such as YouTube did not support cross-video ref-
erencing and comparison. Residents, as a consequence, ended up
searching for videos by relying on limited metadata such as video
titles and uploader information and then comparing said videos by
scrubbing through the timelines in multiple windows.

Accordingly, to enhance the learning experience through surgi-
cal videos, we designed and implemented a system named Surch
(Surgery + Search), a video interface that supports structural search
and cross-video comparison for surgery videos. For this initial study,
we focused on recordings of robot-assisted radical prostatectomy,
the most common robotic procedure [48, 101]. Our system con-
sists of (1) a computational pipeline that automatically translates
surgery videos into procedural graphs that represent the structure
of procedural sequences, (2) a video search interface that enables
structural search through filters based on the semantic structure
of surgical procedures, and (3) a video comparison interface that
allows cross-video comparison based on surgical phases.

As part of the computational pipeline, we first annotated the
surgery video dataset for 296 videos of prostatectomies from college
students. We then trained a CNN-LSTM model to automatically
detect the surgical phases. On top of that, we devised a clustering
workflow tailored to the analysis of procedural knowledge. The
workflow captures key features of procedural knowledge structures
such as recursive and branching step patterns, thereby enabling
the detection of latent important learning points. Existing cluster-
ing methods for constructing visual representations of sequential
data [24, 68] are not apt to identify meaningful patterns in surgi-
cal procedures as identifying patterns in surgical procedures re-
quires consideration for analysis dimensions that are meaningful
in surgical learning, such as recursive structures or unique paths in
surgeries. To this end, we vectorized procedural data using custom
analysis dimensions and designed a weighting scheme with param-
eter optimization through a grid search [20]. In addition, previous
work focuses on interactional support for static content such as
natural language text [23] and command log data [24, 68], but com-
paring procedural knowledge in videos poses a new challenge such
as aligning temporal information of multiple videos. Our clustering
workflow addresses these issues and enables rich video interactions,
including synchronized navigation across multiple videos.

Powered by the automated pipeline, the Surch video interface
enables structural video search and comparison (Fig. 1). First, the
search interface provides an interactive semantic graph of surgical
procedures. This visual representation helps residents understand
the conceptual structure of the surgery and supports graph-based
interaction for filtering videos. For instance, surgical phases are
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visualized as nodes in graphs, and residents can click these nodes
to watch videos that contain the selected phases. Second, Surch
supports cross-video comparison. Residents can quickly reference
and switch across videos by watching different clips in multiple
windows. They can also synchronize the videos at a phase level
via graph-based interactions: clicking a surgical phase included in
two surgical procedures synchronizes their video play bars, thereby
enabling juxtaposed comparison of that phase in multiple videos.

We evaluated the effectiveness and validity of each part of our
system: the clustering workflow and the interface. We demonstrate
the robustness of our clustering results by using both quantitative
and qualitative measures, using six different evaluation metrics
for clustering quality and expert evaluation with senior residents.
The clustering workflow achieved a Silhouette score of 0.76 and
0.87 for the dataset of anterior and posterior approaches, and the
residents reported that the clusters aligned with what they learned
and allowed new discoveries of surgical paths. Our clustering re-
sults detected not only the most standard approach (valuable for
juniors) but also unique routes (valuable for seniors). To test if our
video interface improved video search and comparison in surgery
learning, we conducted a user study with 11 residents. The results
show that our system significantly increased the learning experi-
ence and perceived task efficiency for video search and comparison.
Our system enables users to watch more videos in a shorter time,
and junior residents submitted slightly more meaningful compar-
isons across videos when using our system. We also discuss the
design implications of search and comparison tools for videos with
procedural knowledge.

To summarize, our work makes the following contributions:

• An annotated dataset of surgical phases in 296 prostatectomy
videos and a CNN-LSTM model for surgical phase detection
in prostatectomy

• An automated clustering pipeline that generates procedural
graphs for surgical videos

• A design and implementation of Surch, a video interface that
provides structural video search and cross-video comparison

• Results of quantitative pipeline evaluation and empirical
user study

2 RELATEDWORK
We discuss three domains of previous work that our work builds on:
(1) learning surgery through video, (2) content-based video search,
and (3) cross-video comparison.

2.1 Learning Surgery Through Video
Video is the primary medium for learning surgical training [2, 11,
99]. According to Mota et al. [80], 98.6% of residents and surgi-
cal specialists use videos for surgery preparation. Surgery video
recordings provide key learning points in surgical training, such
as anatomical landmarks and surgical maneuvers [1, 77]. They
also accelerate the learning curve for surgical training [56]. As
video becomes a predominant medium in learning surgery, sev-
eral researchers designed supporting tools to enhance video-based
surgery learning. The existing work has sought to improve how
medical students and professionals learn and communicate through

a video medium, including in-video navigation, video summary,
and telemonitoring (i.e., remote patient monitoring).

To enhance video navigation in surgical recordings, Hudelist
et al. [53] developed a video interface that displays clickable and
zoomable keyframes of endoscopic videos. Munzer et al. [82] in-
troduced EndoXplore, a video player that supports content-based
video navigation based on phases of surgical operations. Their sys-
tem automatically extracts the surgical phases from endoscopic
videos and displays the clickable thumbnails that allow navigation
to each surgical phase. However, their automatic phase detection re-
lied on the instrument types, which do not distinguish main phases
using the same instruments. Also, EndoXplore only supports a sin-
gle video interaction, while residents usually browse and compare
multiple procedures per case. Meanwhile, another thread of work
investigated collaborative video learning. Surgeons and residents
construct a shared understanding of surgery through telementoring
that monitors patients remotely [15, 35]. Mentisa et al. [77] investi-
gated how surgeons communicate over laparoscopic videos when
they are in remote settings. Avellino et al. [12] introduced a system
design for a collaborative video summary tool. They suggested
that the requirements for a collaborative surgery summary tool
include enabling appropriate division of tasks and management of
dependencies between tasks.

Prior work, however, is limited to interactions around a single
video due to the two main challenges of interaction support involv-
ing multiple videos: difficulties in extracting semantic information
from videos and building meaningful links across videos. In this
context, content-based video search and comparison, the two main
pain points revealed by our formative study, remained unsupported
by the existing systems or techniques.

2.2 Content-Based Video Search
A massive amount of videos are produced and uploaded online. In
particular, surgical recordings are piling up, driven by the preva-
lence of endoscopic video recordings and advances in camera tech-
nologies [90, 97]. The traditional search method relies on textual
metadata input by the uploader (e.g., titles, tags), which does not re-
flect rich visual features or structural information of video content.
One of the key solutions to mediate the video search problem is a
video search based on the in-video semantic features such as objects,
actions, and relationships between them [25, 26, 89, 102]. To enable
semantic video search, it is necessary to retrieve information and
knowledge from videos. To this end, there have been attempts to ex-
tract semantic information from videos with procedural knowledge,
for example, a path of players’ movements in sports videos [4, 10,
107], step-by-step structures in how-to videos [28, 40, 66, 116], and
surgical phases in surgery videos [29, 39, 43, 67, 95, 112, 121]. Tan
et al. also [109] provided a landscape of procedural video datasets
whose task includes furniture assembly, makeup, and cooking. The
computer vision community improved self-supervised learning
[45] and procedural learning [16] for videos that contain proce-
dural tasks by aligning temporal information between multiple
videos.

Such semantic information extracted from videos enables content-
based video search [51]. For example, a body of existing work
displays the semantic information in the format of a sequence of
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keyframes of videos, which enables quick video browsing. Barthel
et al. [17] allowed visual exploration and search of videos by pro-
viding related video scenes with high visual similarity. Hurst et
al. [54] designed an interface that presents video thumbnails to
support large-scale video browsing on mobile devices. Another
thread of work tried to represent the information in videos into
a hierarchical structure by organizing knowledge in videos into a
tree structure [119], hierarchically clustering video shots [81, 110]
and providing an overview of non-linear causal relationships [84].
Meanwhile, several video search tools allow various types of queries
for video search, including sketches of video frames [87, 92], textual
keywords [9, 86], and video clips [44, 61].

However, none of the existing work supports video search based
on procedural knowledge structure in videos, which can be the
most intuitive way of exploring procedural videos as structural
information delivers the steps’ connections and their logical order
in procedural knowledge [41]. Thus, we propose a video search
interface that provides a visual representation of procedural videos.
Our system allows viewers to understand the landscape of proce-
dures in myriad videos and filter video clips by using graph-based
interactions.

2.3 Cross-Video Comparison
Most surgeons reach an early plateau of average performance main-
tained for the rest of their career [34]. In contrast, exposure to
various surgical techniques by comparing multiple videos can play
a key role in overcoming the plateau [120]. Previous research has
introduced interfaces for comparing multiple videos. For instance,
Balakrishnan et al. [14] suggested a visualization method that over-
lays highlighted edges of actions’ differences in videos to iden-
tify the subtle dissimilarities between motions. Bellini et al. [19]
proposed MyStoryPlayer, a video interface that supports video
comparison based on multi-video views synchronized considering
relationships of audiovisual content in video-based learning and
training scenarios. Meanwhile, video synchronization is one of the
main challenges in designing a video comparison system, which
aligns multiple videos in a common temporal line considering audio
and visual relationships between videos. Segundo et al. [98] intro-
duced a crowdsourcing technique that manages the convergence
of crowds’ contributions and distributes videos for video synchro-
nization. On the other hand, Tharatipyakul et al. [111] suggested
essential conceptual components for supporting video comparison,
which includes playback and synchronization, complexity reduc-
tion, and interactivity. In the surgery domain, in particular, Matsuda
et al. [73] designed multi-view video interfaces to enable users to
watch videos from multiple sources such as endoscopes, x-ray, and
experts’ eye and hand movements. Hudelist et al. [52] built a video
player for surgical video comparison on tablet devices. Their video
interface displays two video windows side-by-side, allowing the
comparison of the same procedure of different patients.

However, there is limited support for cross-video comparison
at a phase level, which was needed by residents to find a feasible
technique for each surgical phase based on our interview results.
The phase-level interaction, in particular, needs to be supported
since the surgical phases are the basic units of surgery procedures,
and segmenting surgical procedures into phases plays a vital role

in reducing the learners’ cognitive load [79, 85]. To fill this gap, our
system enables cross-video comparison based on the procedural
structure of a surgery. In this way, residents can easily reference
various techniques for the same phase, thereby achieving expert
performance by engaging in deliberate practice in a focused area
of surgery [34].

3 FORMATIVE STUDY
To understand the current practices and needs surrounding video-
based surgery learning, we conducted multiple rounds of need-
finding interviews over a year with residents and surgeons. We
used an iterative interviewing method [36, 114] to investigate the
research problems and discover our research direction.

3.1 Method
3.1.1 Participants. We recruited six surgeons and thirty residents
in urology in the U.S. by contacting surgeons through email, asking
them to recommend colleagues who specialize in robotic surgery.
The residents consisted of 6 first Post Graduate Year one (PGY1), 6
PGY2, 7 PGY3, 3 PGY4, 7 PGY5, and 1 PGY6. All of the participants
had prior experience learning about surgery through videos. We
refer to six surgeons as S1 through S6 and thirty residents as R1
through R30.

3.1.2 Procedures. We conducted remote semi-structured interviews
using Zoom and recorded the interviews under consent. All of the
authors have received training on the ethical treatment of human
subjects, and we did not collect any data from patients, including
video recordings, clinical history, or medical images.

The interviews lasted about 50 minutes with two main sessions:
current practice and challenges of video-based surgery learning.
We used a saturation method [21] to determine the number of
participants. We conducted several batches of group interviews
with 3-4 participants per each interview session and performed a
preliminary analysis of the transcripts for each batch. We stopped
conducting more interviews when the analysis stopped revealing
new insights.

3.2 Analysis
The interviews were video recorded and transcribed using transcrip-
tion service 1. Two of our authors performed thematic analysis [50].
They independently made a codebook for half of the transcripts,
using an inductive approach. They then merged and refined the
codebook until they reached a consensus. The two authors then
coded two randomly selected transcripts using the codebook. To
validate the qualitative coding, we computed Cohen’s kappa. The
average Cohen’s kappa score across the entire code was 0.81 with
a standard deviation of 0.06. Each author then coded the rest of
the interviews independently. After the coding, they met to discuss
discrepancies in applying the code set and adjusted the coded data.

3.3 Findings
3.3.1 Context and Practice of Video-Based Surgery Learning. The
residents were using three main surgery video platforms: YouTube,
Michigan Urological Surgery Improvement Collaborative (MUSIC),

1https://otter.ai/.
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and one offered by the American Urological Association (AUA).
Most of our interviewees watched surgery videos a night before par-
ticipating in surgical procedures. Their purpose in watching these
videos was to remind themselves of certain surgical techniques or
the flow of surgical phases. They stressed that they usually watch
videos under tight schedules. Meanwhile, their video-based surgery
learning involved multiple activities, which included video search,
navigation, comparison, bookmarking, note-taking, and reviewing.

3.3.2 Challenges and User Needs.

Limited Access to Semantic Information.
Residents’ main considerationwhen searching for surgery videos

was the feasibility of a given procedure. They sought videos with
procedures that they could perform in practice. They determined
the feasibility of a particular procedure by inducing semantic in-
formation such as approaches and techniques. Residents pointed
out that the existing video platforms did not support such semantic
search, so they needed to invest significant time into manually
navigating to video segments they wanted to watch.

Lack of Structural Information on Procedural Knowledge.
Residents wanted to search videos using structural information

of surgical procedures, for example, the compositions and orders
of phases. In particular, residents’ need for structural information
differed depending on their expertise. Junior residents expressed
a need to find videos that contain a standard instance of a given
procedure to learn the common structure of phases. In addition to
searching for standard procedures, several novice residents wanted
to find videos that did not miss or skip any surgical phase for
a certain surgery. Several surgeons (S1, 2, 3) noted that surgical
phases are one of the important learning units for novice residents.
By contrast, senior residents sought videos that could teach them
variations and details of each phase. For example, R30 stated that
“several surgery videos show interesting portions of surgery which
is complex, but I’m a junior level and want to learn the basic steps.”.
R29, a PGY5 resident, also mentioned that “as a junior resident, you
need to stick to your attending’s approach, but as you become more
independent, you might need to find your own technique.” and “I
want to go beyond. I would want to see many different versions of
that specific variation.”

Lack of Support for Cross-Video Reference and Compari-
son.

We could observe a clear user need for comparingmultiple videos.
Residents wanted to compare different procedures, approaches (e.g.,
anterior approach or posterior approach in prostatectomy), and
techniques (e.g., dissection using cautery or scissors). Meanwhile,
most of our interviewees pointed out the surgical phase as a unit of
comparison. R26, for example, said that “I want to know different
techniques for the same phase.” R30 wished to compare numer-
ous videos for the same phase, stating that “it’d be helpful if I
can compare 20 different clips for a specific phase. Doctors do it
slightly differently and patients’ situations can be different.” S3
also mentioned that building links across multiple videos would
enhance residents’ learning. However, comparing videos for the
same phase involved multiple, challenging, and time-consuming
steps. Residents had to search for a video, manually advance and
rewind to navigate to the phase they were interested in, play that

clip, and repeat this process for the next video. They mentioned
these inefficiencies repeatedly as they described their process for
comparing multiple techniques for the same phases using available
video platforms.

Limited Surgery Metadata.
Some residents wanted additional information regarding a par-

ticular surgical video, such as operating room situations (e.g., port
placement in robotic surgery) and anatomical landmarks, although
they were not mentioned by many interviewees. Residents like-
wise wanted audio narrations to know the anatomical landmarks
and distinctions between phases. S1 explained that “understanding
anatomy is one of the first steps of learning as residents.” They also
wanted to know surgeons’ expertise (e.g., surgeon volume) and
surgery outcomes (e.g., restoring sexual function in prostatectomy),
which are not accessible in most surgery recordings.

4 DESIGN GOALS
Guided by the findings from our formative interviews, we derived
a set of design goals for a system that supports structural search
and cross-video comparison for surgery videos.

D1. Provide a structural landscape of procedural videos
The residents we interviewed wanted a bird’s-eye view through

which they could identify a standard procedure and its variations.
Our system should make the range of actual procedure phase order-
ings available to users so that they can refer to typical and atypical
structures of procedures while learning a surgery.

D2. Support structural video search
Residents wished to search for videos that contain specific surgi-

cal approaches and phases. Our system should enable users to find
videos using structural information associated with video content.

D3. Provide on-demand affordances for video search
The formative interviews revealed different user needs for video

search depending on residents’ expertise. Juniors needed to under-
stand the overall flow of surgeries and basic anatomy, while seniors
wanted to learn variations and multiple techniques of perform-
ing the same procedure. Our system should provide on-demand
affordances such as filters for advanced video search that will not
overwhelm novices, yet will satisfy experts’ needs on demand.

D4. Enable step-level video comparison We observed a clear
user need for comparing the same phase across multiple proce-
dures. Our system should allow users to reference multiple videos
at a phase level by supporting cross-video interactions such as
synchronization and multi-view switching.

5 VIDEO INTERFACE: STRUCTURAL SEARCH
AND COMPARISON

This section introduces Surch’s video interface that supports struc-
tural search and comparison of surgical procedures.

5.1 Procedural Graph
Goldstein et al. [41] revealed that the graph representation of knowl-
edge can serve as learners’ basic memory structure for procedural
knowledge. Inspired by the previous work that designed a visual
representation for sequence data [24], we use the term "procedural
graph" to refer to a graph-based representation for phase sequences
in procedural knowledge, which provides a visual overview of the
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Figure 2: A procedural graph for a single procedure. Nodes
indicate surgical phases and edges connect the consecutive
phases. The anatomies are written on the nodes and the col-
ors of the nodes represent the surgical actions.

Figure 3: A procedural graph for multiple procedures. The
thickness of the arrows indicates the commonality of paths
and is proportional to the number of flows from one phase
to another.

surgical procedures’ distribution. Figure 2 and 3 show an example
of a procedural graph for a single procedure and aggregation of
multiple procedures, respectively. A node and edge represent a
surgical phase and path between phases. More specifically, surgical
phases consist of anatomy and surgical action, such as bladder neck
dissection. The consecutive phases are connected through edges.
The aggregated representation shows the overall structure of multi-
ple procedures. Similar to the Sankey diagram [103], the thickness
is proportional to the number of flows from one phase to another
included in the Surch data repository. For instance, a thick edge
implies that this path is included in many videos, indicating that
the path is commonly taken by surgeons. Meanwhile, the color of
the nodes is for the surgical actions: blue for dissection and green
for suturing. The red indicates the starting point of the procedures.
The locations of edges indicate the directions of flows, which often
implies the recursive structures of procedures. The edges located
above the nodes are for the path from the left phase to the right
phase, and the ones below the nodes are for the reverse flow. The
small gray circles in the graphs for an individual procedure indicate
non-major steps, such as parts where surgeons explain a surgery
or operating room situation.

5.2 Interfaces
The procedural graph (Figure 1 and 4) shows the structure of surgi-
cal procedures, using a graph representation with nodes and edges
(D1. Provide a structural landscape of procedural videos). Users
can also filter videos by clicking the nodes or edges (D3. Provide
on-demand affordances for video search). If they click an edge, our
system displays a list of videos that contain a certain path (Figure
1 (a)). In the case of a node, the system shows videos, including
the selected phase. This graph-based search filter enables video
search based on structural information of procedures (D2. Support
structural video search). Surch also provides the clustering results
of procedures generated by our clustering workflow, described in
Section 7, with the auto-generated cluster labels as needed. By de-
fault, the system displays two graphs, one for the anterior approach
and the other for the posterior approach. However, if the user is
interested in further details, they can expand the graphs to see the

clustering results for each approach (Figure 1 (a)). The user can
browse the videos in a specific cluster by interacting with the graph
for that cluster.

After referencing the clustering visualization and procedural
graph, users can select videos of interest. The selected videos are
highlighted in the clustering visualization window. After selecting
the videos, clicking the “Start Comparison” button leads users to
a video comparison page (Figure 4). The video comparison page
supports multi-window videos (Figure 4 (a)) and phase-based video
synchronization (Figure 4 (c)) (D4. Enable step-level video compar-
ison). Users can watch multiple videos through juxtaposed video
windows. Meanwhile, they can synchronize the playbacks of multi-
ple videos using interactive graphs. For example, if they click the
node for the "ladder neck dissection" phase, all the videos are navi-
gated to the chosen phase at once so that users can comparemultiple
videos for the same phase. We intentionally did not synchronize
the playback within a phase since residents in our formative study
indicated they were overwhelmed by playing multiple videos at
once. They rather preferred to play the same phase alternately in
juxtaposition. They can also choose a preferred layout for video
windows among grid layouts with videos in small grids, a 1:N lay-
out with a single main window and multiple small sub-windows,
and a 1:1:N layout with two main windows and small windows for
the rest of the videos (Figure 4 (b)).

Surch is a web application built using TypeScript, HTML/CSS,
and the D3 library [83].

6 DATASET: LABELING SURGICAL PHASES
To enable structural search and comparison of surgical procedures
(Section 5), we segmented videos by surgical phase. No large dataset
on surgical phases in prostatectomywas publicly available, however.
Furthermore, traditional expert-led methods for labeling videos suf-
fer from the high cost and limited availability of surgeons and
residents [8, 117]. To mitigate these challenges, we designed and
implemented a data labeling workflow that blends automated ap-
proaches with low-level human effort.We recruited college students
in premed and biological studies to obtain labeled data at a rela-
tively low cost. We believe this approach has practical value in
various domains where expert resources are scarce and expensive.
This section describes our workflow for annotating and filtering
our surgical video dataset.

6.1 Data Labeling
6.1.1 Participants. We recruited 13 college students majoring in
premed, bioengineering, and veterinary medicine by posting on
online communities. Although all of their majors are relevant to the
medical domain, some of them had no prior knowledge of surgery.

6.1.2 Procedures. Data labeling sessions were conducted remotely.
We had a 1-hour instruction session with all labelers using Zoom in
which we briefly introduced our experiment and provided learning
materials for prostatectomy. The materials included a basic set
of surgical phases for prostatectomy that we built based on two
papers [49, 76] and one surgery tutorial [59], a list of prostatectomy
recordings with their phases labeled, and an introduction to our
video annotation tool. The data collection was conducted over
two weeks, and each labeler was assigned 20 videos to annotate.
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Figure 4: The user can play multiple videos at once and synchronize the playback of videos for a specific phase. (a) Multi-View
Videos: the user can watch multiple videos simultaneously in a juxtaposed layout. (b) Layout Option: the user can choose
a preferred layout of multiple video windows. (c) Phase-Based Synchronization: the user can sync the playback of multiple
videos for specific surgical phases, navigating the videos at the same step in procedures.

They were provided with USD 400 and a bonus of USD 10 for each
additional video if they were willing to take on more labeling tasks.
We built a video annotation tool for surgical videos. Details of the
tool are presented in Supplementary Materials.

6.1.3 Data Filtering. The data labeling process was a two-step
process: (1) all labelers first annotated the surgical phases and after
the initial labeling, (2) we asked two labelers who were chosen as
qualified annotators with high accuracy of labeling to inspect the
entire labels.

Given that our labelers were not experts in the surgical domain,
we first evaluated each labeler’s level of understanding of prosta-
tectomy by examining the labels for the three example videos. A
labeler was verified to contribute labels only if they correctly labeled
these videos. When they failed this verification task, we provided
additional instructions and learning materials and asked them to
re-label the example videos until they annotated them correctly.
After the initial labeling, the two qualified labelers inspected the
whole dataset. During the inspection process, the two labelers had
frequent discussions about using consistent labels with a unified
granularity level and terminology. Our team was led by a coauthor
who spent 2.5 years engaged in ethnographic research of urologic

robotic surgery at 5 hospitals in the U.S. and observed over a thou-
sand hours of procedures. He spent significant time with residents
as they prepared for procedures, via surveying videos and prac-
ticing via a simulator. This author familiarized the labeling team
so that they could reliably label the procedure, and backstopped
coding and analysis as needed to ensure accurate ratings. Although
we have made efforts to improve the quality of the dataset, careful
validation by surgeons would be required, especially for clinical
uses such as decision-making support in actual surgery cases. We
release this dataset for 296 videos as an open dataset for further
research, including the full label set and metadata for video sources
2.

6.1.4 Data Ethics. All videoswere frompublic sources (i.e., YouTube
and MUSIC). Each was collected and posted by surgeons or medi-
cal residents, who bear full legal and ethical responsibility for the
protection of their patients’ identities. Included videos only con-
tain intracorporeal footage and therefore do not disclose patients’
identifying information.

2https://github.com/imurs34/robotic_surgery_video_dataset/

https://github.com/imurs34/robotic_surgery_video_dataset/
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7 COMPUTATIONAL PIPELINE: CONVERTING
VIDEOS INTO PROCEDURAL GRAPHS

This section describes the technical pipeline that powers the video
interface of search and comparison.

7.1 Clustering workflow for surgical procedures
We first classified the surgical procedures based on the surgical
approaches — anterior and posterior — depending on the seminal
vesicle (SV) and vas deferens (VD) dissection phase, thereby reflect-
ing the most widely used criterion to group the procedures. On
top of that, we aimed to reveal latent patterns or unknown struc-
tures that separate the large-scale dataset of surgical procedures.
Such information can allow discoveries of significant structures
of surgeries, ultimately promoting advanced learning of surgical
approaches. To this end, we adopted the clustering method, an
unsupervised learning algorithm with no need for feeding prede-
termined group information, which can identify natural structures
and latent patterns of surgical procedures.

To further customize the clustering algorithm to our context of
quantifying procedural knowledge, we (1) built a set of analysis
dimensions for procedural knowledge in surgeries that characterize
the procedural structures and (2) designed a clustering workflow
with a custom weighting scheme that considers the relative im-
portance between the structural components in procedures. The
following sections describe our clustering workflow in detail.

7.1.1 Analysis Dimensions for Procedural Knowledge. We designed
customized analysis dimensions to characterize surgical procedures
in a large-scale dataset: the number of optional phases, the number
of repetitions of phases, the number of branches between phases,
and the number of unique paths. Merrill et al. [78]’s three factors
that determine the complexity of procedural tasks inspired us in
designing analysis dimensions, which include the total number of
steps, the number of repetitive sequence structures, and the num-
ber of alternate sequence structures. Meanwhile, we co-designed
the analysis dimensions with two surgeons to reflect clinical and
practical domain expertise. For example, unique paths or routes in
a procedure imply uncommon variations of surgical approaches
that may be worth noting. Surgeons also found it useful to indicate
the optional surgical phases that are not necessarily included in all
procedures but are often done by surgeons depending on the dis-
tinctive anatomical status and patients’ profiles such as age, surgery
history, and BMI. We detail these dimensions as follows:

• Number of optional phases: most prostatectomy procedures
are standardized and the number of optional phases that
are not mandatory in every procedure (e.g., lymph node
dissection) characterize the procedure.

• Number of repetitions of phases: repetitive phases such as re-
touch of seminal vesicle and vas deferens compose repetitive
sequence structures.

• Number of branches between phases: several phases have
multiple branches diverging intomultiple subsequent phases,
creating alternative sequence structures.

• Number of unique paths: each branch has different probabil-
ities since some paths are more common than others, which
implies that the preceding phase almost always leads to the

following phase, while others are unique and rarely observed
in the dataset.

We vectorized surgical procedures based on these four dimen-
sions for each phase, which enables the clustering workflow to
reflect the main dimensions that represent the structural features
of each procedure. To specify, each procedure was converted to a
binary vector, quantifying whether an analysis dimension applies
to the procedure. The details of the vectorization scheme for each
dimension are listed below.

• Number of optional phases: we first determined if a proce-
dure contains optional phases. The list of optional phases
consists of DVC dissection and lymph node dissection, which
was built based on discussions with the two surgeons. For
each optional phase, it was coded as 1 if the phase is con-
tained in the procedure, and 0 if not.

• Number of repetitions of phases: we coded in the same way
as the optional phases. It was coded for all seven phases.

• Number of branches between phases: we first used the me-
dian split method to convert the procedures into binary vec-
tors. For all seven phases, it was coded as 1 if the number of
a phase’s branches was larger than the median value of the
number of branches of that phase across all the procedures
and coded as 0 if not.

• Number of unique paths: we coded in the same way as the
number of branches between phrases. It was coded for all
seven phases.

7.1.2 Weighting Scheme for Structural Components. Setting proper
weights to features is critical in the clustering process, affecting
the separation of clusters [5, 27]. We calculated the weights of two
factors that were used in vectorization: phases and dimensions
for analyzing procedural knowledge. Our weighting scheme aims
to reflect the relative importance of each phase and dimension
since several phases or dimensions play more decisive roles in
characterizing procedures. The details are in the Appendix.

We estimated the weights as a product of two terms: the fre-
quency of phases and dimensions within procedures and the inverse
of the frequency of phases and dimensions across procedures. We
experimented with the weighting scheme for multiple parameters
for optimization. The parameters included logarithmic scale and
exponents. To formalize our weighting scheme, we use the follow-
ing notation. Vectors use arrows, ®𝑥 , and matrices are in boldface,
X. ®𝑥𝑖 represents the vector number 𝑖 in the set of vectors. 𝑓 (𝑥,𝑦) is
a function of variables 𝑥 and 𝑦. For our dataset of 296 videos, we
vectorized the surgical procedures into P using the method in 7.1.1.
Each row of P, ®𝑥 is a vector expression of a procedure. W is the
weights matrix built based on our weighting scheme for dataset
P. Thus, W has the same dimensions as X. P is an𝑚 × 𝑛 matrix,
where𝑚 is the total number of procedures and 𝑛 is a multiplication
of the number of phases and the number of dimensions. We define
a function 𝑓 as 𝑓 (𝑝𝑖 , 𝑑) = 1 if a dimension 𝑑 applies to a procedure
𝑝 , and 𝑓 (𝑝𝑖 , 𝑑) = 0 otherwise. Meanwhile, the weighting scheme is
formalized as in Figure 7, for a weight𝑤 .

7.1.3 Weighted Principal Component Analysis. PCA is a classical
method to transform high dimensional data into lower dimen-
sional data [62, 63] and a rich body of work revealed that the PCA
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Figure 5: An overview of our clustering workflow. It first vectorizes the surgical procedures based on analysis dimensions for
procedural knowledge. It then calculates the weights for the analysis dimensions and phases. The weighted PCA is conducted
for the dimension reduction and it runs the hierarchical clustering based on Euclidean distance between procedures.

Figure 6: Our four analysis dimensions for surgical proce-
dures: the number of optional phases, the number of repe-
titions of phases, the number of branches between phases,
and the number of unique paths.

enhances the performance of clustering [60]. Our workflow also
adopted a weighted PCA that solves the eigenvectors based on
expectation maximization [13].

7.2 Experimental Setup
Using our dataset of 296 surgery videos, we experimented with
two parameters to optimize the weighting scheme. The parameters
consist of scale and exponent. First, we considered linear and loga-
rithmic scales for each term. The logarithmic scale usually dampens
the effect of terms, adjusting the effect of a dominant term. We also
tested five exponents for each term, between 0 and 1 with an in-
terval of 0.25, creating 25 combinations. The five exponents were
evaluated to find an optimal balance between the two terms. Each
experiment was repeated 50 times, considering the randomness
involved in the clustering procedures. The number of clusters was
determined using the elbow method [108].

7.3 Evaluation of Clustering Workflow
The performance of clustering is difficult to evaluate using a single
measure, since the goals and contexts of clustering should be con-
sidered in the evaluation process [115]. We did not build ground
truth labels for clustering, as our goal was to discover latent struc-
tural patterns in procedures without assuming predefined answers.
Accordingly, we used both quantitative and qualitative methods
to evaluate the clustering results. Details of thresholds and the
complete evaluation results are in the Supplementary Materials.

7.3.1 Quantitative Measures. We used five internal evaluation mea-
sures to assess the quality of clustering from multiple perspectives,
including the Silhouette score [100], Davies–Bouldin index [91], the
Calinski-Harabasz score [71], the Coefficient of Variation [22], and
balance measure [7]. To specify, the Silhouette score indicates the
goodness of a clustering result. The Silhouette score ranges from -1
to +1, where a high value indicates that clusters are well apart from
each other and clearly distinguished. The Davies-Bouldin score
measures the ratio of within-cluster distances (i.e., compactness of
the clusters) to between-cluster distances (i.e., cluster separation),
where a small value indicates a better separation. The Calinski-
Harabasz score is defined as the ratio of the sum of between-cluster
dispersion and of within-cluster dispersion, and large values are
good ratios. The Coefficient of Variation is the ratio of the standard
deviation to the mean and shows the extent of variability in relation
to the mean of the population. The higher the score, the greater the
dispersion, meaning poorer clustering. The balance measure, on the
other hand, represents how the sizes of the clusters are balanced,
without predominantly large or small clusters. The balance measure
is defined as the maximum cluster size over the minimum cluster
size, implying that smaller values with similar cluster sizes mean
well-balanced clustering results.

7.3.2 Quantitative Evaluation Results.

In this section, we report the results of the experiment in Section
7.2. Through experimenting with the scale and exponent of various
ranges, we sought to validate the impact of dampening each term
to better balance the terms.

Scale. Compared to frequency weights of documents and DNA
sequences [3], theweights of procedures exhibit large variance since
the number of phases in a procedure is smaller than the number
of words in a document on average. Thus, applying a logarithmic
scale for the first term (i.e., frequency weight term) led to better
clustering performance, normalizing the variance. Whereas, the
variance in the second term (i.e., the inverse of the frequency weight
term) was smaller than the contexts of other domains. The small
variance attributed to the standardized structures of procedures.
Most surgical phases, except for a couple of them, are essential
steps in prostatectomy. This characteristic of the surgery procedure
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Figure 7: We designed a weighting scheme for characterizing surgical procedures, a product of two terms: the frequency of
phases and dimensions within procedures and the inverse of the frequency of phases and dimensions across procedures.

Figure 8: Quantitative evaluation results of clustering work-
flow for the anterior approach with the logarithmic scale
for the first term and the linear scale for the second term.
The experimental parameters are scale and exponent. The
evaluation metrics include the Silhouette score, coefficient
of variation, minimum cluster size, and balance measure.
The results for Davies–Bouldin index and Calinski-Harabasz
score, and the results for the posterior approach are in Sup-
plementary Materials. The values that satisfy the threshold
are bolded.

dataset results in a better clustering performance when not using
the logarithmic scale for the second term.

Exponent.We could find optimal exponents for each surgical
approach based on the results of experiments - 0.75 and 1.0 for
the anterior approach and 0.25 and 0.5 for the posterior approach.
According to literature [42, 55], we set thresholds for the Silhouette
score, coefficient of variation, and minimum cluster size as 0.7, 5.0,
and 5% of the dataset size, respectively. After filtering using the

Figure 9: A result of a comparative experiment with three
conditions, Surch, the workflow with no vectorization, the
workflow with no weighting. The Surch workflow achieved
the highest Silhouette score of and a reasonably low balance
measure compared to the other two conditions.

thresholds, we chose the optimal exponent for which the results
have the highest Silhouette score, Calinski-Harabasz score, mini-
mum cluster size, and the lowest Davies–Bouldin index, coefficient
of variation, balance measure.

Findings. The experimental results indicate that both frequency
weight and the inverse term should be considered in calculating
the importance of phases and analysis dimensions, showing low
Silhouette scores when either of the exponents is zero, in other
words, when one of the terms is not considered. The evaluation also
demonstrates the importance of considering multiple evaluation
criteria. For example, a high Silhouette score does not necessarily
indicate well-structured clustering, sometimes having imbalanced
cluster sizes such as when exponents are 1.0, 0.5 for each term.
We also found that normalization only depending on the scale is
not sufficient, but further optimization is needed by experimenting
with different exponents. Meanwhile, the optimal exponents dif-
fer depending on the dataset, anterior or posterior. The first term
was more important in the anterior approach, where the variance
within procedures is low, which indicates that the local features
play more roles in characterizing procedures. Another trend we
could observe is that small exponents for the first terms led to too
scattered clustering results, not sufficiently reflecting local features
of individual procedures. A possible reason is that the effect of the
first terms has already been dampened by applying the logarithmic
scale, thereby causing a double reduction with small exponents.

7.3.3 Comparative Experiment of Quantitative Evaluation. We val-
idated our clustering workflow by comparing it to the workflow
without a vectorization and workflow without a weighting scheme.
For the condition without the vectorization, we used the workflow
introduced from the existing work [23] that extracts the notable
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patterns of components and actions from the procedures. For the
condition without the weighting scheme, from our workflow, we
replaced our weighting schemewith the common frequency weight-
ing scheme [57]. In consideration of the randomness of clustering
algorithms, we conducted 50 repeated experiments.

As summarized in Figure 9, the Surch workflow achieved the
highest Silhouette score of 0.82 and a reasonably low balance mea-
sure of 11.61 compared to the other two conditions. The workflow
with no vectorization achieved the Silhouette score of 0.5 and the
balance measure of 5.5, whose low Silhouette Score indicates that
it does not detect substantial structure from data. Meanwhile, the
workflow with no weighting scheme achieved the Silhouette score
of 0.7 and the balance measure of 114.7. The high balance measure
implies that it generates imbalanced clusters with small clusters
with a few instances and a big cluster including most of the in-
stances.

Based on our observation of the clustering results, the instances
are too spread out, not forming discernible groups without the
vectorization. This result implies that the vectorization using our
analysis dimensions allows for forming compact clusters, reducing
noise in the procedure data by focusing on representative structural
features instead of insignificant phases or orders. Meanwhile, with
no weighting scheme, the clustering results in one major cluster
containing most instances except for one of two instances. This
imbalanced result indicates that the consideration of the relative
importance of components in the procedures by our weighting
scheme leads to clear separation between clusters.

In summary, the vectorization decreases intra-cluster distances
and the weighting scheme increases the inter-cluster distance,
which leads to compact clustering with little overlap.

7.3.4 Qualitative Measure. We conducted an expert evaluation to
complement the limitations of quantitative evaluation by asking
about experts’ opinions on the quality of the produced clusters. We
collected feedback from seven senior residents (PGY 3, 4, and 5)
[R1-7] on the effectiveness and interpretability of the clustering
results during the user study. Residents highlighted two sides of
the clustering results: findability and discoverability [72]. From
the perspective of findability that supports goal-oriented seeking
for specific information, they found it useful to know the com-
mon approaches by referring to the largest cluster. All residents
explained that the grouping aligns with what they learned, for
example, R5 (PGY 5) mentioned the re-touch of a neurovascular
bundle is one of the key differences between surgeons’ approaches.
On the other hand, others noticed interesting patterns from the
clustering results, elaborating that "I’ve never seen somebody doing
other steps between the bladder neck dissection and prostatic apex
dissection. It’s interesting to see these routes in this group." (R2 -
PGY 4). Some residents pointed out that cluster names were not
intuitive. Our system automatically generated cluster labels such
as "recursive NVB dissection" based on the analysis dimensions for
surgical procedures, but the residents explained that they were not
familiar with such terms and suggested alternative cluster labels
that emphasize more contextual features of procedures in clusters.
For example, one of the auto-generated cluster labels was "branchy
PA dissection", meaning that there exist divergent paths after the
PA dissection phase, but one resident (R5 - PGY5) proposed "lymph

node dissection after PA dissection" as an alternative. He added that
the name could reflect clinically meaningful features of procedures.

7.3.5 Model Training. We aimed to achieve two goals by training
the model on our dataset: (1) validating the quality of the dataset
by testing if the model is able to learn from the data and generalize
well and (2) increasing the generalizability of the Surch pipeline to
afford new video dataset without labels.

The class includes seven surgical phases, which are SVVD (Sem-
inal vesicle and vas deferens Dissection), LN (Lymph node Dissec-
tion), BN (Bladder neck Dissection), NVB (Neurovascular Bundle
Dissection), DVC (Dorsal Venous Complex Dissection), PA (Prostate
Apex Dissection), and BNU (Bladder neck and urethra Suture).

First, to validate the annotated dataset (Section 6), we trained a
basic CNN-LSTM model [58, 70] without any fine-tuning or data
preprocessing and achieved an accuracy of 48% (sequence length: 2,
model layer: 3, learning rate: .01, .001, .0001, batch size:128). Consid-
ering that the baseline model without fine-tuning or architecture
change showed accuracies of 41% [88], 69% [106], and 53% [94]
for the existing surgical phase dataset (e.g., Cholec80, M2CAI16-
workflow), our accuracy of 48% that is comparable to the ones for
baseline conditions from previous research indicates that the labels
are valid enough to train models [46, 47].

After testing the baseline, we fine-tuned themodel on our dataset.
We utilized focal loss [69] to mitigate the class imbalance issue, and
adopted an ensemble method [93] to improve the overall perfor-
mance. We compared CNN, CNN-LSTM hybrid, and average ensem-
ble techniques, and the ensemble showed the highest performance.
Meanwhile, we designed a CNN-LSTM layer followed by a single
fully connected layer and softmax layer. We pretrained the CNN
using ImageNet [32] due to the lack of a large-scale prostatectomy
dataset. We used an 80/20 split for training and test dataset. The de-
tails of hyperparameters are provided in Supplementary Materials.
We achieved an accuracy of 78.4% with an overall precision of 67.3%.
In classifying surgical phases, high precision is more desirable than
high recall, as incorrect labeling can cause confusion to residents,
especially novices. To the best of our knowledge, there exists no
surgical phase detection model for prostatectomy that is publically
available. 78.4% was enough for us to power the system, but we
expect to collaborate with the computer vision community to fur-
ther improve the accuracy. Even with the improvement, however,
achieving 100% accuracy is difficult, while the incorrect detection
can especially mislead novice residents. To reduce the danger of pro-
viding inaccurate classification results, the confidence level of the
algorithm’s results can be displayed so that residents are aware of
how reliable the system is. We release the model and code as open-
source 3, and expect our model to be utilized by future researchers
as a baseline for surgical phase detection in prostatectomy.

8 USER STUDY
We conducted a controlled user study that demonstrated the ef-
fects of our system for surgical learners. The goals of this study
were to evaluate the effectiveness of Surch in video search and
comparison, to investigate how Surch affected surgical learning,
and to explore the potential of structural search and comparison

3https://github.com/imurs34/surch-model/

https://github.com/imurs34/surch-model/
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for procedural video. The study was a within-subjects design, and
participants used two different video interfaces: baseline YouTube
video interface and Surch, which supported structural video search
and comparison through procedural graphs. The order of condi-
tions and tasks was counterbalanced across participants. Our video
library contained 296 video recordings of robotic prostatectomy.
246 were from YouTube and 50 were from the MUSIC library.

8.1 Participants
We recruited 11 participants [P1-P11] (2 female and 9 male) from
the two U.S. medical schools by contacting surgeons through email.
They consist of 2 PGY1, 2 PGY2, 2 PGY3, 2 PGY4, and 3 PGY5
residents in Urology. All of them had prior experience using video
to learn about surgery and surgical technique. They received 150
USD for up to a 1-hour study.

8.2 Procedure
The study was conducted using remote conferencing software, and
video-recorded with consent. The participants were first given a
5-minute instruction session that introduced the features and inter-
faces of Surch. They then familiarized themselves with Surch. After
this exploration, they were asked to complete two tasks in a real-
world video-based surgical learning environment. The tasks were
designed based on discussions with two robotic Urologic surgeons
and four residents at top US teaching hospitals to have pedagogical
value and reflect natural learning practice. The first task instructed
the participants to “Find three different approaches to the proce-
dure and highlight 2-3 ways they differ.” for junior residents and
“Given your attending’s surgery recording, find a video showing an
approach to the procedure that is most contrasting and the one that
is most similar to your attending’s approach.” for senior residents
The second task asked, “Given the approach to the seminal vesicle
and vas deferens dissection in the video XX, find 2 videos that con-
tain markedly different approaches to the seminal vesicles.” After
the task sessions, the participants completed a questionnaire on
confidence in understanding a surgery, such as its landscape and
techniques, perceived learning experience and learning efficiency,
cognitive load, willingness to use, and ease of use. We then followed
up with a post-session interview that probed their perception of
each video interface and the reasons behind their usage behaviors.
We scored their task submissions based on discussions with sur-
geons and the following criteria: the number of (1) differences and
similarities of procedures and (2) meaningful comparison points,
including surgical techniques and approaches. We also evaluated
the performance of tasks using quantitative measures that include
time taken for searching videos, navigating to surgical phases, and
comparing multiple videos.

8.3 Results
8.3.1 User Behavior. All participants actively used search and com-
parison features supported by Surch. In particular, they searched
for videos depending on the approaches and filtered videos based
on the structures of the procedure. They used both surgical phases
and paths for search, manipulating nodes and edges in the proce-
dural graph. Several participants (4/11) completed the tasks without
watching the videos at all, saying that the structural information

provided by Surch was enough to notice the comparison points be-
tween the surgeries. Meanwhile, three participants played multiple
videos sequentially and the rest of them played them at the same
time. One participant (P8) even played five different videos syn-
chronously. In contrast, the participants using the baseline player
attempted to use text keywords to search for surgical approaches
and phases, such as anterior and SV. No participant used the text-
based search bar on Surch. One participant mentioned that Surch’s
structural search feature eliminated the need for the search bar
associated with the baseline video search interface.

8.3.2 Task Performance. The participants watched more videos
when using Surch (M = 8.5, std = 4.8) than using the baseline player
(M = 6.2, std = 2.5) with p < 0.05. It took slightly less time to complete
the tasks when using Surch (M = 10.9 minutes, std = 6.3) than via
the baseline player (M = 12.0, std = 7.8). However, there was no
large difference in the number of videos watched per minute (Surch:
M = 0.8, std = 0.2, baseline: M = 0.7, std = 0.5) with p = 0.27.

8.3.3 Response Quality. The results of task scoring showed that
the participants submitted slightly better responses for the given
tasks of searching and comparing surgical procedures when using
Surch (M = 3.7, std = 0.6) than the baseline player (M = 3.6, std =
0.7) with no significant difference using the paired t-test (p = 0.32).
Meanwhile, we could observe that junior residents showed a bigger
difference in response quality (baseline: M = 2.8, std = 1, Surch: M
= 3.5, std = 1) than seniors (baseline: M = 3.4, std = 0.7, Surch: M
= 3.6, std = 0.8), indicating that Surch could be more beneficial to
junior or novices with less prior knowledge regarding the quality
of comparison points they found.

8.3.4 User Perception. Overall, participants found Surch enhances
search and comparison for surgery learning. Figure 10 summarizes
the survey responses. To analyze the survey responses, we used a
Wilcoxon signed-rank test.

Enhance surgical learning.
On a 7-point Likert scale question (1: strongly disagree, 7: strongly

agree), the participants reported that they could better understand
the landscape of prostatectomy (p < 0.01). They showed significantly
higher satisfaction with their learning experience when using Such
(p < 0.005). The junior residents, in particular, appreciated the struc-
tural representation of the procedures highlighting the educational
value of the procedural graph. For example, P5 (PGY1) said, "as an
early trainee, it is hard for me to discern the surgical steps without
the graph. The graph helped me think through each stage of the
procedure." P1 (PGY1) also stated, "(Using the procedural graph) I
like that I could see overarching steps of prostatectomies and nu-
anced differences between videos.". Meanwhile, several participants
mentioned that Surch helps them achieve their learning objectives.
P9 (PGY5) mentioned that Surch "allows surgeons and trainees to
seek out teachable moments in a surgery." P6 (PGY 5) also added
that "we, the trainees want to watch a lot of videos for a specific
step with different ways. This (video player) would help do this."

Efficient video search and comparison.
The participants responded that our system made the video

search and comparison more efficient (p = 0.005). P5 (PGY 5) ex-
plained that "filtering by the graph makes it easy to find what I’m
looking for from the videos.". P8 (PGY 3) highlighted that "the fact
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Figure 10: A summary of survey responses of 7-point Likert scale for cognitive load, learning experience, self-confidence, task
efficiency, and willingness to use. * p < 0.05, ** p < 0.01. The error bars are defined by one standard deviation with the 68%
confidence interval.

that you can sync it up the same phase of the surgery across dif-
ferent videos saves us a lot of time when we’re trying to review
a lot of videos, focusing on nuances of approaches.". Also, they
found it useful to know the commonality of procedures based on
the thickness of the edges of the graph.

Feasible system.
There was no significant difference in cognitive load for both

video interfaces (p = 0.12). On the other hand, the participants re-
ported a significantly higher willingness to use (p < 0.01) Surch.
They suggested various use cases of Surch in their daily learning.
For example, P6 (PGY 5) said that "the ability to search videos by ap-
proach and key steps would be useful, especially when reviewing or
evaluating different ways to approach surgeries." P9 (PGY 5) noted
that "I really like how the graph helps the video search because
surgery can be done in so many different ways. I sometimes try to
find a similar approach to faculty or fellow, and this can help better
anticipate the progression of steps in doing the cases." However,
some participants (P 3, 4, 6, 7) pointed out that the procedural graph
seemed complicated. P8 (PGY 3) mentioned information overload
caused by the multiple paths included in the graph.

9 DISCUSSION AND FUTUREWORK
This section discusses the design implications of search and com-
parison tools for videos with procedural knowledge.

9.1 Generalizability and Domain Specificity
9.1.1 Broad User Needs for Procedural Knowledge. Our approach
is generalizable across surgical procedures such as OB-Gyn, Col-
orectal, General surgery, given that most robotic laparoscopic surg-
eries share phases and challenges such as blunt dissection of fascia,
retraction of organs and tissues, dissection of cancerous masses.
Furthermore, during our interviews with surgeons and residents,
we observed user needs that overlapped with those associated with

a broad range of videos containing procedural knowledge such as
cooking, make-up, and assembly. This occurred in two ways. The
first was that procedural knowledge often includes the steps in the
process of performing a task or skill [37, 38]. A tool such as Surch
could thus facilitate learning, as video content in these domains
must also be segmented into semantic phases to make informa-
tion related to step structures available to viewers. The benefits of
offering this capability seem clear, as such information has been
shown to enhance the video-watching experience in learning to
apply make-up [113] and use software tools [66], as it has with
surgery videos [85]. Reinforcing this, residents in our studies per-
ceived surgical phases as an essential unit of the stepwise structure
associated with a procedure and wanted to search, navigate, and
compare videos based on these phases. We expect other popula-
tions would have similar learning interests in other procedural
knowledge domains.

The second way our work may generalize is in its value for
facilitating the acquisition of tacit knowledge. The tacit knowledge
residents carefully attend to in videos includes howmuch traction is
applied to various tissues and how bleeders (small capillary injuries
caused by the surgeon) are cauterized. Our interviewees emphasized
the importance of comparing multiple cases to see the differences
in these intricate nuances. While such tacit knowledge is critical
for competence in the surgery domain [18, 75], it is evident in a
wide range of skilled human activity, such as cyclists’ breathing
methods and carpenters’ hammering skills that they unconsciously
perform [96, 104]. A system such as Surch thus has promise for
facilitating tacit knowledge acquisition in procedural knowledge
domains beyond the surgical.

9.1.2 User Needs Specific to Surgery Domain. These potential broader
contributions aside, we found and addressed user needs specific
to surgical education. First, there were distinct, strong needs for
video search and comparison that varied based on the expertise
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of residents. Junior residents (PGY1, 2, 3) expressed their need to
understand procedures’ overall phase structure by watching videos
of standard procedures. On the other hand, senior residents (PGY4,
5, 6) focused on variations and details within each phase. These
more advanced students who generally sought to compare multi-
ple techniques and approaches to develop their surgical flexibility.
Attending surgeons independently verified these differing needs.

Meanwhile, learning surgery differs from acquiring general pro-
cedural knowledge because of the complexity of the task. Surgery—
for example dissecting a bladder neck as part of the removal of a can-
cerous prostate— involves far greater uncertainty, dynamism, and
risk than many procedural knowledge domains such as food prepa-
ration and programming. In particular, the former task involves
more complicated considerations such as identifying anatomical
landmarks, applying traction to deformable, delicate and intercon-
nected tissues, and cleaning up bleeding, all while being ready to
respond to potentially catastrophic failure modes. This complexity
requires deep and diverse skills and drives residents’ need for ex-
posure to multiple techniques and approaches to be prepared for a
wide range of situations.

Lastly, the unique characteristics of surgery recordings pose
challenges for video search and navigation. Most surgery videos
are quite long (several hours on average), contain numerous scenes
that are ostensibly very similar, and lack audio or textual annotation.
This lack of semantic indicators for video content poses a significant
challenge for video-based learning, in particular, making video
search and comparison time-consuming.

9.2 Facilitating interpretation of clustering
results

Residents indicated that our clustering workflow output was valu-
able in two ways, evident in prior work [72]: findability and discov-
erability. Findability relates to the ability to find content that users
already know or assume, and thus supports goals-directed search.
On the other hand, discoverability relates to unexpectedly encoun-
tering interesting information, which flows from loosely-directed
exploration. Some residents explained that our clustering results
aligned with what they had already learned and therefore helping
them to search for videos they were looking for. Other residents
relied on our clustering results to notice new surgical approaches
they had not seen before. Our study thus shows that procedural
graphs can allow interesting discoveries as well as support the
search for specific information.

Residents’ perceptions of cluster labels differed by their level
of experience. Junior residents took labels as read due to their
lack of experience and prior knowledge. One junior resident from
the user study used cluster labels to describe the noticeable dif-
ference between procedures while doing the comparison task, for
example. On the other hand, senior residents generated their own
interpretation, relying more on observation of our graph repre-
sentation than the cluster labels. They wished to see cluster labels
containing clinically meaningful features of each cluster, while our
auto-generated labels reflected the characteristics of procedures’
structures. In future work, we expect to involve experts to generate
more informative and interpretable clustering results with labels
that are more valuable to advanced learners.

A future system could first perform grouping of large-scale data
with procedural knowledge according to their structural features
and then experts can participate in label generation in natural
language for the clusters, which would better reflect teachable
and medically meaningful points. Residents’ feedback about the
value of discoverability also indicates that a richer human-machine
collaboration to create more sensible clustering can also promote
surgical learning, as it will provide experts with exposure to new
surgical approaches.

10 CONCLUSION
This paper introduces Surch, a video interface that enables struc-
tural search and comparison of surgical procedures. Surch allows
users to search videos based on a procedural graph generated from
a custom dataset and clustering workflow. Our clustering workflow
captures unknown patterns of surgical procedures by using vec-
torization and weighting schemes that characterize the structural
features of procedural knowledge, such as recursive structures and
unique paths. Surch also enables cross-video comparison by pro-
viding synchronized video navigation to the same surgical steps.
Our evaluation with quantitative and qualitative measures demon-
strated the effectiveness of the clustering results for surgical learn-
ing. A user study (N = 11) revealed that our system significantly
improves the learning experience and perceived task efficiency of
video search and comparison.
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A APPENDIX
A.1 Weighting Scheme for Structural

Components
One of the simplest weighting schemes commonly used for se-
quence data in various domains such as information retrieval [3]
and statistics [33] is the frequency weight, which assigns weights
proportional to the frequencies of data entities. Similarly, frequently
observed phases or dimensions should be considered more impor-
tant in representing the procedures. On the other hand, the weights
of entities that occur very frequently should be adjusted since too
commonly observed across data can lose a determinative effect, not
representing the characteristics of the individual procedure [118].
In other words, we need to weigh down the frequent entities while
scaling up the rare ones. The performance of the weighting scheme
considering the frequency weights and the inverse of frequency
weights was validated in various tasks such as analyzing documents
(e.g., tf-idf) and workflows (e.g., af-ipf, tf-ipf) [3, 64].
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