
Stylete: Styling the Web with Natural Language
Tae Soo Kim

School of Computing, KAIST
Daejeon, Republic of Korea
taesoo.kim@kaist.ac.kr

Yoonseo Choi
School of Computing, KAIST
Daejeon, Republic of Korea
yoonseo.choi@kaist.ac.kr

DaEun Choi
School of Computing, KAIST
Daejeon, Republic of Korea
daeun.choi@kaist.ac.kr

Juho Kim
School of Computing, KAIST
Daejeon, Republic of Korea

juhokim@kaist.ac.kr

“make this stand out more”

CSS Properties

Value Suggestions

STT

GPT-Neo

VAE

Dataset

Figure 1: Stylete enables end-users to change the style of websites they visit by clicking on components and saying a desired
change in natural language. A computational pipeline (1) transcribes the request and predicts plausible CSS properties with
a large language model, and (2) encodes the clicked component using a convolutional neural network to identify and extract
styling values from similar components in our large-scale dataset. These outputs are then presented in a palete that the user
can use to iteratively change the component’s style.

ABSTRACT
End-users can potentially style and customize websites by editing
them through in-browser developer tools. Unfortunately, end-users
lack the knowledge needed to translate high-level styling goals
into low-level code edits. We present Stylette, a browser extension
that enables users to change the style of websites by expressing
goals in natural language. By interpreting the user’s goal with a
large language model and extracting suggestions from our dataset
of 1.7 million web components, Stylette generates a palette of CSS
properties and values that the user can apply to reach their goal. A
comparative study (N=40) showed that Stylette lowered the learning
curve, helping participants perform styling changes 35% faster than

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9157-3/22/04. . . $15.00
https://doi.org/10.1145/3491102.3501931

those using developer tools. By presenting various alternatives for
a single goal, the tool helped participants familiarize themselves
with CSS through experimentation. Beyond CSS, our work can
be expanded to help novices quickly grasp complex software or
programming languages.

CCS CONCEPTS
• Human-centered computing → Natural language inter-
faces; Web-based interaction; Interactive systems and tools; Em-
pirical studies in HCI.

KEYWORDS
Web Design; Natural Language Interface; End-User Programming;
Machine Learning

ACM Reference Format:
Tae Soo Kim, DaEun Choi, Yoonseo Choi, and Juho Kim. 2022. Stylette:
Styling the Web with Natural Language. In CHI Conference on Human Factors
in Computing Systems (CHI ’22), April 29-May 5, 2022, New Orleans, LA, USA.
ACM, New York, NY, USA, 17 pages. https://doi.org/10.1145/3491102.3501931

https://doi.org/10.1145/3491102.3501931
https://doi.org/10.1145/3491102.3501931
mailto:permissions@acm.org
mailto:juhokim@kaist.ac.kr
mailto:daeun.choi@kaist.ac.kr
mailto:yoonseo.choi@kaist.ac.kr
mailto:taesoo.kim@kaist.ac.kr

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Tae Soo Kim, DaEun Choi, Yoonseo Choi, and Juho Kim

1 INTRODUCTION
The web is inherently malleable. Websites are rendered out of
documents—HTML, CSS, and JavaScript code—which are trans-
mitted to the user’s browser and, thus, can be readily accessed
and modifed on the user side. This malleability allows users to
improve their experiences on the web by personalizing pages [46],
self-repairing existing issues [47], or even enhancing pages with
additional features [28, 57, 63]. In addition, by sculpting others’
creations, users can create their own new web pages [9, 39, 51].
The appeal of this malleability has led to the Greasemonkey [25]
and Tampermonkey [5] plugins, which manage user scripts for
these types of modifcations, to collectively amass more than 10
million users. However, although such plugins allow users to install
modifcations designed by others, designing their own personal
modifcations may be out of reach for general end-users. To edit a
web page’s visual design or style, for example, users must be able
to edit the underlying HTML and CSS fles, but this requires an
understanding of the code’s language and structure. Thus, without
the necessary expertise, most users are unable to mold websites
into their own design.

To make the web more malleable for everyone, various end-user
programming tools [34, 47, 58] have been designed to allow users
with no expertise to directly manipulate a web page’s visual design—
abstracting away the underlying code. While these approaches
allow users to focus on the visual representation, they require
the user to manually perform several low-level operations (e.g.,
scrubbing on a color picker, typing in values) which can be tedious
and efortful. Additionally, users must be able to decompose their
high-level goals into the low-level operations supported by these
tools—a task that inexperienced users frequently struggle with
in other design-related tasks [1, 36]. Thus, to be able to easily
transform a web page’s design according to their goals, users require
another level of abstraction.

Natural language interfaces allow users to perform complex,
compound operations by simply saying or writing their intentions.
The promise of this form of interaction has led to the development of
various general-purpose voice assistants—e.g., Apple’s Siri, Google
Assistant, or Amazon’s Alexa. In addition, task-specifc natural
language interfaces have also been designed to help inexperienced
users perform complex tasks such as photo editing [36] or data
visualization [24]. Similarly, if users could simply say what change
they want to see, they could easily manipulate a web page without
thinking about the underlying code or the low-level operations.

To investigate what language users would use when changing
the style of a web page and how they would expect such changes
to be presented, we conducted novice-expert sessions (N=8). In
these sessions, novices used their voice to request changes on a
web page’s visual design and the expert, a developer, would then
directly perform the changes using an in-browser developer tool.
Our fndings revealed that novices were frequently vague in their
requests: omitting specifc details (e.g., what color for the back-
ground), or using abstract terms that could not be clearly mapped
to specifc changes (e.g., “modern” or “vivid”). In addition to being
vague due to inexperience, novices were also purposefully am-
biguous as they wanted to explore the design space by seeing the

expert’s changes. Thus, novices expected the expert to make as-
sumptions and provide a set of alternative changes that they could
test and further iterate on.

Based on these fndings, we designed Stylette, a natural language-
based interface that assumes the user’s intentions to provide a
palette of web design properties and values. Stylette allows the user
to modify a web component by clicking on it, and then saying or
typing their desired change (e.g., “increase the size” or “make this
cleaner”). Based on the user’s input, the system provides a toolbox
that contains (1) a set of CSS properties that could be changed to
satisfy the request, and, (2) for each property, a set of alternative
values to explore and sample. The user can then simply change the
component by applying the diferent property values found in the
toolbox. To generate these toolboxes, we designed a computational
pipeline that processes and combines the two input modalities, nat-
ural language and clicks. Specifcally, a GPT-Neo-based architecture
predicts suitable CSS properties from the natural language request,
and a variational autoencoder (VAE) model encodes the clicked-on
component to extract the values of similar components from our
dataset of 1.7 million components.

To evaluate Stylette, we conducted a between-subjects study
(N=40) in which participants performed a design recreation task
and an open-ended design task with either our system or Dev-
Tools, the Chrome Browser’s developer tool. Our study revealed
that Stylette helped participants perform styling changes 35% faster
and with a higher success rate—80% of Stylette participants suc-
cessfully recreated a design within the allowed time while only 35%
succeeded with DevTools. Additionally, our system led participants
to experiment with and familiarize themselves with a more diverse
set of properties. As participants acquired more knowledge with
Stylette, however, natural language interaction limited their pro-
ductivity as they could not apply this knowledge to directly make
changes themselves. These insights suggest a need for a hybrid
approach: natural language interaction to initially support quick
familiarization with a tool, and then gradually phasing in more
direct interaction methods.

This paper presents the following contributions:

(1) Stylette: A novel system that allows users to change the
design of websites by using natural language to express their
goal, and then iterating with the set of alternatives presented
by the system.

(2) A computational pipeline that combines NLP and CV tech-
niques to process a natural language request and a web
component into a set of plausible CSS property and value
changes.

(3) Findings from a between-subjects study that reveals how
natural language support can help novices familiarize with
and perform a previously unknown design/coding task.

2 RELATED WORK
We aim to enable end-users to modify the design of any website
by simply saying what change they need. To this end, we review
related work in (1) web manipulation tools, and (2) designing and
(3) coding with natural language.

Stylete: Styling the Web with Natural Language CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

2.1 Web Design and Manipulation Tools
As web interfaces are visual representations of HTML and CSS
code, various tools have been designed to facilitate the process of
modifying the code to produce desired visual changes. For exam-
ple, openHTML [49] provides an educational environment which
shows HTML code, CSS code, and a website preview side-by-side.
Other systems [9, 39, 51] allow users to inspect the code behind
pages to understand the connection between code and visuals. Be-
yond inspection, Chickenfoot [7] allows end-users to write simple
scripts to modify components, and, more recently, Spacewalker [67]
leverages genetic algorithms and crowdsourcing to generate design
alternatives. These tools, however, were designed with developers
or learners in mind, and require the user to understand and inter-
act with the code—a task impractical for end-users with limited
knowledge.

To make manipulation more practical, a separate line of re-
search allows users to modify a website’s visuals by directly in-
teracting with the visuals. CrowdAdapt [47], CrowdUI [48], and
XDBrowser [46] allow users to modify the positioning of web com-
ponents through direct manipulation (e.g., drag-and-drop). Aimed
at designers who have limited coding knowledge, Poirot [58] and
CoCapture [13] provide designer-specifc widgets to support design
editing and animation authoring, respectively, directly on websites.
These tools, however, still require the user to expend time and efort
deciding between and performing various possible editing opera-
tions. Example-based systems [16, 33, 37] aim to reduce this mental
and manual efort by allowing users to copy the styles of other
websites. Our work aims to simplify the process further: modifying
a website’s design by simply describing a change and selecting from
suggested alternatives—without deciding on operations or looking
for examples.

2.2 Designing with Natural Language
Novices struggle to translate high-level design goals into tool op-
erations due to the vocabulary problem [22]—the language used
by the user and the tool do not match. Thus, empowering users to
be able to design by simply stating their high-level goals has been
a long-standing goal for HCI researchers. Query-Feature Graphs
(QF-Graphs) [18] and CommandSpace [1] jointly modeled natural
language descriptions with feature names in design applications
(e.g., GIMP and Photoshop) to help users identify features based on
their needs. Other systems support the use of natural language con-
cepts to search for design references or components—images [17],
graphic designs [29], or 3D models [10]. Beyond searching, several
systems generate design artifacts (e.g., images [35] or icons [65])
based on the semantic meaning of words. Leveraging whole expres-
sions instead of only words, Crosspower [60] and PixelTone [36]
decompose expressions into operations for animation authoring
and image editing, respectively. Our work expands this line of re-
search by interpreting vague natural language expressions, which
cannot be clearly decomposed, to support design editing in the
context of web pages.

2.3 Coding with Natural Language
A crucial step in programming is coding—writing instructions in
the form of machine-readable syntax. To lower the barrier to coding,

substantial efort has been dedicated to bridge natural language and
complex programming languages [45]. For instance, researchers
have used semantic parsers [50] and bimodal models [2] to map nat-
ural language to code. Such techniques enabled systems that allow
novice coders to quickly search for code snippets [52, 53], and non-
coders to code small programs by demonstrating and describing
tasks [38, 44]. Beyond mapping, a line of work has also developed
techniques that take natural language as input and generate code—
e.g., Python [41, 61], Bash commands [40], SQL queries [68], or
API calls [59]. Recent advancements in natural language processing
(NLP), and especially in large language models (e.g., GPT-3 [8]),
have led to performance boosts in natural language-based code
generation [27]. OpenAI’s Codex [12], a GPT-3-based model, is able
to generate basic games from a few natural language sentences [62].
In this same line of research, our work leverages a large language
model to facilitate editing of CSS code and provides insight into
how natural language interaction can scafold novices’ learning of
coding languages.

3 FORMATIVE STUDY
We conducted a formative study to investigate how novices would
change the design of websites and how they would naturally request
such changes. In this study, participants freely browsed through
a website and requested styling changes by speaking aloud. One
of the researchers, with several years of development experience,
acted as an expert and made these changes on-the-go.

3.1 Participants
We invited 8 participants (5 female, 3 male), all of whom had no
background in web development. Each participant sat alongside
the expert or, if participating remotely, shared their screen through
a video conferencing tool1. To reduce the time participants spent
familiarizing themselves with a website and to prompt more realistic
requests, participants chose a website they frequently visit for the
study. Most participants chose either our university’s web portal
or its learning management system.

3.2 Study Procedure
During the study, participants were asked to examine the website,
and request any styling changes that they want or could improve
their future experiences on the site. On their own computer, the
expert used the Chrome Browser’s DevTools2 to directly edit the
CSS code. The expert would then share the edits and, if participants
were not satisfed, they could ask for further edits. After around
30 minutes of editing, the participants were then asked a couple of
questions about their experience. Sessions lasted a maximum of 40
minutes and participants made 8.38 requests on average.

3.3 Requests were Vague and Abstract
Despite being able to concretely specify which web component they
wanted to edit, participants struggled to concretely explain how it
should be changed. Participants generally relied on vague phrases
(e.g., “more readable” or “emphasize this”) or abstract terms (e.g.,
“modern”, “vivid” or “dull”) that did not immediately reveal what
1https://zoom.us
2https://developer.chrome.com/docs/devtools/

https://2https://developer.chrome.com/docs/devtools
https://1https://zoom.us

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Tae Soo Kim, DaEun Choi, Yoonseo Choi, and Juho Kim

visual aspect of the component should be changed or how. Even if
they were specifc about which aspect to change, participants would
also tend to be vague about the value to set for that aspect. For
instance, a participant said “more transparent” without specifying
how much more transparent.

We observed that the behavior of our participants was beyond
not knowing the names of CSS properties—like the vocabulary
problem observed in other tasks [22]. Participants also struggled to
specify the visual aspects of the web components even without us-
ing the actual property names. For example, a participant requested
a text component to be highlighted but, when asked if the text
should be bolder or colored diferently, they were unable to provide
a defnite answer. Participants explained that their hesitation was
either because (1) they were unsure about which aspect to change,
or (2) they could decide on an aspect but were not confdent that it
would “look good”.

3.4 Assumptions Over Questions
To concretize the participants’ vague requests, the expert asked
questions to prompt further details. For example, when a participant
asked to make a component “less tacky”, the expert asked about
what made it appear “tacky”. While participants recognized how
these questions helped them iteratively decompose their goals, they
found this back-and-forth to be tedious. As participants were unsure
about the details, they did not want to dedicate the mental efort
to ponder about the details and, instead, expected the expert to
assume the details for them. They mentioned that it would be easier
to distinguish what they liked or disliked if the expert made these
assumptions and presented a visual result. Additionally, instead of
one outcome for each request, participants wanted various options
for the same request in order to explore the design space.

3.5 Natural Language is Not a Panacea
For most participants, the use of voice or natural language was
a major positive aspect about interacting with the expert. Partici-
pants mentioned how it was “comfortable” to use natural language
to simply explain what they wanted to change. However, while
they felt that natural language helped to get the editing process
started, participants desired more direct control when iterating on
edits. Specifcally, when deciding on a value for a property, they
felt frustrated about having to test diferent values by turn-taking
with the expert. Instead, participants wanted to be presented with
widgets that allowed them to test alternative values by themselves.

Based on the study insights, we derive the following design goals:
• DG1: Interpret vague requests to present plausible changes.
• DG2: Provide multiple alternative properties and values that
could satisfy one request.

• DG3: Allow users to directly iterate on the details for a
change.

4 STYLETTE
Based on our design goals, we present Stylette (Fig. 2), a system that
enables end-users to change the visual design of any website by
simply clicking on a component and saying what change they want
to see. The system interprets the user’s request through an NLP
pipeline trained on vague language (DG1) to present a palette that
consists of multiple CSS properties (DG2) that could be changed
to satisfy the request. To iteratively edit each property, the user
can directly adjust values and experiment with various sugges-
tions extracted from a large-scale dataset (DG2, DG3). Stylette is
implemented as a Chrome Extension and, using a method similar
to Tanner et al.’s [58], it saves the user’s changes in the browser’s
memory so that they persist when the user returns to the page.

a

b

c

Figure 2: Stylete is shown overlaid on a website. When activated, the system shows a blue border (a) over components the user
has hovered-on or clicked. After the user selects a component and records a request, Stylette transcribes the request (b) and
displays a palete that contains CSS properties and values.

Stylete: Styling the Web with Natural Language CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

4.1 User Scenario
To illustrate how Stylette can be used, we follow Sofa, a sociol-
ogist preparing for a paper submission to CHI 2022. While Sofa
frequently visits the conference’s website to check for submission
details or recent news, she feels that the design can make it chal-
lenging to look for and read the contained information. As she has
no web development experience, she decides to use Stylette to make
styling changes to the website.

4.1.1 Selecting a Component. In the frontpage of the CHI website,
Sofa feels that the header text is overemphasized and prevents
several news posts from being seen in one glance. To start editing,
she clicks on the Stylette icon on her extension toolbar. Now, she
can select components to edit so she clicks on the frst header in
the page (Fig. 2a).

4.1.2 Making a Verbal Request. With the component selected,
Stylette overlays a transcript box on the website, prompting Sofa
to say her request. To do so, she holds down the Ctrl key and says:
“tone down the text” (Fig. 2b). After releasing the Ctrl key and a
short processing period, the transcript box now displays a tran-
script of what Sofa said. In case the transcription is wrong, Sofa
can correct it by typing directly on the box and pressing Enter
to process the corrected transcript. In addition, a palette is now
presented, showing three diferent CSS properties that Sofa can
edit to satisfy her needs (Fig. 2c): she can make the text smaller
with font-size, change it to a slimmer font-family, or apply a lighter
color.

4.1.3 Iterating with the palete. Under each property, the palette
presents a list of values: the current value for the property (Fig. 3a),
the default or original value (Fig. 3b), and a set of value suggestions
(Fig. 3c). For properties with numerical values, like font-size, the sys-
tem also interprets whether the user wants to increase or decrease
the current value (Fig. 3d) and provides suggestions accordingly.
As Sofa hovers over the suggested values for font-size, Sofa can
see how the header would look with that font-size. After fnding
one she feels satisfed with, she clicks on it to apply that change. If
Sofa actually wanted to increase the font-size and the system gave
an incorrect prediction, she could click on “Decrease” next to the
property name to switch it to “Increase” and the suggestions would
change accordingly. If she wanted to change another property sim-
ilar to font-size, she could also click on the property name to see a
drop-down of other properties with similar names (e.g., font-style,
font-weight).

After setting the font-size, Sofa also notices the color property.
As she feels that this could also be toned down a bit, she clicks on
the lighter black color (“#242424f”) in the suggestions. After seeing
this change, she feels that the header’s color should be even lighter,
so she clicks on the arrows next to that suggestion (Fig. 3e) to see
other similar suggestions. Going through the carousel, she fnds
a color that she likes so she clicks on it. If she is unsatisfed with
the suggestions, she can see other diferent suggestions by clicking
on the “+” at the bottom (Fig. 3f), or manually set her own value
by clicking on the current value to expose manual change widgets
(Fig. 3g).

c

a

b

d

f

g

e

Figure 3: For each property, the palete presents the current value (a), the default or original value before any changes (b), and
a list of suggested values (c). For numerical values, the palette presents suggested values that are either larger or smaller than
the current value based on the system’s prediction (d). To see other similar suggestions, the user can click on the arrows next
to a suggested value (e). To see diferent suggestions, the user can click on the “+” button (f). The user can also click on the
current value to reveal widgets to manually set values (g): input box for numerical properties (e.g., font-size), drop-down menu
for nominal properties (e.g., font-family), or color picker for colors.

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Tae Soo Kim, DaEun Choi, Yoonseo Choi, and Juho Kim

4.2 Pipeline
To support the interaction presented in the scenario, we present
a computational pipeline that processes the two input modalities,
voice and click, to generate the palettes (Fig. 4). For voice, the audio
is recorded and automatically transcribed. For clicks, a screenshot
of the component selected by the user is automatically captured.
These inputs are then processed separately by the computational
pipeline.

4.2.1 Processing Natural Language. Our pipeline’s NLP module
takes the transcribed request, and predicts relevant CSS properties
and the direction of the change (e.g., increase, decrease, or neither).
For this purpose, we employ the 2.7 billion parameter version of the
GPT-Neo model [6], an open-source implementation of OpenAI’s
GPT-3 model [8]. With a well-crafted prompt and a small num-
ber of examples, these models have been shown to achieve high
performance on previously unseen tasks. However, hand-crafting
prompts can be a time-consuming and very imprecise process—
small alterations can lead to signifcant diferences in performance.

Architecture: Instead, we implement the P-tuning tech-
nique [42] that automatically searches for a prompt with high
performance. In this technique, prompts are composed by con-
catenating pseudo-tokens to the natural language input and train-
ing the embeddings for these pseudo-tokens. In our pipeline, we
use 12 pseudo-tokens. For training, we template the prompt as
[P1:4,R,P5:8,C,P9:12,D], where p1:12 are the pseudo-tokens, R is the

natural language request, C is the CSS properties separated by com-
mas, and D is the change direction (i.e., “increase”, “decrease”, or
“none”). During inference, we template the prompt as shown in
Figure 4 (“Concatenate”): [P1:4,R,P5:8]. This templated prompt is
passed as input to the model and the model’s output is controlled to
generate at least three CSS properties—to provide multiple alterna-
tives to users (“Input” and “Generate” in Fig. 4). Then, the generated
CSS properties and the remaining pseudo-tokens are concatenated
to the initial prompt, and this result is passed to the model again to
generate the change direction.

Dataset: Another merit of the P-tuning technique is that it only
requires a small amount of data for training. To train our pseudo-
tokens, we created a small-scale dataset consisting of 300 triplets
of (1) vague natural language requests, (2) CSS property sets, and
(3) change directions. As a frst step in creating this dataset, we
requested 29 web developers to each write three hypothetical vague
requests that a user could ask when wanting to change a website’s
design. Then, each developer looked at the requests written by an-
other person and wrote CSS properties to change and the direction
for the change that could satisfy each request. We removed requests
that were too specifc (e.g., included property names), and added re-
quests from our formative study and system’s pilot studies. The CSS
properties in this initial data are the ones supported in our system
(Table 2). We then expanded the dataset by automatically augment-
ing the initial data with synonym/antonym replacement [43, 64],
and/or backtranslation [54]—one of the authors checked and cor-
rected the augmentations. Finally, as performance can deteriorate

P1P2P3P4make this stand out moreP5P6P7P8

font-size,heightP9P10P11P12

Google Cloud
Speech-to-Text

P1P2P3P4make this stand out moreP5P6P7P8

Pseudo-tokens
Record

Concatenate

Input
Transcribe

Extract

Capture

Input

Web Component
Dataset

Embedding
Cosine Similarity

Property
Values

font-size: 18px

height: 120px

color: #ffffff

…

width: 80px

font-size: 18px

height: 120px

color: #ffffff

…

width: 80px

font-size: 18px

height: 120px

color: #ffffff

…

width: 80px

…
256 components

Group and
sample

GPT-Neo with
Trained P-tuning

“make this stand
out more” Pseudo-tokens

Concatenate

512
128x
128x
32

64x
64x
64

32x
32x
128

16x
16x
256

8x
8x
512

4x
4x

1024

8x
8x
512

16x
16x
256

32x
32x
128

64x
64x
256

128x
128x
512

256x
256x

3

256x
256x

3

4x
4x

1024

Variational Autoencoder

P1P2P3P4make this stand out moreP5P6P7P8

font-size,heightP9P10P11P12increase
Generate

Figure 4: Our computational pipeline integrates a natural language processing (NLP) module (top, orange) and a computer
vision (CV) module (bottom, blue). The diagram illustrates the pipeline at inference time—processing user’s input of natural
language and clicks to generate a set of CSS property alternatives and value suggestions.

Stylete: Styling the Web with Natural Language

Model
CSS Property Prediction
Acc. Pre. Rec. F1

Direction
Acc.

P-tuning
Hand-crafted

0.557
0.509

0.670
0.623

0.761
0.648

0.653
0.585

0.819
0.413

Table 1: With trained P-tuning, the GPT-Neo model achieved
higher performance when predicting CSS properties and
change directions, when compared to using a hand-crafted
prompt as input.

signifcantly due to class imbalance [66], we ensured that each CSS
property appeared in at least 10% of the requests—the represen-
tation of CSS properties in the dataset is shown in Table 2. After
augmentation and balancing, we fnalized our dataset of 300 triplets.

Training: In the training process, we used 200 triplets for train-
ing and validation (80%-20% split), and reserved 100 for testing.
The pseudo-tokens were trained on the generative loss from the
GPT-Neo model with the Adam optimizer, until early stopping on
the validation loss. We used an initial learning rate of 0.0001, batch
size of 8, weight decay value of 3e-7, and gradient clipping value of
5. When compared to the model with our best hand-crafted prompt,
GPT-Neo with trained P-tuning achieved a higher F1-score when
predicting CSS properties and higher accuracy when predicting
change direction (Table 1). Additionally, the recall with P-tuning
exceeds 75% which suggests that, for the average request, the model
will likely return most of the properties that the user might need.

4.2.2 Processing Web Components. As our formative study re-
vealed, users can struggle when deciding on a value for a change
(e.g., what color for the background) and may beneft from seeing
various alternatives. The components in other websites can be a
rich source for these alternatives. However, as the style of a compo-
nent depends on what that component represents (e.g., the font-size
for a header vs that for a paragraph), selecting random components
would not lead to sensible and useful alternatives. Thus, it would
be more benefcial to identify components in other websites that
are similar to the one the user wants to change. Similarity could be
measured by calculating property diferences and aggregating these
into one measure, but, as properties difer in the scale and type of
values, this requires the diference and aggregation calculations to
be carefully formulated.

Architecture: As an alternative, we leverage a variational au-
toencoder (VAE) model [30] (“Variational Autoencoder” in Fig. 4) to
automatically learn a concise representation of the visual features
of components. In our pipeline, we use this VAE model to encode
the screenshot image of a component into a 512-dimensional vector.
Through cosine similarity, this vector is then compared to the vec-
tor representations of all the components in our large-scale dataset
to identify 256 similar components and retrieve their property val-
ues (“Cosine Similarity” in Fig. 4). To provide coarse diversity but
also more fne-grained alternatives, the palette presents suggested
values in two levels: (1) diferent values as separate rows, and (2)
similar values as a carousel in the same row. To support this, the
pipeline groups the retrieved values according to specifc rules
(“Grouping Method” in Table 2) and each group represents a sug-
gestion row. Then, a maximum of 10 values are randomly sampled

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

CSS Property Grouping Method Percent

height Interval binning (N=20) 11.7%
width Interval binning (N=20) 11.7%
margin Interval binning (N=10) 11.3%
padding Interval binning (N=10) 12.9%
color K-means clustering (N=6) 12.9%
background-color K-means clustering (N=6) 12.5%
opacity Interval binning (N=2) 10.4%
font-size Interval binning (N=10) 13.3%
font-family Google Fonts categories (N=5) 13.8%
font-style Nominal value 11.3%
font-weight Interval binning (N=10) 11.7%
text-align Nominal value 11.3%
text-decoration Nominal value 11.3%
border-width Interval binning (N=10) 11.3%
border-color K-means clustering (N=6) 11.3%
border-radius Interval binning (N=10) 11.3%

Table 2: The CSS properties supported by Stylette. The ta-
ble presents the representation of each property in the nat-
ural language request dataset as a percentage. Each row also
shows how values for a property are grouped when sug-
gested to the user: interval binning into N equally-spaced
intervals, K-means clustering with the elbow method, based
on the categories from Google Fonts, and no grouping for
properties with nominal values.

for each group and these alternatives are presented through the
carousel. For color-related properties and the font-family property,
users in the pilot studies wanted more diverse values so, for these
properties, we populate other suggestion groups by retrieving the
values from random components in the dataset.

Dataset: Although there are datasets for mobile UI compo-
nents [11] or for whole web pages [32], there are none for individual
web components. Thus, to train the VAE model, we constructed
our own dataset. We frst compiled a list of websites from various
sources: the S&P500, the Webby Awards [4], and the Open PageR-
ank dataset [15]. We removed any websites that (1) could not be
accessed, (2) had very similar URLs, or (3) had less than 16 compo-
nents. This led to a fnal list of 7,565 websites. For each website’s
main page, we used a crawler to capture each component’s CSS
properties and screenshot image. After removing components that
were less than 10 pixels wide or tall, the fnal dataset consisted of
1,761,161 components.

Training: The VAE model is composed of six convolutional lay-
ers for encoding, one linear layer as a bottleneck, and six transposed
convolutional layers for decoding. The dimensions of the outputs
at each layer are shown in Figure 4 (“Variational Autoencoder”).
During training, the image of a component is encoded into a vec-
tor using the encoding and bottleneck layers, and then this vector
is passed through the decoding layers to recreate the image. The
model is trained to maximize the evidence lower bound (ELBO)
value between the original image and the recreated image. We
trained our model for 3 epochs with an Adam optimizer, using a
learning rate of 0.0001 and batch size of 256.

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

4.3 Implementation
We implemented the interface of Stylette as a Chrome Extension, us-
ing JavaScript, HTML, and CSS. For the backend, we used a Node.js
server to pre-process requests from the interface and transcribe
the audio with the Google Cloud Speech-to-Text API3. To serve
the computational pipeline, we used a Flask server running with
DeepSpeed4.

5 EVALUATION
We conducted a between-subjects study where we compared
Stylette against the Chrome Browser’s DevTools, a tool widely
available for general end-users to edit websites with. The study
was composed of (1) a well-defned task of redesigning a website
to look like a given outcome, and (2) an open-ended task of styling
a website to follow the design direction of provided references. We
designed these two tasks to investigate how Stylette helped partici-
pants style components when (1) they have a clear idea about how
it should change, or (2) they only have a vague sense of direction.
Specifcally, we pose the following research questions:

• RQ1. How does Stylette help novice users fnd the CSS prop-
erties required to perform desired styling changes?

• RQ2. Can Stylette encourage novices to perform a greater
number of changes and use more diverse CSS properties?

• RQ3. How does novices’ usage of Stylette afect their self-
confdence regarding their own web designing abilities?

5.1 Participants and Apparatus
We recruited 40 participants (11 female, 29 male; age M=21.5 and
SD=3.05) who all reported having no previous experience with web
design or coding (no knowledge of HTML and CSS). We also verifed
that participants were relatively fuent in spoken English to reduce
frustration due to the performance of speech-to-text technologies.
Participants were divided into two equally-sized groups and each
group was assigned to use either Stylette or Chrome DevTools.
As six participants mentioned having other prior design experi-
ences and this could afect performance (e.g., the term “padding” is
used in other design tasks), they were also equally split into each
condition. To simulate a realistic setting, participants who used
Chrome DevTools were also allowed to freely use search engines
to fnd resources and information. The study lasted a maximum of
90 minutes and participants were compensated with 30,000 KRW
(approximately 26 USD).

5.2 Study Procedure
The study took place face-to-face, strictly following the COVID-19
guidelines: participants had to wear masks and plastic gloves, and
their temperature was checked before sessions. Each participant
was provided with a computer with a Chrome browser installed
and their assigned tool, Stylette or DevTools, already opened. After
reading and signing the informed consent form, participants were
frst provided with a brief walkthrough of their assigned tool and
were then allowed to test the tool for a total of 5 minutes. After
this, participants completed a short pre-task survey.

3https://cloud.google.com/speech-to-text
4https://www.deepspeed.ai/

Tae Soo Kim, DaEun Choi, Yoonseo Choi, and Juho Kim

Tag Properties to Change Success Range

h2 font-size (FSz) 80px - 120px
p font-weight (FW) 700 - 900

span
background-color (BgC)
color (C)

(0.0, 0.0, 0.6) - (0.2, 0.2, 1.0)
(1.0, 1.0, 1.0) - (0.8, 0.8, 0.8)

video border-radius (BR) 60px - 100px

button
border-width (BW)
border-color (BC)

6px - 10px
(0.8, 0.4, 0.0) - (1.0, 0.8, 0.2)

div text-align (TA) “center”
h2 font-style (FSt) “italic” or “oblique”
button padding (P) 30px - 60px
img width (W) 600px - 800px
h3 font-family (F) Any in “cursive” category
h3 text-decoration (TD) “underline”
div margin (M) 80px - 120px
img height (H) 350px - 450px
img opacity (O) 0.3 - 0.7

Table 3: List of the components that participants had to
change during Task 1, in the order that they had to be
changed. For each component, the table shows its tag type
and the properties that had to be changed. For the proper-
ties, the list also shows their abbreviated names (which are
used hereafter), and the range of values that were accepted
as successful changes (color values shown as RGB triplets).

After the survey, participants started Task 1. Participants were
tasked with using their assigned tool to redesign our institute’s
“About” web page5 to look as close as possible to a provided fnal
design. This fnal design was provided as a before-after image with
circling around components to change and labels showing how
many properties to change for each component. Natural language
explanations of the changes were not provided to prevent bias-
ing the language used by Stylette participants. The task involved
changing 14 diferent components and all of the 16 CSS proper-
ties supported by our system (Table 3). Participants were asked to
change the components in the order that they appeared in the web-
site, but were allowed to skip challenging components and come
back to them later. A researcher verifed that a component had been
successfully changed once the values of the correct properties were
within the accepted success range (“Success Range” in Table 3). Par-
ticipants had 30 minutes to successfully change all the components.
After the task, participants completed a short survey.

After Task 1, participants started Task 2 after a 5-minute break.
To ensure that all participants started Task 2 with the same amount
of knowledge, those that did not complete Task 1 were frst shown
how to perform the changes that they did not complete. The aim
of Task 2 was to investigate how participants used their assigned
tool when only provided with a vague direction for changes and
allowed greater fexibility. Participants were tasked with changing
a given website such that it followed the design direction of four
reference websites (Fig. 5). These references were chosen as they
shared a similar modern aesthetic, but also difered in how their
content was structured. Participants were given 25 minutes for this
5https://www.kaist.ac.kr/en/html/kaist/01.html

https://www.kaist.ac.kr/en/html/kaist/01.html
https://4https://www.deepspeed.ai
https://3https://cloud.google.com/speech-to-text

Stylete: Styling the Web with Natural Language CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

task. After this task, participants completed a short survey. Finally,
a short interview was conducted asking participants about their
experiences during both tasks.

5.3 Measures
We collected responses to the pre-survey and the post-surveys
after each task. All of the surveys contained four questions asking
participants to rate, on a 7-point Likert scale, their self-confdence
with respect to their ability to (1) perform a website design changing
task, (2) plan design changes, (3) iterate on changes, and (4) use the
given tool. We averaged the responses to these questions to derive
one score for self-confdence. The two post-surveys included the
six questions from the NASA-TLX questionnaire [26] to measure
participants’ perceived workload.

We also quantitatively measured task-related metrics. For Task
1, we measured the time taken to successfully change each compo-
nent and to complete the whole task. We hypothesized that Stylette
would help participants fnd properties faster, and therefore com-
plete changes in less time. Although all participants had no previous
web design experiences and those with other design experiences
were equally divided into each condition, individual design interest
and skill could still afect the quality of the fnal designs in Task
2. Due to this reason, we did not rate these designs and, instead,
we measured how many property changes were made in total. We
hypothesized that Stylette participants would make more changes
as they could explore diverse properties and values. A value close to
0 indicates equal usage, spread across various properties, and one
close to 1 indicates unequal usage, few properties used excessively.

Figure 5: (Top) The website that participants styled in Task 2 mimics the portfolio of a creative director for a museum. The
website only has basic styling to encourage participants to be creative and make many changes. (Bottom) The four reference
websites that were provided during the task: Suparise (https://suparise.com), MadeByShape (https://madebyshape.co.uk), Land-
bot (https://landbot.io), and Rodeo (https://getrodeo.io).

https://getrodeo.io
https://landbot.io
https://madebyshape.co.uk
https://suparise.com

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Tae Soo Kim, DaEun Choi, Yoonseo Choi, and Juho Kim

For qualitative data, we analyzed participants’ responses during
the short interviews to understand their perceptions of the given
tool and how they leveraged it for their purposes. We also iteratively
coded the requests used by Stylette participants in Task 2 to classify
them according to the vagueness of their content and language.

6 RESULTS
Our results demonstrated that Stylette helped participants perform
styling changes faster and with greater success in Task 1, but it
did not enhance productivity in Task 2. For the statistic analysis of
each measure, we frst conducted a Shapiro-Wilk test to determine
if the data was parametric (noted with “P”) or non-parametric
(noted with “NP”). When comparing between conditions, we used
an independent t-test (if parametric) and a Mann-Whitney U test (if
non-parametric). When comparing between tasks within the same
condition, we used a paired t-test (if parametric) and a Wilcoxon
signed-rank test (if non-parametric).

6.1 Task 1: Well-Defned Task
To answer RQ1, we analyzed participants’ performance in Task 1
(i.e., time taken and success rate to perform the given changes). We
additionally measured participants’ perceived workload.

6.1.1 Performance. Overall, Stylette participants signifcantly out-
performed DevTools participants in this task (Fig. 6). While only
7 out of 20 DevTools participants completed all changes, 16 out
of 20 Stylette participants completed the task. Additionally, when
comparing only those who completed the task, Stylette participants
(M=971.8s, SD=314.4s) completed the task in 35% less time than
those that used DevTools (M=1493.0s, SD=295.9s, t=-3.72, p=0.001,
P). Comparing the time taken to successfully change each compo-
nent revealed that DevTools participants struggled signifcantly

with specifc properties (e.g., border-radius (BR) and padding (P) in
Fig. 6). These struggles generally involved two scenarios: (1) vague
search queries led to unhelpful results, or (2) the name of a CSS
property did not immediately reveal its visual function.

To illustrate the frst scenario, several participants tried queries
like “enlarge the border in CSS” when searching for the padding
property, but this only returned results for border-width—the search
engine took them “too literally” (D2, D7, D9, D14). In other cases,
participants’ vague queries returned search results for more ad-
vanced changes beyond their needs. For example, to adjust the
height or width, participants searched “resize image in CSS” but
this returned results about “responsive images”. In contrast, as our
system was trained on vague requests and presents multiple prop-
erties for one request, Stylette participants had more success using
similarly vague language—requesting “enlarge the border” to the
system returned padding among the options.

The second scenario involved properties with names that could
be unclear for novices, such as border-radius or text-decoration. In
these situations, the properties were frequently found in the search
results, but DevTools participants would overlook them as they
could not immediately visualize the functions from the names or
mismatched with their mental models. However, hovering over the
suggested values allowed them to quickly use and test the functions
of properties. S5 mentioned: “By applying [the recommendations],
I could understand what [visual] concept the [margin and padding]
were related to”.

6.1.2 Perceived Workload. In Task 1, responses to the NASA-TLX
questions revealed that the efect of Stylette on perceived workload
was mixed (Table 4). Stylette participants reported experiencing sig-
nifcantly less temporal demand (U=118.0, p=0.0118, NP) and efort
(U=133.0, p=0.0336, NP) than those that used DevTools. DevTools

Tot
al

0

350

700

1050

1400

1750

2100

971.8
±

314.4

1493.0
±

295.9

fon
t-s

ize

fon
t-w

eig
ht

ba
ckg

rou
nd

-co
lor

& co
lor

bo
rde

r-ra
diu

s

bo
rde

r-w
idt

h

& bo
rde

r-c
olo

r

tex
t-a

lign

fon
t-s

tyl
e

pa
dd

ing
widt

h

fon
t-fa

mily

tex
t-d

eco
rat

ion
marg

in
he

igh
t

op
aci

ty
0

100

200

300

400

500

600

72.8
±

42.8

75.5
±

83.4
69.0

±
23.6

91.8
±

81.1
103.9

±
46.2

83.7
±

58.1
41.4

±
24.1

125.9
±

85.0

46.5
±

15.2

108.9
±

63.3

33.1
±

21.6

113.9
±

72.1

42.4
±

23.5

48.6
±

30.5

93.2
±

68.3 74.0
±

36.3

139.2
±

100.5

187.5
±

130.7 144.4
±

132.9

83.2
±

75.1
51.7

±
29.9

307.7
±

187.6

157.8
±

122.1
142.5

±
69.2

62.1
±

55.3 51.0
±

21.8

134.3
±

168.2
127.9

±
100.0

Stylette
DevTools

*** ** ** ** * * ** **

Figure 6: The average time taken for participants to successfully change each component using Stylette or DevTools. Each
component is represented with the abbreviated names of the properties changed (Table 3). For each property, the fgure shows
if the diference in time taken for each condition was statistically signifcant (*: p <.05, **: p < .01).

https://SD=295.9s
https://M=1493.0s
https://SD=314.4s
https://M=971.8s

Stylete: Styling the Web with Natural Language CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Task Condition Mental Physical Temporal Efort Performance Frustration

Stylette 3.90 (1.41) 2.55 (1.57) 3.45 (1.73) 3.15 (1.79) 5.45 (1.10) 3.00 (1.52)
1 DevTools 4.35 (1.42) 1.65 (0.93) 4.50 (0.95) 4.00 (1.45) 4.85 (1.53) 2.25 (1.21)

p 0.14 0.02 0.01 0.03 0.11 0.05

2
Stylette
DevTools

4.75 (1.29)
4.90 (1.21)

2.90 (1.71)
2.00 (1.45)

4.35 (1.66)
4.55 (1.50)

4.25 (1.48)
4.55 (0.83)

4.05 (1.43)
4.45 (1.39)

3.55 (1.47)
2.65 (1.50)

p 0.34 0.03 0.69 0.23 0.24 0.03

Table 4: For Task 1, participants’ average ratings on the perceived workload questions (NASA-TLX) showed that temporal
demand and efort were signifcantly lower with Stylette, but physical demand and frustration were signifcantly higher. For
Task 2, physical demand and frustration were still rated signifcantly higher with Stylette, but temporal demand and efort no
longer difered signifcantly.

participants felt signifcant time pressure due to the lengthy and ef-
fortful process of thinking about what to search, skimming through
search results, and reading resources. In comparison, Stylette par-
ticipants could simply say something and look through the three
to fve properties presented by the system.

However, Stylette participants also experienced signifcantly
higher frustration when compared to DevTools participants
(U=139.5, p=0.0472, NP). According to participants, this frustration
was partially attributed to the fact that the coupled AI algorithms
(i.e., speech-to-text and property prediction) could both fail. For
example, as they did not notice the transcription errors, several
participants were confused when concrete requests (e.g., “under-
line text”) did not return the correct properties. Other participants
were overly preoccupied with the transcription and immediately
corrected any errors—failing to notice that the system had already
returned desired properties. When fxing errors, participants also
had to alternate between modalities (i.e., voice, text, and clicks)
which could explain why Stylette participants reported feeling a
higher physical demand (U=127.0, p=0.0187, NP).

6.2 Task 2: Open-Ended Task
To answer RQ2, we evaluated participants’ productivity in Task 2
(i.e., how many changes were made and whether varied properties
were used). As in Task 1, we also analyzed perceived workload. Sam-
ples of the participants’ fnal designs (Fig. 7) show their creativity
and how they each focused on diferent aspects of the website.

6.2.1 Productivity. While participants in the Stylette condition
(M=42.85, SD=12.18) made more property changes than those in the
DevTools condition (M=39.30, SD=12.71), this diference was not
statistically signifcant (t=0.901, p=0.3729, P). The lack of a statisti-
cal diference could be attributed to the benefts and drawbacks of
each tool’s interaction method. DevTools participants spent more
time searching for information, but, once they had the required
knowledge, they could directly make changes. Stylette participants
could use natural language to easily fnd properties, but, even if
they already knew which property to change, they expended time
waiting for the system to process requests and fxing any AI-related

S1 D12S17

D9

Figure 7: Sample of designs created by Task 2 participants. S1 used padding to spread content vertically such that each item
would appear gradually as the user scrolls down the page. S17 serendipitously found the border-width property and used it to
add a “shadow” to the container for the “Creative Projects” subheader. D9 used opacity in several components to lighten the
web page’s content. D12 increased the border-width and added border-color to add colored bars on the sides of the page.

https://SD=12.71
https://SD=12.18

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Tae Soo Kim, DaEun Choi, Yoonseo Choi, and Juho Kim

errors. Several participants (S5, S6, S7, S15) noted that, after learn-
ing the properties in Task 1, they wanted to directly change the
properties in Task 2—without using natural language.

Additionally, as Stylette presents other options in the palette,
participants appeared to spend additional time browsing through
them. While this exploration could increase efort, it also appeared
to encourage familiarization with a wider range of properties. The
Gini index for property usage shows that Stylette participants tried
various properties (M=0.292, SD=0.045) while DevTools participants
mostly stuck with a few properties that they were accustomed to
(M=0.325, SD=0.052, t=-2.169, p=0.0364, P). Beyond encouraging
experimentation with more properties, in some cases, the system
also led participants to serendipitously fnd alternative uses for
known properties. S17 mentioned, “Accidentally I just found [border-
width] while trying to change the radius [so I changed it] and it
shows a shadow efect that looks really, really good.” (design shown
in Fig. 7).

6.2.2 Perceived Workload. Similar to the results of Task 1, par-
ticipants in the Stylette condition reported experiencing higher
physical demand (U=131.5, p=0.0278, NP) and frustration (U=129.0,
p=0.0258, NP) than those in the DevTools condition (Table 4). Unlike
Task 1, however, Stylette participants no longer reported feeling
signifcantly less temporal demand or efort. It is plausible that,
due to the open-ended nature of Task 2, Stylette participants now
spent more time and efort exploring the design space through the
alternatives presented by the system—Gini index results support
this explanation.

6.2.3 Usage Paterns of Stylete. As Task 2 allowed for more fexible
and natural use, we also analyzed participants’ usage of Stylette
during this task. Participants issued an average of 36.8 requests
(max=58, min=18, SD=11.2) and the requests had an average length
of 3.2 words (max=12, min=1, SD=1.2).

Our categorization of these requests showed that, unlike our
formative study results, the requests were frequently specifc and
became more specifc and less vague towards the end of the task (Ta-
ble 5). Participants’ interviews revealed that this gradual specifcity
was due to various reasons. For one, the tool helped participants
learn property names so they could now use them in requests (S5,
S8, S13, S19). Others observed that the system was more accurate if
they were more specifc, so they adjusted their requests accordingly
(S3, S4, S16, S20). A sample of participants’ requests (Table 6) shows
that the system was indeed more likely to predict users’ expected
properties if the requests included more specifc information.

Like our formative study, however, around half of the requests
were vague (“PP”, “PV” and “A” in Table 5). Several vague requests
were due to participants not remembering the name of a property,
but they were able to quickly remember them by seeing Stylette’s
predicted properties. In other cases, vagueness was to deliberately
get the system to act in a certain way. Several participants (S5, S6,
S7, S14, S18, S19) mentioned using requests as “macros”—being
vague (e.g., “change font”) so the system returned several related
properties that could be changed in one go. Others (S1, S2, S4, S8,
S15) used vague requests to explore what other styling changes
they could make.

Regarding the value suggestions, there were three particular uses:
(1) as a “starting point”, (2) as a “guideline”, or (3) as a “shortcut”. For
the frst type, participants (S4, S11, S14, S17, S20) picked a suggested
value and then manually adjusted it more to their preference. Others
(S2, S5, S9, S10, S18) used the suggestions as a guideline—hovering
through values to mentally map numerical diferences to visual
diferences. Finally, as similar values would be suggested for similar
components, several participants (S1, S7, S15) looked for the same
suggestion when editing multiple similar components—as a sort of
“value shortcut”.

Type of Request Description Examples Percentage Q1 Q4

Property Specifc (PS)

Property Partial (PP)

Property Vague (PV)

Specifc property name expressed in
request.
Property name partially expressed in
the request.
Property name not clearly apparent in
the request.

"change background color"
"align text in the center"
"add border"
"change the font"
"make this bigger"
"increase the spacing"

48.1% (352)

35.3% (258)

11.5% (84)

46.6%

35.2%

11.9%

56.0%

34.7%

4.7%

Property Total - - 94.9% (694) 93.8% 95.3%

Value Specifc (VS)

Value Vague (VV)

Specifc value expressed in the
request.
Vague direction given for a value
in the request.

"change to dark grey color"
"increase font size to 14 px"
"decrease the height"
"make the edges rounder"

11.4% (83)

20.0% (146)

14.0%

25.9%

9.8%

15.0%

Value Total - - 31.2% (229) 39.9% 24.9%

Abstract (A) Request with abstract description
of a change.

"make it look more stylish"
"make it more playful"

3.3% (24) 3.6% 3.1%

Table 5: Coding of the participants’ requests during Task 2. Requests can either mention both properties and values, only
properties or only values, or be abstract. The percentage of requests for each category are shown. The table also shows the
percentage for each category for the frst quartile (Q1) and last quartile (Q4) of participants’ requests.

Stylete: Styling the Web with Natural Language CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

6.3 Self-Confdence Across Tasks
To answer RQ3, we evaluated how self-confdence changed during
the study by analyzing intra-condition diferences in participants’
responses (Fig. 8). Stylette participants’ self-confdence increased
signifcantly between the pre-survey (M=4.30, SD=1.12) and the end
of Task 1 (M=5.13, SD=1.22, z=18.5, p=0.0035, NP). Participants felt
satisfed about completing Task 1, and mentioned that it was easy to
learn about and make changes using Stylette: “It gave me the feeling
of learning and becoming familiarized with web development terms.”
(S12). Surprisingly, DevTools participants’ self-confdence also in-
creased signifcantly between the pre-survey (M=4.01, SD=1.26)
and Task 1 (M=4.81, SD=1.25, z=34.5, p=0.0148, NP). Despite most
of these participants not completing Task 1, they were satisfed
with what they had accomplished as they expected that CSS code
would be exceptionally challenging.

For similar reasons, DevTools participants’ self-confdence in-
creased between Task 1 (M=4.81, SD=1.25) and Task 2 (M=4.99,
SD=1.32), although this was not statistically signifcant (t=0.540,
p=0.595, P). These participants felt proud about their own efort and
learning during the study: “This is my frst time handling [CSS] but I
did this!” (D14). In contrast, self-confdence for Stylette participants
decreased signifcantly between Task 1 (M=5.13, SD=1.22) and Task
2 (M=4.58, SD=1.16, t=-3.204, p=0.0047, P). Unlike DevTools partic-
ipants’ self-refective comments, Stylette participants’ comments
mostly focused on the tool. Some participants (S9, S16, S17, S20)
mentioned how the system presented too many possibilities, mak-
ing it difcult to decide on changes: “It was hard [to choose] because
the suggestions were all cute.” (S16). On the other hand, several
participants (S4, S7, S11, S15) felt limited by the tool’s possibilities—
expecting the system to reveal new properties or support more
complex changes (e.g., adding a “sparkle” animation).

7 DISCUSSION
In this paper, we propose Stylette, a system that allows users to
easily edit a website’s design through a suggested set of proper-
ties and values generated from natural language requests. Stylette
can be generalized to a variety of applications: expanded with a
community feature for users to share website modifcations, imple-
mented as an IDE plugin to support web developers’ help-seeking,
or integrated into tools for user feedback. In this section, we further

Stylette
1

2

3

4

5

6

7

4.3 ± 1.1

5.1 ± 1.2

4.6 ± 1.2

Pre-Task Task 1 Task 2

DevTools
1

2

3

4

5

6

7

4.0 ± 1.3

4.8 ± 1.2
5.0 ± 1.3

Figure 8: For both conditions, participants’ reported self-
confdence increased signifcantly between the pre-survey
and the post-Task 1 survey. However, self-confdence de-
creased signifcantly for Stylette participants after Task 2,
but did not change signifcantly for DevTools participants.

elaborate on the potential of Stylette and suggest opportunities for
future work.

7.1 Stylette as a Web Designing Springboard
In our study, Stylette allowed users with no prior knowledge to
quickly perform desired styling changes on websites. Unlike search
engines that can take the meaning of queries “literally”, our sys-
tem interpreted the vagueness behind users’ requests to present
more varied and suitable solutions. Stylette also allowed users to
“learn-by-doing” by immediately testing the functions of proper-
ties by hovering on value suggestions—instead of having to skim
through search results. As a side efect of interpreting vagueness,
the system appeared to encourage creativity by presenting users
with alternatives beyond their initial intentions. Together, these

Request Type Expected Predicted

“change the font family to Helvetica” (S7) PS & VS FF FF FSz FSt FW
“increase padding” (S8) PS & VV P BW M P W
“change text color” (S6) PS C BgC C FSt O TD
“change the picture radius to 24” (S18) PP & VS BR BC BR C FSz W
“increase the size” (S16) PP & VV FSz BR BW H P W
“change borders” (S11) PP BW BC BR BW C W
“make it go in the middle” (S15) PV & VS TA H M P W
“add some spacing at the bottom” (S2) PV & VV P BR H M P
“change the distance” (S5) PV M BW C H P W
“make this modern” (S19) A FF BW H M P W

Table 6: A sample of participants’ requests in Task 2, ordered from most specifc to most vague/abstract. For each property, the
table shows the request type, the property expected by the user, and the properties predicted by the system.

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Tae Soo Kim, DaEun Choi, Yoonseo Choi, and Juho Kim

insights suggest that Stylette can support novices to explore and
learn about CSS with continued usage.

The back-to-back tasks in our study provided a window into
such continued usage of Stylette. We observed that users gradually
developed knowledge about concrete CSS property names and
values. For these now more knowledgeable users, the system still
provided beneft: enabling the request of multiple properties for
increased efciency, supporting exploration of the design space, and
helping users quickly remember forgotten information. However,
we also observed that perceived efort could increase with continued
usage and users’ learning. This owed to the fact that, even after
acquiring the knowledge to directly make changes by themselves,
user still had to interact with the underlying, probabilistic AI—
waiting for its processing and correcting any errors.

Thus, while Stylette is well-suited for novices to learn about CSS,
its beneft may decrease with users’ increasing knowledge due to the
form of interaction. Elaborating on Amershi et al.’s guidelines [3],
this suggests how human-AI interaction should be designed for
over time use in the context of novice support systems. For future
work, we propose an adaptive approach: initial natural language
interaction to help users acquire knowledge about properties, and
then gradually exposing direct manipulation widgets for properties
that users have acquired knowledge about. Knowledge could be
modeled by identifying previously used properties, repeated usage
of a property, or the use of the property’s name in voice requests.

To further overcome the frustration and physical demand ob-
served in the study, future work could also investigate mecha-
nisms to support the discoverability of natural language input.
Prior work [14, 23, 56] has demonstrated that supporting discov-
erability can reduce the amount of “guessing” that users must do.
As Stylette’s NLP pipeline appears to provide more accurate pre-
dictions for specifc requests, future iterations of the system could
guide users to new or desired properties by suggesting more specifc
language. For example, if the user makes a vague request but does
not use any of the predicted properties, the system could suggest
specifc requests related to other properties that the user has not
seen before.

7.2 Leveraging Large Language Models to
Support Software Use

The grand scale of large language models (e.g., GPT-3 [8] or GPT-
Neo [6]), in terms of architecture and datasets, has allowed them
to perform previously unseen tasks with only a few data points.
We leveraged this quality and the P-tuning technique [42] to allow
novices to interact with website designs by constructing only a
small dataset of 300 requests. Similar approaches can be taken to
enable novices to use natural language to use various complex
software—overcoming the vocabulary problem [22]. While a rich
body of work has enabled similar natural language interaction to
support software usage [1, 18–21], their approaches relied on a
wealth of user-generated content. Thus, these approaches are not
possible for new applications or features as such content might not
exist. Moreover, as shown by the struggles of DevTools participants
in our study, the language used in such content may also difer
greatly from the vague language used by novices as the content
is usually created by intermediate or advanced users. With our

approach, in contrast, natural language interaction can be enabled
for new applications with only the efort of creating a small dataset
of examples, and, by including representative examples of novices’
language, the support can be designed specifcally for novices.

7.3 Natural Language Coding as a Learning
Tool

Our natural language interface helps novices learn about a cod-
ing language by demonstrating how the code realizes high-level
goals—lowering the selection, coordination, and use barriers identi-
fed by Ko et al. [31]. In addition, by exposing novices to multiple
alternatives for an intended goal, we observed that our approach
allowed users to acquire a greater breadth of knowledge about the
code—familiarizing with more properties and learning new uses
for properties. However, the study also revealed that DevTools par-
ticipants appeared to feel more satisfaction about their learning
experience when compared to Stylette. We suspect that this is due
to DevTools participants expending more deliberate efort searching
for and reading through resources. Based on these insights, we frst
suggest that natural language coding tools should provide multiple
code alternatives for the same goal. Then, by incorporating interven-
tions that prompt users to refect on these alternatives—similar to
prompts used in video learning [55]—to gain a wider understanding
about the code through a deliberate learning experience.

7.4 Beyond CSS
Stylette aims to make the web more malleable for general users
with no prior knowledge. Our work focuses on CSS code and allows
novices to simply describe their high-level goal to start modify-
ing it—without requiring the user to decompose the goal them-
selves [58] or look for examples [16, 33, 37]. However, websites are
also composed of HTML (structure) and JavaScript code (function-
alities). As structure-related changes might be more suitable for
direct manipulation, Stylette could be combined with systems that
already support this [46, 47]. Finally, to allow end-users to program
new functionalities, models like OpenAI’s Codex [62], which can
generate JavaScript code from natural language descriptions, could
be coupled with Stylette. By integrating these three types of sup-
port into one coherent system, future work could enable all users
to fully access the web’s malleability.

8 LIMITATIONS
Our work has several limitations which we address in this section.

• Stylette currently supports 16 diferent CSS properties. These
were the ones used the most in the creation of our request
dataset. While Stylette could be extended to support more
properties by expanding the dataset, certain complex prop-
erties (e.g., those related to fexbox and grid) also require
corresponding modifcations on parent elements. As Stylette
only modifes the selected element’s properties, it cannot
currently support these properties. To overcome this limi-
tation, the system could be enhanced to cascade necessary
property modifcations up the HTML tree.

• In our evaluation, we compared Stylette against using Dev-
Tools and search engines. A possible concern is that DevTools
participants could change more properties and might have

Stylete: Styling the Web with Natural Language CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

misdirected efort into these. Although the average DevTools
participant only tried around two properties that were not
supported in Stylette, we acknowledge that this could have
afected results in Task 1.

• We relied on a dataset of 300 requests to train and evaluate
our computational pipeline. While participants were gen-
erally satisfed with the pipeline’s predictions, evaluating
on a larger dataset would provide a better understanding
of its performance. Also, while P-tuning has demonstrated
high performance with even smaller datasets (N=32) [42], a
larger dataset could increase our pipeline’s performance and
robustness.

• As we focused on a controlled evaluation of Stylette, it is
still unclear how users would modify websites in the real-
world. Future work could conduct a deployment study to
understand how Stylette integrates into users’ actual web
experiences.

9 CONCLUSION
This paper presents Stylette, a novel system that allows users to
describe a styling request in natural language to change the visual
design of websites. By combining a GPT-Neo-based model and a
convolutional VAE model, our computational pipeline processes
the user’s request and the component they clicked. The processed
outputs are then combined to generate a palette of CSS properties
and values that the user can experiment and iterate on to reach their
desired style. A user-study revealed that Stylette could help users
familiarize themselves with CSS properties in a shorter amount of
time and with greater breadth. Insights from the study regarding
the benefts and limitations of natural language support can guide
the design of future work on novice support systems.

ACKNOWLEDGMENTS
This work was supported by Institute of Information & communi-
cations Technology Planning & Evaluation(IITP) grant funded by
the Korea government (MSIT) (No.2021-0-01347,Video Interaction
Technologies Using Object-Oriented Video Modeling). This work
was partly supported by KAIST-NAVER Hypercreative AI Center.
The authors would like to thank the members of KIXLAB for their
thoughtful comments and thank our participants for their positive
engagement during the studies. Finally, we thank the reviewers as
their feedback helped us improve the paper.

REFERENCES
[1] Eytan Adar, Mira Dontcheva, and Gierad Laput. 2014. CommandSpace: Modeling

the Relationships between Tasks, Descriptions and Features. In Proceedings of
the 27th Annual ACM Symposium on User Interface Software and Technology
(Honolulu, Hawaii, USA) (UIST ’14). Association for Computing Machinery, New
York, NY, USA, 167–176. https://doi.org/10.1145/2642918.2647395

[2] Miltos Allamanis, Daniel Tarlow, Andrew Gordon, and Yi Wei. 2015. Bimodal
Modelling of Source Code and Natural Language. In Proceedings of the 32nd
International Conference on Machine Learning (Proceedings of Machine Learning
Research, Vol. 37), Francis Bach and David Blei (Eds.). PMLR, Lille, France, 2123–
2132. https://proceedings.mlr.press/v37/allamanis15.html

[3] Saleema Amershi, Dan Weld, Mihaela Vorvoreanu, Adam Fourney, Besmira
Nushi, Penny Collisson, Jina Suh, Shamsi Iqbal, Paul N. Bennett, Kori Inkpen,
Jaime Teevan, Ruth Kikin-Gil, and Eric Horvitz. 2019. Guidelines for Human-
AI Interaction. In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems. Association for Computing Machinery, New York, NY, USA,
1–13. https://doi.org/10.1145/3290605.3300233

[4] The Webby Awards. 2021. Top Websites and Mobile Sites | The Webby Awards.
Retrieved August 29, 2021 from https://winners.webbyawards.com/winners/
websites-and-mobile-sites

[5] Jan Biniok. 2021. Tampermonkey. Retrieved September 5, 2021 from https:
//www.tampermonkey.net/

[6] Sid Black, Leo Gao, Phil Wang, Connor Leahy, and Stella Biderman. 2021. GPT-
Neo: Large Scale Autoregressive Language Modeling with Mesh-Tensorfow. https:
//doi.org/10.5281/zenodo.5297715 If you use this software, please cite it using
these metadata.

[7] Michael Bolin, Matthew Webber, Philip Rha, Tom Wilson, and Robert C. Miller.
2005. Automation and Customization of Rendered Web Pages. In Proceedings
of the 18th Annual ACM Symposium on User Interface Software and Technology
(Seattle, WA, USA) (UIST ’05). Association for Computing Machinery, New York,
NY, USA, 163–172. https://doi.org/10.1145/1095034.1095062

[8] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jefrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
arXiv:2005.14165 [cs.CL]

[9] Kerry Shih-Ping Chang and Brad A. Myers. 2012. WebCrystal: Understanding and
Reusing Examples in Web Authoring. Association for Computing Machinery, New
York, NY, USA, 3205–3214. https://doi.org/10.1145/2207676.2208740

[10] Siddhartha Chaudhuri, Evangelos Kalogerakis, Stephen Giguere, and Thomas
Funkhouser. 2013. Attribit: Content Creation with Semantic Attributes. In Pro-
ceedings of the 26th Annual ACM Symposium on User Interface Software and
Technology (St. Andrews, Scotland, United Kingdom) (UIST ’13). Association for
Computing Machinery, New York, NY, USA, 193–202. https://doi.org/10.1145/
2501988.2502008

[11] Chunyang Chen, Sidong Feng, Zhenchang Xing, Linda Liu, Shengdong Zhao,
and Jinshui Wang. 2019. Gallery D.C.: Design Search and Knowledge Discovery
through Auto-Created GUI Component Gallery. Proc. ACM Hum.-Comput. Inter-
act. 3, CSCW, Article 180 (Nov. 2019), 22 pages. https://doi.org/10.1145/3359282

[12] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-
tanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei,
Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large
Language Models Trained on Code. arXiv:2107.03374 [cs.LG]

[13] Yan Chen, Sang Won Lee, and Steve Oney. 2021. CoCapture: Efectively Commu-
nicating UI Behaviors on Existing Websites by Demonstrating and Remixing. In
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems
(Yokohama, Japan) (CHI ’21). Association for Computing Machinery, New York,
NY, USA, Article 416, 14 pages. https://doi.org/10.1145/3411764.3445573

[14] Eric Corbett and Astrid Weber. 2016. What Can I Say? Addressing User Experience
Challenges of a Mobile Voice User Interface for Accessibility. In Proceedings of
the 18th International Conference on Human-Computer Interaction with Mobile
Devices and Services (Florence, Italy) (MobileHCI ’16). Association for Computing
Machinery, New York, NY, USA, 72–82. https://doi.org/10.1145/2935334.2935386

[15] DomCop. 2021. What is Open PageRank? Retrieved August 29, 2021 from
https://www.domcop.com/openpagerank/what-is-openpagerank

[16] Michael J Fitzgerald et al. 2008. CopyStyler: Web design by example. Ph.D.
Dissertation. Massachusetts Institute of Technology.

[17] James Fogarty, Desney Tan, Ashish Kapoor, and Simon Winder. 2008. CueFlik:
Interactive Concept Learning in Image Search. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (Florence, Italy) (CHI ’08).
Association for Computing Machinery, New York, NY, USA, 29–38. https://doi.
org/10.1145/1357054.1357061

[18] Adam Fourney, Richard Mann, and Michael Terry. 2011. Query-Feature Graphs:
Bridging User Vocabulary and System Functionality. In Proceedings of the 24th
Annual ACM Symposium on User Interface Software and Technology (Santa Barbara,
California, USA) (UIST ’11). Association for Computing Machinery, New York,
NY, USA, 207–216. https://doi.org/10.1145/2047196.2047224

[19] C. Ailie Fraser, Mira Dontcheva, Holger Winnemöller, Sheryl Ehrlich, and Scott
Klemmer. 2016. DiscoverySpace: Suggesting Actions in Complex Software. In
Proceedings of the 2016 ACM Conference on Designing Interactive Systems (Brisbane,
QLD, Australia) (DIS ’16). Association for Computing Machinery, New York, NY,
USA, 1221–1232. https://doi.org/10.1145/2901790.2901849

[20] C. Ailie Fraser, Julia M. Markel, N. James Basa, Mira Dontcheva, and Scott Klem-
mer. 2020. ReMap: Lowering the Barrier to Help-Seeking with Multimodal Search.

https://doi.org/10.1145/2642918.2647395
https://proceedings.mlr.press/v37/allamanis15.html
https://doi.org/10.1145/3290605.3300233
https://winners.webbyawards.com/winners/websites-and-mobile-sites
https://winners.webbyawards.com/winners/websites-and-mobile-sites
https://www.tampermonkey.net/
https://www.tampermonkey.net/
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.1145/1095034.1095062
https://arxiv.org/abs/2005.14165
https://doi.org/10.1145/2207676.2208740
https://doi.org/10.1145/2501988.2502008
https://doi.org/10.1145/2501988.2502008
https://doi.org/10.1145/3359282
https://arxiv.org/abs/2107.03374
https://doi.org/10.1145/3411764.3445573
https://doi.org/10.1145/2935334.2935386
https://www.domcop.com/openpagerank/what-is-openpagerank
https://doi.org/10.1145/1357054.1357061
https://doi.org/10.1145/1357054.1357061
https://doi.org/10.1145/2047196.2047224
https://doi.org/10.1145/2901790.2901849

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Tae Soo Kim, DaEun Choi, Yoonseo Choi, and Juho Kim

In Proceedings of the 33rd Annual ACM Symposium on User Interface Software and
Technology (Virtual Event, USA) (UIST ’20). Association for Computing Machin-
ery, New York, NY, USA, 979–986. https://doi.org/10.1145/3379337.3415592

[21] C. Ailie Fraser, Tricia J. Ngoon, Mira Dontcheva, and Scott Klemmer. 2019.
RePlay: Contextually Presenting Learning Videos Across Software Applica-
tions. In Proceedings of the 2019 CHI Conference on Human Factors in Comput-
ing Systems. Association for Computing Machinery, New York, NY, USA, 1–13.
https://doi.org/10.1145/3290605.3300527

[22] G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T. Dumais. 1987. The Vocabulary
Problem in Human-System Communication. Commun. ACM 30, 11 (Nov. 1987),
964–971. https://doi.org/10.1145/32206.32212

[23] Anushay Furqan, Chelsea Myers, and Jichen Zhu. 2017. Learnability through
Adaptive Discovery Tools in Voice User Interfaces. In Proceedings of the 2017 CHI
Conference Extended Abstracts on Human Factors in Computing Systems (Denver,
Colorado, USA) (CHI EA ’17). Association for Computing Machinery, New York,
NY, USA, 1617–1623. https://doi.org/10.1145/3027063.3053166

[24] Tong Gao, Mira Dontcheva, Eytan Adar, Zhicheng Liu, and Karrie G. Kara-
halios. 2015. DataTone: Managing Ambiguity in Natural Language Interfaces
for Data Visualization. In Proceedings of the 28th Annual ACM Symposium
on User Interface Software & Technology (Charlotte, NC, USA) (UIST ’15). As-
sociation for Computing Machinery, New York, NY, USA, 489–500. https:
//doi.org/10.1145/2807442.2807478

[25] Greasemonkey. 2021. Greasespot. Retrieved September 5, 2021 from https:
//www.greasespot.net/

[26] Sandra G Hart and Lowell E Staveland. 1988. Development of NASA-TLX (Task
Load Index): Results of empirical and theoretical research. In Advances in psy-
chology, Vol. 52. Elsevier, 139–183.

[27] Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora,
Ethan Guo, Collin Burns, Samir Puranik, Horace He, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring Coding Challenge Competence With APPS.
arXiv:2105.09938 [cs.SE]

[28] Jane Im, Sonali Tandon, Eshwar Chandrasekharan, Taylor Denby, and Eric Gilbert.
2020. Synthesized Social Signals: Computationally-Derived Social Signals from
Account Histories. Association for Computing Machinery, New York, NY, USA,
1–12. https://doi.org/10.1145/3313831.3376383

[29] Youwen Kang, Zhida Sun, Sitong Wang, Zeyu Huang, Ziming Wu, and Xiao-
juan Ma. 2021. MetaMap: Supporting Visual Metaphor Ideation through Multi-
Dimensional Example-Based Exploration. In Proceedings of the 2021 CHI Con-
ference on Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21).
Association for Computing Machinery, New York, NY, USA, Article 427, 15 pages.
https://doi.org/10.1145/3411764.3445325

[30] Diederik P Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes.
arXiv:1312.6114 [stat.ML]

[31] Amy J. Ko, Brad A. Myers, and Htet Htet Aung. 2004. Six Learning Barriers in
End-User Programming Systems. In 2004 IEEE Symposium on Visual Languages -
Human Centric Computing. IEEE, 199–206. https://doi.org/10.1109/VLHCC.2004.
47

[32] Ranjitha Kumar, Arvind Satyanarayan, Cesar Torres, Maxine Lim, Salman Ahmad,
Scott R. Klemmer, and Jerry O. Talton. 2013. Webzeitgeist: Design Mining the
Web. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. Association for Computing Machinery, New York, NY, USA, 3083–3092.
https://doi.org/10.1145/2470654.2466420

[33] Ranjitha Kumar, Jerry O. Talton, Salman Ahmad, and Scott R. Klemmer. 2011.
Bricolage: Example-Based Retargeting for Web Design. Association for Computing
Machinery, New York, NY, USA, 2197–2206. https://doi.org/10.1145/1978942.
1979262

[34] Google Chrome Labs. 2018. VisBug. Retrieved August 26, 2021 from https:
//visbug.web.app/

[35] Michelle S. Lam, Grace B. Young, Catherine Y. Xu, Ranjay Krishna, and Michael S.
Bernstein. 2019. Eevee: Transforming Images by Bridging High-Level Goals and
Low-Level Edit Operations. In Extended Abstracts of the 2019 CHI Conference
on Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI EA ’19).
Association for Computing Machinery, New York, NY, USA, 1–6. https://doi.
org/10.1145/3290607.3312929

[36] Gierad P. Laput, Mira Dontcheva, Gregg Wilensky, Walter Chang, Aseem Agar-
wala, Jason Linder, and Eytan Adar. 2013. PixelTone: A Multimodal Interface
for Image Editing. Association for Computing Machinery, New York, NY, USA,
2185–2194. https://doi.org/10.1145/2470654.2481301

[37] Brian Lee, Savil Srivastava, Ranjitha Kumar, Ronen Brafman, and Scott R. Klem-
mer. 2010. Designing with Interactive Example Galleries. Association for Comput-
ing Machinery, New York, NY, USA, 2257–2266. https://doi.org/10.1145/1753326.
1753667

[38] Toby Jia-Jun Li, Marissa Radensky, Justin Jia, Kirielle Singarajah, Tom M. Mitchell,
and Brad A. Myers. 2019. PUMICE: A Multi-Modal Agent That Learns Concepts
and Conditionals from Natural Language and Demonstrations. In Proceedings
of the 32nd Annual ACM Symposium on User Interface Software and Technology
(New Orleans, LA, USA) (UIST ’19). Association for Computing Machinery, New

York, NY, USA, 577–589. https://doi.org/10.1145/3332165.3347899
[39] Sarah Lim, Joshua Hibschman, Haoqi Zhang, and Eleanor O’Rourke. 2018. Ply: A

Visual Web Inspector for Learning from Professional Webpages. In Proceedings
of the 31st Annual ACM Symposium on User Interface Software and Technology
(Berlin, Germany) (UIST ’18). Association for Computing Machinery, New York,
NY, USA, 991–1002. https://doi.org/10.1145/3242587.3242660

[40] Xi Victoria Lin, Chenglong Wang, Luke Zettlemoyer, and Michael D. Ernst. 2018.
NL2Bash: A Corpus and Semantic Parser for Natural Language Interface to the
Linux Operating System. In Proceedings of the Eleventh International Conference on
Language Resources and Evaluation (LREC 2018). European Language Resources
Association (ELRA), Miyazaki, Japan. https://aclanthology.org/L18-1491

[41] Wang Ling, Phil Blunsom, Edward Grefenstette, Karl Moritz Hermann, Tomáš
Kočiský, Fumin Wang, and Andrew Senior. 2016. Latent Predictor Networks for
Code Generation. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). Association for Computational
Linguistics, Berlin, Germany, 599–609. https://doi.org/10.18653/v1/P16-1057

[42] Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and
Jie Tang. 2021. GPT Understands, Too. arXiv:2103.10385 [cs.CL]

[43] Edward Ma. 2019. NLP Augmentation. https://github.com/makcedward/nlpaug.
[44] Mehdi Manshadi, Daniel Gildea, and James Allen. 2013. Integrating Programming

by Example and Natural Language Programming. https://www.aaai.org/ocs/
index.php/AAAI/AAAI13/paper/view/6477/7230

[45] Rada Mihalcea, Hugo Liu, and Henry Lieberman. 2006. NLP (Natural Language
Processing) for NLP (Natural Language Programming). In Computational Lin-
guistics and Intelligent Text Processing, Alexander Gelbukh (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 319–330.

[46] Michael Nebeling and Anind K. Dey. 2016. XDBrowser: User-Defned Cross-Device
Web Page Designs. Association for Computing Machinery, New York, NY, USA,
5494–5505. https://doi.org/10.1145/2858036.2858048

[47] Michael Nebeling, Maximilian Speicher, and Moira C. Norrie. 2013. CrowdAdapt:
Enabling Crowdsourced Web Page Adaptation for Individual Viewing Conditions
and Preferences. In Proceedings of the 5th ACM SIGCHI Symposium on Engineering
Interactive Computing Systems (London, United Kingdom) (EICS ’13). Association
for Computing Machinery, New York, NY, USA, 23–32. https://doi.org/10.1145/
2494603.2480304

[48] Jonas Oppenlaender, Thanassis Tiropanis, and Simo Hosio. 2020. CrowdUI:
Supporting Web Design with the Crowd. Proc. ACM Hum.-Comput. Interact. 4,
EICS, Article 76 (June 2020), 28 pages. https://doi.org/10.1145/3394978

[49] Thomas H. Park, Ankur Saxena, Swathi Jagannath, Susan Wiedenbeck, and
Andrea Forte. 2013. OpenHTML: Designing a Transitional Web Editor for Novices.
In CHI ’13 Extended Abstracts on Human Factors in Computing Systems (Paris,
France) (CHI EA ’13). Association for Computing Machinery, New York, NY, USA,
1863–1868. https://doi.org/10.1145/2468356.2468690

[50] Chris Quirk, Raymond Mooney, and Michel Galley. 2015. Language to Code:
Learning Semantic Parsers for If-This-Then-That Recipes. In Proceedings of the
53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing (Volume 1:
Long Papers). Association for Computational Linguistics, Beijing, China, 878–888.
https://doi.org/10.3115/v1/P15-1085

[51] Daniel Ritchie, Ankita Arvind Kejriwal, and Scott R. Klemmer. 2011. D.Tour:
Style-Based Exploration of Design Example Galleries. In Proceedings of the 24th
Annual ACM Symposium on User Interface Software and Technology (Santa Barbara,
California, USA) (UIST ’11). Association for Computing Machinery, New York,
NY, USA, 165–174. https://doi.org/10.1145/2047196.2047216

[52] Xin Rong, Shiyan Yan, Stephen Oney, Mira Dontcheva, and Eytan Adar. 2016.
CodeMend: Assisting Interactive Programming with Bimodal Embedding. In Pro-
ceedings of the 29th Annual Symposium on User Interface Software and Technology
(Tokyo, Japan) (UIST ’16). Association for Computing Machinery, New York, NY,
USA, 247–258. https://doi.org/10.1145/2984511.2984544

[53] Viktor Schlegel, Benedikt Lang, Siegfried Handschuh, and André Freitas. 2019.
Vajra: Step-by-Step Programming with Natural Language. In Proceedings of the
24th International Conference on Intelligent User Interfaces (Marina del Ray, Cal-
ifornia) (IUI ’19). Association for Computing Machinery, New York, NY, USA,
30–39. https://doi.org/10.1145/3301275.3302267

[54] Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Improving Neu-
ral Machine Translation Models with Monolingual Data. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers). Association for Computational Linguistics, Berlin, Germany, 86–96.
https://doi.org/10.18653/v1/P16-1009

[55] Hyungyu Shin, Eun-Young Ko, Joseph Jay Williams, and Juho Kim. 2018. Under-
standing the Efect of In-Video Prompting on Learners and Instructors. Association
for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/
3173574.3173893

[56] Arjun Srinivasan, Mira Dontcheva, Eytan Adar, and Seth Walker. 2019. Discov-
ering Natural Language Commands in Multimodal Interfaces. In Proceedings of
the 24th International Conference on Intelligent User Interfaces (Marina del Ray,
California) (IUI ’19). Association for Computing Machinery, New York, NY, USA,
661–672. https://doi.org/10.1145/3301275.3302292

https://doi.org/10.1145/3379337.3415592
https://doi.org/10.1145/3290605.3300527
https://doi.org/10.1145/32206.32212
https://doi.org/10.1145/3027063.3053166
https://doi.org/10.1145/2807442.2807478
https://doi.org/10.1145/2807442.2807478
https://www.greasespot.net/
https://www.greasespot.net/
https://arxiv.org/abs/2105.09938
https://doi.org/10.1145/3313831.3376383
https://doi.org/10.1145/3411764.3445325
https://arxiv.org/abs/1312.6114
https://doi.org/10.1109/VLHCC.2004.47
https://doi.org/10.1109/VLHCC.2004.47
https://doi.org/10.1145/2470654.2466420
https://doi.org/10.1145/1978942.1979262
https://doi.org/10.1145/1978942.1979262
https://visbug.web.app/
https://visbug.web.app/
https://doi.org/10.1145/3290607.3312929
https://doi.org/10.1145/3290607.3312929
https://doi.org/10.1145/2470654.2481301
https://doi.org/10.1145/1753326.1753667
https://doi.org/10.1145/1753326.1753667
https://doi.org/10.1145/3332165.3347899
https://doi.org/10.1145/3242587.3242660
https://aclanthology.org/L18-1491
https://doi.org/10.18653/v1/P16-1057
https://arxiv.org/abs/2103.10385
https://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6477/7230
https://www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/view/6477/7230
https://doi.org/10.1145/2858036.2858048
https://doi.org/10.1145/2494603.2480304
https://doi.org/10.1145/2494603.2480304
https://doi.org/10.1145/3394978
https://doi.org/10.1145/2468356.2468690
https://doi.org/10.3115/v1/P15-1085
https://doi.org/10.1145/2047196.2047216
https://doi.org/10.1145/2984511.2984544
https://doi.org/10.1145/3301275.3302267
https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.1145/3173574.3173893
https://doi.org/10.1145/3173574.3173893
https://doi.org/10.1145/3301275.3302292

Stylete: Styling the Web with Natural Language

[57] Amanda Swearngin, Amy J. Ko, and James Fogarty. 2017. Genie: Input Retargeting
on the Web through Command Reverse Engineering. Association for Computing
Machinery, New York, NY, USA, 4703–4714. https://doi.org/10.1145/3025453.
3025506

[58] Kesler Tanner, Naomi Johnson, and James A. Landay. 2019. Poirot: A Web Inspector
for Designers. Association for Computing Machinery, New York, NY, USA, 1–12.
https://doi.org/10.1145/3290605.3300758

[59] Sebastian Weigelt, Vanessa Steurer, Tobias Hey, and Walter F. Tichy. 2020. Pro-
gramming in Natural Language with fuSE: Synthesizing Methods from Spoken
Utterances Using Deep Natural Language Understanding. In Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics. Association
for Computational Linguistics, Online, 4280–4295. https://doi.org/10.18653/v1/
2020.acl-main.395

[60] Haijun Xia. 2020. Crosspower: Bridging Graphics and Linguistics. In Proceedings
of the 33rd Annual ACM Symposium on User Interface Software and Technology
(Virtual Event, USA) (UIST ’20). Association for Computing Machinery, New York,
NY, USA, 722–734. https://doi.org/10.1145/3379337.3415845

[61] Pengcheng Yin and Graham Neubig. 2017. A Syntactic Neural Model for General-
Purpose Code Generation. In The 55th Annual Meeting of the Association for
Computational Linguistics (ACL). Vancouver, Canada. https://arxiv.org/abs/1704.
01696

[62] Wojciech Zaremba, Greg Brockman, and OpenAI. 2021. OpenAI Codex. Retrieved
August 28, 2021 from https://openai.com/blog/openai-codex/

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

[63] Xiong Zhang and Philip J. Guo. 2018. Fusion: Opportunistic Web Prototyping
with UI Mashups. In Proceedings of the 31st Annual ACM Symposium on User
Interface Software and Technology (Berlin, Germany) (UIST ’18). Association for
Computing Machinery, New York, NY, USA, 951–962. https://doi.org/10.1145/
3242587.3242632

[64] Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. 2015. Character-level Convolu-
tional Networks for Text Classifcation. In NIPS. 649–657. http://papers.nips.cc/
paper/5782-character-level-convolutional-networks-for-text-classifcation

[65] Nanxuan Zhao, Nam Wook Kim, Laura Mariah Herman, Hanspeter Pfster, Ryn-
son W.H. Lau, Jose Echevarria, and Zoya Bylinskii. 2020. ICONATE: Automatic
Compound Icon Generation and Ideation. Association for Computing Machinery,
New York, NY, USA, 1–13. https://doi.org/10.1145/3313831.3376618

[66] Tony Z. Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. 2021.
Calibrate Before Use: Improving Few-Shot Performance of Language Models.
arXiv:2102.09690 [cs.CL]

[67] Mingyuan Zhong, Gang Li, and Yang Li. 2021. Spacewalker: Rapid UI Design Ex-
ploration Using Lightweight Markup Enhancement and Crowd Genetic Program-
ming. In Proceedings of the 2021 CHI Conference on Human Factors in Computing
Systems (Yokohama, Japan) (CHI ’21). Association for Computing Machinery, New
York, NY, USA, Article 315, 11 pages. https://doi.org/10.1145/3411764.3445326

[68] Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2SQL: Generat-
ing Structured Queries from Natural Language using Reinforcement Learning.
arXiv:1709.00103 [cs.CL]

https://doi.org/10.1145/3025453.3025506
https://doi.org/10.1145/3025453.3025506
https://doi.org/10.1145/3290605.3300758
https://doi.org/10.18653/v1/2020.acl-main.395
https://doi.org/10.18653/v1/2020.acl-main.395
https://doi.org/10.1145/3379337.3415845
https://arxiv.org/abs/1704.01696
https://arxiv.org/abs/1704.01696
https://openai.com/blog/openai-codex/
https://doi.org/10.1145/3242587.3242632
https://doi.org/10.1145/3242587.3242632
http://papers.nips.cc/paper/5782-character-level-convolutional-networks-for-text-classification
http://papers.nips.cc/paper/5782-character-level-convolutional-networks-for-text-classification
https://doi.org/10.1145/3313831.3376618
https://arxiv.org/abs/2102.09690
https://doi.org/10.1145/3411764.3445326
https://arxiv.org/abs/1709.00103

	Abstract
	1 Introduction
	2 Related Work
	2.1 Web Design and Manipulation Tools
	2.2 Designing with Natural Language
	2.3 Coding with Natural Language

	3 Formative Study
	3.1 Participants
	3.2 Study Procedure
	3.3 Requests were Vague and Abstract
	3.4 Assumptions Over Questions
	3.5 Natural Language is Not a Panacea

	4 Stylette
	4.1 User Scenario
	4.2 Pipeline
	4.3 Implementation

	5 Evaluation
	5.1 Participants and Apparatus
	5.2 Study Procedure
	5.3 Measures

	6 Results
	6.1 Task 1: Well-Defined Task
	6.2 Task 2: Open-Ended Task
	6.3 Self-Confidence Across Tasks

	7 Discussion
	7.1 Stylette as a Web Designing Springboard
	7.2 Leveraging Large Language Models to Support Software Use
	7.3 Natural Language Coding as a Learning Tool
	7.4 Beyond CSS

	8 Limitations
	9 Conclusion
	Acknowledgments
	References

