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Figure 1: Stylete enables end-users to change the style of websites they visit by clicking on components and saying a desired 
change in natural language. A computational pipeline (1) transcribes the request and predicts plausible CSS properties with 
a large language model, and (2) encodes the clicked component using a convolutional neural network to identify and extract 
styling values from similar components in our large-scale dataset. These outputs are then presented in a palete that the user 
can use to iteratively change the component’s style. 

ABSTRACT 
End-users can potentially style and customize websites by editing 
them through in-browser developer tools. Unfortunately, end-users 
lack the knowledge needed to translate high-level styling goals 
into low-level code edits. We present Stylette, a browser extension 
that enables users to change the style of websites by expressing 
goals in natural language. By interpreting the user’s goal with a 
large language model and extracting suggestions from our dataset 
of 1.7 million web components, Stylette generates a palette of CSS 
properties and values that the user can apply to reach their goal. A 
comparative study (N=40) showed that Stylette lowered the learning 
curve, helping participants perform styling changes 35% faster than 
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those using developer tools. By presenting various alternatives for 
a single goal, the tool helped participants familiarize themselves 
with CSS through experimentation. Beyond CSS, our work can 
be expanded to help novices quickly grasp complex software or 
programming languages. 
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1 INTRODUCTION 
The web is inherently malleable. Websites are rendered out of 
documents—HTML, CSS, and JavaScript code—which are trans-
mitted to the user’s browser and, thus, can be readily accessed 
and modifed on the user side. This malleability allows users to 
improve their experiences on the web by personalizing pages [46], 
self-repairing existing issues [47], or even enhancing pages with 
additional features [28, 57, 63]. In addition, by sculpting others’ 
creations, users can create their own new web pages [9, 39, 51]. 
The appeal of this malleability has led to the Greasemonkey [25] 
and Tampermonkey [5] plugins, which manage user scripts for 
these types of modifcations, to collectively amass more than 10 
million users. However, although such plugins allow users to install 
modifcations designed by others, designing their own personal 
modifcations may be out of reach for general end-users. To edit a 
web page’s visual design or style, for example, users must be able 
to edit the underlying HTML and CSS fles, but this requires an 
understanding of the code’s language and structure. Thus, without 
the necessary expertise, most users are unable to mold websites 
into their own design. 

To make the web more malleable for everyone, various end-user 
programming tools [34, 47, 58] have been designed to allow users 
with no expertise to directly manipulate a web page’s visual design— 
abstracting away the underlying code. While these approaches 
allow users to focus on the visual representation, they require 
the user to manually perform several low-level operations (e.g., 
scrubbing on a color picker, typing in values) which can be tedious 
and efortful. Additionally, users must be able to decompose their 
high-level goals into the low-level operations supported by these 
tools—a task that inexperienced users frequently struggle with 
in other design-related tasks [1, 36]. Thus, to be able to easily 
transform a web page’s design according to their goals, users require 
another level of abstraction. 

Natural language interfaces allow users to perform complex, 
compound operations by simply saying or writing their intentions. 
The promise of this form of interaction has led to the development of 
various general-purpose voice assistants—e.g., Apple’s Siri, Google 
Assistant, or Amazon’s Alexa. In addition, task-specifc natural 
language interfaces have also been designed to help inexperienced 
users perform complex tasks such as photo editing [36] or data 
visualization [24]. Similarly, if users could simply say what change 
they want to see, they could easily manipulate a web page without 
thinking about the underlying code or the low-level operations. 

To investigate what language users would use when changing 
the style of a web page and how they would expect such changes 
to be presented, we conducted novice-expert sessions (N=8). In 
these sessions, novices used their voice to request changes on a 
web page’s visual design and the expert, a developer, would then 
directly perform the changes using an in-browser developer tool. 
Our fndings revealed that novices were frequently vague in their 
requests: omitting specifc details (e.g., what color for the back-
ground), or using abstract terms that could not be clearly mapped 
to specifc changes (e.g., “modern” or “vivid”). In addition to being 
vague due to inexperience, novices were also purposefully am-
biguous as they wanted to explore the design space by seeing the 

expert’s changes. Thus, novices expected the expert to make as-
sumptions and provide a set of alternative changes that they could 
test and further iterate on. 

Based on these fndings, we designed Stylette, a natural language-
based interface that assumes the user’s intentions to provide a 
palette of web design properties and values. Stylette allows the user 
to modify a web component by clicking on it, and then saying or 
typing their desired change (e.g., “increase the size” or “make this 
cleaner”). Based on the user’s input, the system provides a toolbox 
that contains (1) a set of CSS properties that could be changed to 
satisfy the request, and, (2) for each property, a set of alternative 
values to explore and sample. The user can then simply change the 
component by applying the diferent property values found in the 
toolbox. To generate these toolboxes, we designed a computational 
pipeline that processes and combines the two input modalities, nat-
ural language and clicks. Specifcally, a GPT-Neo-based architecture 
predicts suitable CSS properties from the natural language request, 
and a variational autoencoder (VAE) model encodes the clicked-on 
component to extract the values of similar components from our 
dataset of 1.7 million components. 

To evaluate Stylette, we conducted a between-subjects study 
(N=40) in which participants performed a design recreation task 
and an open-ended design task with either our system or Dev-
Tools, the Chrome Browser’s developer tool. Our study revealed 
that Stylette helped participants perform styling changes 35% faster 
and with a higher success rate—80% of Stylette participants suc-
cessfully recreated a design within the allowed time while only 35% 
succeeded with DevTools. Additionally, our system led participants 
to experiment with and familiarize themselves with a more diverse 
set of properties. As participants acquired more knowledge with 
Stylette, however, natural language interaction limited their pro-
ductivity as they could not apply this knowledge to directly make 
changes themselves. These insights suggest a need for a hybrid 
approach: natural language interaction to initially support quick 
familiarization with a tool, and then gradually phasing in more 
direct interaction methods. 

This paper presents the following contributions: 

(1) Stylette: A novel system that allows users to change the 
design of websites by using natural language to express their 
goal, and then iterating with the set of alternatives presented 
by the system. 

(2) A computational pipeline that combines NLP and CV tech-
niques to process a natural language request and a web 
component into a set of plausible CSS property and value 
changes. 

(3) Findings from a between-subjects study that reveals how 
natural language support can help novices familiarize with 
and perform a previously unknown design/coding task. 

2 RELATED WORK 
We aim to enable end-users to modify the design of any website 
by simply saying what change they need. To this end, we review 
related work in (1) web manipulation tools, and (2) designing and 
(3) coding with natural language. 
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2.1 Web Design and Manipulation Tools 
As web interfaces are visual representations of HTML and CSS 
code, various tools have been designed to facilitate the process of 
modifying the code to produce desired visual changes. For exam-
ple, openHTML [49] provides an educational environment which 
shows HTML code, CSS code, and a website preview side-by-side. 
Other systems [9, 39, 51] allow users to inspect the code behind 
pages to understand the connection between code and visuals. Be-
yond inspection, Chickenfoot [7] allows end-users to write simple 
scripts to modify components, and, more recently, Spacewalker [67] 
leverages genetic algorithms and crowdsourcing to generate design 
alternatives. These tools, however, were designed with developers 
or learners in mind, and require the user to understand and inter-
act with the code—a task impractical for end-users with limited 
knowledge. 

To make manipulation more practical, a separate line of re-
search allows users to modify a website’s visuals by directly in-
teracting with the visuals. CrowdAdapt [47], CrowdUI [48], and 
XDBrowser [46] allow users to modify the positioning of web com-
ponents through direct manipulation (e.g., drag-and-drop). Aimed 
at designers who have limited coding knowledge, Poirot [58] and 
CoCapture [13] provide designer-specifc widgets to support design 
editing and animation authoring, respectively, directly on websites. 
These tools, however, still require the user to expend time and efort 
deciding between and performing various possible editing opera-
tions. Example-based systems [16, 33, 37] aim to reduce this mental 
and manual efort by allowing users to copy the styles of other 
websites. Our work aims to simplify the process further: modifying 
a website’s design by simply describing a change and selecting from 
suggested alternatives—without deciding on operations or looking 
for examples. 

2.2 Designing with Natural Language 
Novices struggle to translate high-level design goals into tool op-
erations due to the vocabulary problem [22]—the language used 
by the user and the tool do not match. Thus, empowering users to 
be able to design by simply stating their high-level goals has been 
a long-standing goal for HCI researchers. Query-Feature Graphs 
(QF-Graphs) [18] and CommandSpace [1] jointly modeled natural 
language descriptions with feature names in design applications 
(e.g., GIMP and Photoshop) to help users identify features based on 
their needs. Other systems support the use of natural language con-
cepts to search for design references or components—images [17], 
graphic designs [29], or 3D models [10]. Beyond searching, several 
systems generate design artifacts (e.g., images [35] or icons [65]) 
based on the semantic meaning of words. Leveraging whole expres-
sions instead of only words, Crosspower [60] and PixelTone [36] 
decompose expressions into operations for animation authoring 
and image editing, respectively. Our work expands this line of re-
search by interpreting vague natural language expressions, which 
cannot be clearly decomposed, to support design editing in the 
context of web pages. 

2.3 Coding with Natural Language 
A crucial step in programming is coding—writing instructions in 
the form of machine-readable syntax. To lower the barrier to coding, 

substantial efort has been dedicated to bridge natural language and 
complex programming languages [45]. For instance, researchers 
have used semantic parsers [50] and bimodal models [2] to map nat-
ural language to code. Such techniques enabled systems that allow 
novice coders to quickly search for code snippets [52, 53], and non-
coders to code small programs by demonstrating and describing 
tasks [38, 44]. Beyond mapping, a line of work has also developed 
techniques that take natural language as input and generate code— 
e.g., Python [41, 61], Bash commands [40], SQL queries [68], or 
API calls [59]. Recent advancements in natural language processing 
(NLP), and especially in large language models (e.g., GPT-3 [8]), 
have led to performance boosts in natural language-based code 
generation [27]. OpenAI’s Codex [12], a GPT-3-based model, is able 
to generate basic games from a few natural language sentences [62]. 
In this same line of research, our work leverages a large language 
model to facilitate editing of CSS code and provides insight into 
how natural language interaction can scafold novices’ learning of 
coding languages. 

3 FORMATIVE STUDY 
We conducted a formative study to investigate how novices would 
change the design of websites and how they would naturally request 
such changes. In this study, participants freely browsed through 
a website and requested styling changes by speaking aloud. One 
of the researchers, with several years of development experience, 
acted as an expert and made these changes on-the-go. 

3.1 Participants 
We invited 8 participants (5 female, 3 male), all of whom had no 
background in web development. Each participant sat alongside 
the expert or, if participating remotely, shared their screen through 
a video conferencing tool1. To reduce the time participants spent 
familiarizing themselves with a website and to prompt more realistic 
requests, participants chose a website they frequently visit for the 
study. Most participants chose either our university’s web portal 
or its learning management system. 

3.2 Study Procedure 
During the study, participants were asked to examine the website, 
and request any styling changes that they want or could improve 
their future experiences on the site. On their own computer, the 
expert used the Chrome Browser’s DevTools2 to directly edit the 
CSS code. The expert would then share the edits and, if participants 
were not satisfed, they could ask for further edits. After around 
30 minutes of editing, the participants were then asked a couple of 
questions about their experience. Sessions lasted a maximum of 40 
minutes and participants made 8.38 requests on average. 

3.3 Requests were Vague and Abstract 
Despite being able to concretely specify which web component they 
wanted to edit, participants struggled to concretely explain how it 
should be changed. Participants generally relied on vague phrases 
(e.g., “more readable” or “emphasize this”) or abstract terms (e.g., 
“modern”, “vivid” or “dull”) that did not immediately reveal what 
1https://zoom.us 
2https://developer.chrome.com/docs/devtools/ 

https://2https://developer.chrome.com/docs/devtools
https://1https://zoom.us
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visual aspect of the component should be changed or how. Even if 
they were specifc about which aspect to change, participants would 
also tend to be vague about the value to set for that aspect. For 
instance, a participant said “more transparent” without specifying 
how much more transparent. 

We observed that the behavior of our participants was beyond 
not knowing the names of CSS properties—like the vocabulary 
problem observed in other tasks [22]. Participants also struggled to 
specify the visual aspects of the web components even without us-
ing the actual property names. For example, a participant requested 
a text component to be highlighted but, when asked if the text 
should be bolder or colored diferently, they were unable to provide 
a defnite answer. Participants explained that their hesitation was 
either because (1) they were unsure about which aspect to change, 
or (2) they could decide on an aspect but were not confdent that it 
would “look good”. 

3.4 Assumptions Over Questions 
To concretize the participants’ vague requests, the expert asked 
questions to prompt further details. For example, when a participant 
asked to make a component “less tacky”, the expert asked about 
what made it appear “tacky”. While participants recognized how 
these questions helped them iteratively decompose their goals, they 
found this back-and-forth to be tedious. As participants were unsure 
about the details, they did not want to dedicate the mental efort 
to ponder about the details and, instead, expected the expert to 
assume the details for them. They mentioned that it would be easier 
to distinguish what they liked or disliked if the expert made these 
assumptions and presented a visual result. Additionally, instead of 
one outcome for each request, participants wanted various options 
for the same request in order to explore the design space. 

3.5 Natural Language is Not a Panacea 
For most participants, the use of voice or natural language was 
a major positive aspect about interacting with the expert. Partici-
pants mentioned how it was “comfortable” to use natural language 
to simply explain what they wanted to change. However, while 
they felt that natural language helped to get the editing process 
started, participants desired more direct control when iterating on 
edits. Specifcally, when deciding on a value for a property, they 
felt frustrated about having to test diferent values by turn-taking 
with the expert. Instead, participants wanted to be presented with 
widgets that allowed them to test alternative values by themselves. 

Based on the study insights, we derive the following design goals: 
• DG1: Interpret vague requests to present plausible changes. 
• DG2: Provide multiple alternative properties and values that 
could satisfy one request. 

• DG3: Allow users to directly iterate on the details for a 
change. 

4 STYLETTE 
Based on our design goals, we present Stylette (Fig. 2), a system that 
enables end-users to change the visual design of any website by 
simply clicking on a component and saying what change they want 
to see. The system interprets the user’s request through an NLP 
pipeline trained on vague language (DG1) to present a palette that 
consists of multiple CSS properties (DG2) that could be changed 
to satisfy the request. To iteratively edit each property, the user 
can directly adjust values and experiment with various sugges-
tions extracted from a large-scale dataset (DG2, DG3). Stylette is 
implemented as a Chrome Extension and, using a method similar 
to Tanner et al.’s [58], it saves the user’s changes in the browser’s 
memory so that they persist when the user returns to the page. 

a

b

c

Figure 2: Stylete is shown overlaid on a website. When activated, the system shows a blue border (a) over components the user 
has hovered-on or clicked. After the user selects a component and records a request, Stylette transcribes the request (b) and 
displays a palete that contains CSS properties and values. 
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4.1 User Scenario 
To illustrate how Stylette can be used, we follow Sofa, a sociol-
ogist preparing for a paper submission to CHI 2022. While Sofa 
frequently visits the conference’s website to check for submission 
details or recent news, she feels that the design can make it chal-
lenging to look for and read the contained information. As she has 
no web development experience, she decides to use Stylette to make 
styling changes to the website. 

4.1.1 Selecting a Component. In the frontpage of the CHI website, 
Sofa feels that the header text is overemphasized and prevents 
several news posts from being seen in one glance. To start editing, 
she clicks on the Stylette icon on her extension toolbar. Now, she 
can select components to edit so she clicks on the frst header in 
the page (Fig. 2a). 

4.1.2 Making a Verbal Request. With the component selected, 
Stylette overlays a transcript box on the website, prompting Sofa 
to say her request. To do so, she holds down the Ctrl key and says: 
“tone down the text” (Fig. 2b). After releasing the Ctrl key and a 
short processing period, the transcript box now displays a tran-
script of what Sofa said. In case the transcription is wrong, Sofa 
can correct it by typing directly on the box and pressing Enter 
to process the corrected transcript. In addition, a palette is now 
presented, showing three diferent CSS properties that Sofa can 
edit to satisfy her needs (Fig. 2c): she can make the text smaller 
with font-size, change it to a slimmer font-family, or apply a lighter 
color. 

4.1.3 Iterating with the palete. Under each property, the palette 
presents a list of values: the current value for the property (Fig. 3a), 
the default or original value (Fig. 3b), and a set of value suggestions 
(Fig. 3c). For properties with numerical values, like font-size, the sys-
tem also interprets whether the user wants to increase or decrease 
the current value (Fig. 3d) and provides suggestions accordingly. 
As Sofa hovers over the suggested values for font-size, Sofa can 
see how the header would look with that font-size. After fnding 
one she feels satisfed with, she clicks on it to apply that change. If 
Sofa actually wanted to increase the font-size and the system gave 
an incorrect prediction, she could click on “Decrease” next to the 
property name to switch it to “Increase” and the suggestions would 
change accordingly. If she wanted to change another property sim-
ilar to font-size, she could also click on the property name to see a 
drop-down of other properties with similar names (e.g., font-style, 
font-weight). 

After setting the font-size, Sofa also notices the color property. 
As she feels that this could also be toned down a bit, she clicks on 
the lighter black color (“#242424f”) in the suggestions. After seeing 
this change, she feels that the header’s color should be even lighter, 
so she clicks on the arrows next to that suggestion (Fig. 3e) to see 
other similar suggestions. Going through the carousel, she fnds 
a color that she likes so she clicks on it. If she is unsatisfed with 
the suggestions, she can see other diferent suggestions by clicking 
on the “+” at the bottom (Fig. 3f), or manually set her own value 
by clicking on the current value to expose manual change widgets 
(Fig. 3g). 

c

a

b

d

f

g

e

Figure 3: For each property, the palete presents the current value (a), the default or original value before any changes (b), and 
a list of suggested values (c). For numerical values, the palette presents suggested values that are either larger or smaller than 
the current value based on the system’s prediction (d). To see other similar suggestions, the user can click on the arrows next 
to a suggested value (e). To see diferent suggestions, the user can click on the “+” button (f). The user can also click on the 
current value to reveal widgets to manually set values (g): input box for numerical properties (e.g., font-size), drop-down menu 
for nominal properties (e.g., font-family), or color picker for colors. 
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4.2 Pipeline 
To support the interaction presented in the scenario, we present 
a computational pipeline that processes the two input modalities, 
voice and click, to generate the palettes (Fig. 4). For voice, the audio 
is recorded and automatically transcribed. For clicks, a screenshot 
of the component selected by the user is automatically captured. 
These inputs are then processed separately by the computational 
pipeline. 

4.2.1 Processing Natural Language. Our pipeline’s NLP module 
takes the transcribed request, and predicts relevant CSS properties 
and the direction of the change (e.g., increase, decrease, or neither). 
For this purpose, we employ the 2.7 billion parameter version of the 
GPT-Neo model [6], an open-source implementation of OpenAI’s 
GPT-3 model [8]. With a well-crafted prompt and a small num-
ber of examples, these models have been shown to achieve high 
performance on previously unseen tasks. However, hand-crafting 
prompts can be a time-consuming and very imprecise process— 
small alterations can lead to signifcant diferences in performance. 

Architecture: Instead, we implement the P-tuning tech-
nique [42] that automatically searches for a prompt with high 
performance. In this technique, prompts are composed by con-
catenating pseudo-tokens to the natural language input and train-
ing the embeddings for these pseudo-tokens. In our pipeline, we 
use 12 pseudo-tokens. For training, we template the prompt as 
[P1:4,R,P5:8,C,P9:12,D], where p1:12 are the pseudo-tokens, R is the 

natural language request, C is the CSS properties separated by com-
mas, and D is the change direction (i.e., “increase”, “decrease”, or 
“none”). During inference, we template the prompt as shown in 
Figure 4 (“Concatenate”): [P1:4,R,P5:8]. This templated prompt is 
passed as input to the model and the model’s output is controlled to 
generate at least three CSS properties—to provide multiple alterna-
tives to users (“Input” and “Generate” in Fig. 4). Then, the generated 
CSS properties and the remaining pseudo-tokens are concatenated 
to the initial prompt, and this result is passed to the model again to 
generate the change direction. 

Dataset: Another merit of the P-tuning technique is that it only 
requires a small amount of data for training. To train our pseudo-
tokens, we created a small-scale dataset consisting of 300 triplets 
of (1) vague natural language requests, (2) CSS property sets, and 
(3) change directions. As a frst step in creating this dataset, we 
requested 29 web developers to each write three hypothetical vague 
requests that a user could ask when wanting to change a website’s 
design. Then, each developer looked at the requests written by an-
other person and wrote CSS properties to change and the direction 
for the change that could satisfy each request. We removed requests 
that were too specifc (e.g., included property names), and added re-
quests from our formative study and system’s pilot studies. The CSS 
properties in this initial data are the ones supported in our system 
(Table 2). We then expanded the dataset by automatically augment-
ing the initial data with synonym/antonym replacement [43, 64], 
and/or backtranslation [54]—one of the authors checked and cor-
rected the augmentations. Finally, as performance can deteriorate 
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Figure 4: Our computational pipeline integrates a natural language processing (NLP) module (top, orange) and a computer 
vision (CV) module (bottom, blue). The diagram illustrates the pipeline at inference time—processing user’s input of natural 
language and clicks to generate a set of CSS property alternatives and value suggestions. 
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Model 
CSS Property Prediction 
Acc. Pre. Rec. F1 

Direction 
Acc. 

P-tuning 
Hand-crafted 

0.557 
0.509 

0.670 
0.623 

0.761 
0.648 

0.653 
0.585 

0.819 
0.413 

Table 1: With trained P-tuning, the GPT-Neo model achieved 
higher performance when predicting CSS properties and 
change directions, when compared to using a hand-crafted 
prompt as input. 

signifcantly due to class imbalance [66], we ensured that each CSS 
property appeared in at least 10% of the requests—the represen-
tation of CSS properties in the dataset is shown in Table 2. After 
augmentation and balancing, we fnalized our dataset of 300 triplets. 

Training: In the training process, we used 200 triplets for train-
ing and validation (80%-20% split), and reserved 100 for testing. 
The pseudo-tokens were trained on the generative loss from the 
GPT-Neo model with the Adam optimizer, until early stopping on 
the validation loss. We used an initial learning rate of 0.0001, batch 
size of 8, weight decay value of 3e-7, and gradient clipping value of 
5. When compared to the model with our best hand-crafted prompt, 
GPT-Neo with trained P-tuning achieved a higher F1-score when 
predicting CSS properties and higher accuracy when predicting 
change direction (Table 1). Additionally, the recall with P-tuning 
exceeds 75% which suggests that, for the average request, the model 
will likely return most of the properties that the user might need. 

4.2.2 Processing Web Components. As our formative study re-
vealed, users can struggle when deciding on a value for a change 
(e.g., what color for the background) and may beneft from seeing 
various alternatives. The components in other websites can be a 
rich source for these alternatives. However, as the style of a compo-
nent depends on what that component represents (e.g., the font-size 
for a header vs that for a paragraph), selecting random components 
would not lead to sensible and useful alternatives. Thus, it would 
be more benefcial to identify components in other websites that 
are similar to the one the user wants to change. Similarity could be 
measured by calculating property diferences and aggregating these 
into one measure, but, as properties difer in the scale and type of 
values, this requires the diference and aggregation calculations to 
be carefully formulated. 

Architecture: As an alternative, we leverage a variational au-
toencoder (VAE) model [30] (“Variational Autoencoder” in Fig. 4) to 
automatically learn a concise representation of the visual features 
of components. In our pipeline, we use this VAE model to encode 
the screenshot image of a component into a 512-dimensional vector. 
Through cosine similarity, this vector is then compared to the vec-
tor representations of all the components in our large-scale dataset 
to identify 256 similar components and retrieve their property val-
ues (“Cosine Similarity” in Fig. 4). To provide coarse diversity but 
also more fne-grained alternatives, the palette presents suggested 
values in two levels: (1) diferent values as separate rows, and (2) 
similar values as a carousel in the same row. To support this, the 
pipeline groups the retrieved values according to specifc rules 
(“Grouping Method” in Table 2) and each group represents a sug-
gestion row. Then, a maximum of 10 values are randomly sampled 
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CSS Property Grouping Method Percent 

height Interval binning (N=20) 11.7% 
width Interval binning (N=20) 11.7% 
margin Interval binning (N=10) 11.3% 
padding Interval binning (N=10) 12.9% 
color K-means clustering (N=6) 12.9% 
background-color K-means clustering (N=6) 12.5% 
opacity Interval binning (N=2) 10.4% 
font-size Interval binning (N=10) 13.3% 
font-family Google Fonts categories (N=5) 13.8% 
font-style Nominal value 11.3% 
font-weight Interval binning (N=10) 11.7% 
text-align Nominal value 11.3% 
text-decoration Nominal value 11.3% 
border-width Interval binning (N=10) 11.3% 
border-color K-means clustering (N=6) 11.3% 
border-radius Interval binning (N=10) 11.3% 

Table 2: The CSS properties supported by Stylette. The ta-
ble presents the representation of each property in the nat-
ural language request dataset as a percentage. Each row also 
shows how values for a property are grouped when sug-
gested to the user: interval binning into N equally-spaced 
intervals, K-means clustering with the elbow method, based 
on the categories from Google Fonts, and no grouping for 
properties with nominal values. 

for each group and these alternatives are presented through the 
carousel. For color-related properties and the font-family property, 
users in the pilot studies wanted more diverse values so, for these 
properties, we populate other suggestion groups by retrieving the 
values from random components in the dataset. 

Dataset: Although there are datasets for mobile UI compo-
nents [11] or for whole web pages [32], there are none for individual 
web components. Thus, to train the VAE model, we constructed 
our own dataset. We frst compiled a list of websites from various 
sources: the S&P500, the Webby Awards [4], and the Open PageR-
ank dataset [15]. We removed any websites that (1) could not be 
accessed, (2) had very similar URLs, or (3) had less than 16 compo-
nents. This led to a fnal list of 7,565 websites. For each website’s 
main page, we used a crawler to capture each component’s CSS 
properties and screenshot image. After removing components that 
were less than 10 pixels wide or tall, the fnal dataset consisted of 
1,761,161 components. 

Training: The VAE model is composed of six convolutional lay-
ers for encoding, one linear layer as a bottleneck, and six transposed 
convolutional layers for decoding. The dimensions of the outputs 
at each layer are shown in Figure 4 (“Variational Autoencoder”). 
During training, the image of a component is encoded into a vec-
tor using the encoding and bottleneck layers, and then this vector 
is passed through the decoding layers to recreate the image. The 
model is trained to maximize the evidence lower bound (ELBO) 
value between the original image and the recreated image. We 
trained our model for 3 epochs with an Adam optimizer, using a 
learning rate of 0.0001 and batch size of 256. 
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4.3 Implementation 
We implemented the interface of Stylette as a Chrome Extension, us-
ing JavaScript, HTML, and CSS. For the backend, we used a Node.js 
server to pre-process requests from the interface and transcribe 
the audio with the Google Cloud Speech-to-Text API3. To serve 
the computational pipeline, we used a Flask server running with 
DeepSpeed4. 

5 EVALUATION 
We conducted a between-subjects study where we compared 
Stylette against the Chrome Browser’s DevTools, a tool widely 
available for general end-users to edit websites with. The study 
was composed of (1) a well-defned task of redesigning a website 
to look like a given outcome, and (2) an open-ended task of styling 
a website to follow the design direction of provided references. We 
designed these two tasks to investigate how Stylette helped partici-
pants style components when (1) they have a clear idea about how 
it should change, or (2) they only have a vague sense of direction. 
Specifcally, we pose the following research questions: 

• RQ1. How does Stylette help novice users fnd the CSS prop-
erties required to perform desired styling changes? 

• RQ2. Can Stylette encourage novices to perform a greater 
number of changes and use more diverse CSS properties? 

• RQ3. How does novices’ usage of Stylette afect their self-
confdence regarding their own web designing abilities? 

5.1 Participants and Apparatus 
We recruited 40 participants (11 female, 29 male; age M=21.5 and 
SD=3.05) who all reported having no previous experience with web 
design or coding (no knowledge of HTML and CSS). We also verifed 
that participants were relatively fuent in spoken English to reduce 
frustration due to the performance of speech-to-text technologies. 
Participants were divided into two equally-sized groups and each 
group was assigned to use either Stylette or Chrome DevTools. 
As six participants mentioned having other prior design experi-
ences and this could afect performance (e.g., the term “padding” is 
used in other design tasks), they were also equally split into each 
condition. To simulate a realistic setting, participants who used 
Chrome DevTools were also allowed to freely use search engines 
to fnd resources and information. The study lasted a maximum of 
90 minutes and participants were compensated with 30,000 KRW 
(approximately 26 USD). 

5.2 Study Procedure 
The study took place face-to-face, strictly following the COVID-19 
guidelines: participants had to wear masks and plastic gloves, and 
their temperature was checked before sessions. Each participant 
was provided with a computer with a Chrome browser installed 
and their assigned tool, Stylette or DevTools, already opened. After 
reading and signing the informed consent form, participants were 
frst provided with a brief walkthrough of their assigned tool and 
were then allowed to test the tool for a total of 5 minutes. After 
this, participants completed a short pre-task survey. 

3https://cloud.google.com/speech-to-text 
4https://www.deepspeed.ai/ 
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Tag Properties to Change Success Range 

h2 font-size (FSz) 80px - 120px 
p font-weight (FW) 700 - 900 

span 
background-color (BgC) 
color (C) 

(0.0, 0.0, 0.6) - (0.2, 0.2, 1.0) 
(1.0, 1.0, 1.0) - (0.8, 0.8, 0.8) 

video border-radius (BR) 60px - 100px 

button 
border-width (BW) 
border-color (BC) 

6px - 10px 
(0.8, 0.4, 0.0) - (1.0, 0.8, 0.2) 

div text-align (TA) “center” 
h2 font-style (FSt) “italic” or “oblique” 
button padding (P) 30px - 60px 
img width (W) 600px - 800px 
h3 font-family (F) Any in “cursive” category 
h3 text-decoration (TD) “underline” 
div margin (M) 80px - 120px 
img height (H) 350px - 450px 
img opacity (O) 0.3 - 0.7 

Table 3: List of the components that participants had to 
change during Task 1, in the order that they had to be 
changed. For each component, the table shows its tag type 
and the properties that had to be changed. For the proper-
ties, the list also shows their abbreviated names (which are 
used hereafter), and the range of values that were accepted 
as successful changes (color values shown as RGB triplets). 

After the survey, participants started Task 1. Participants were 
tasked with using their assigned tool to redesign our institute’s 
“About” web page5 to look as close as possible to a provided fnal 
design. This fnal design was provided as a before-after image with 
circling around components to change and labels showing how 
many properties to change for each component. Natural language 
explanations of the changes were not provided to prevent bias-
ing the language used by Stylette participants. The task involved 
changing 14 diferent components and all of the 16 CSS proper-
ties supported by our system (Table 3). Participants were asked to 
change the components in the order that they appeared in the web-
site, but were allowed to skip challenging components and come 
back to them later. A researcher verifed that a component had been 
successfully changed once the values of the correct properties were 
within the accepted success range (“Success Range” in Table 3). Par-
ticipants had 30 minutes to successfully change all the components. 
After the task, participants completed a short survey. 

After Task 1, participants started Task 2 after a 5-minute break. 
To ensure that all participants started Task 2 with the same amount 
of knowledge, those that did not complete Task 1 were frst shown 
how to perform the changes that they did not complete. The aim 
of Task 2 was to investigate how participants used their assigned 
tool when only provided with a vague direction for changes and 
allowed greater fexibility. Participants were tasked with changing 
a given website such that it followed the design direction of four 
reference websites (Fig. 5). These references were chosen as they 
shared a similar modern aesthetic, but also difered in how their 
content was structured. Participants were given 25 minutes for this 
5https://www.kaist.ac.kr/en/html/kaist/01.html 

https://www.kaist.ac.kr/en/html/kaist/01.html
https://4https://www.deepspeed.ai
https://3https://cloud.google.com/speech-to-text
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task. After this task, participants completed a short survey. Finally, 
a short interview was conducted asking participants about their 
experiences during both tasks. 

5.3 Measures 
We collected responses to the pre-survey and the post-surveys 
after each task. All of the surveys contained four questions asking 
participants to rate, on a 7-point Likert scale, their self-confdence 
with respect to their ability to (1) perform a website design changing 
task, (2) plan design changes, (3) iterate on changes, and (4) use the 
given tool. We averaged the responses to these questions to derive 
one score for self-confdence. The two post-surveys included the 
six questions from the NASA-TLX questionnaire [26] to measure 
participants’ perceived workload. 

We also quantitatively measured task-related metrics. For Task 
1, we measured the time taken to successfully change each compo-
nent and to complete the whole task. We hypothesized that Stylette 
would help participants fnd properties faster, and therefore com-
plete changes in less time. Although all participants had no previous 
web design experiences and those with other design experiences 
were equally divided into each condition, individual design interest 
and skill could still afect the quality of the fnal designs in Task 
2. Due to this reason, we did not rate these designs and, instead, 
we measured how many property changes were made in total. We 
hypothesized that Stylette participants would make more changes 
as they could explore diverse properties and values. A value close to 
0 indicates equal usage, spread across various properties, and one 
close to 1 indicates unequal usage, few properties used excessively. 

Figure 5: (Top) The website that participants styled in Task 2 mimics the portfolio of a creative director for a museum. The 
website only has basic styling to encourage participants to be creative and make many changes. (Bottom) The four reference 
websites that were provided during the task: Suparise (https://suparise.com), MadeByShape (https://madebyshape.co.uk), Land-
bot (https://landbot.io), and Rodeo (https://getrodeo.io). 

https://getrodeo.io
https://landbot.io
https://madebyshape.co.uk
https://suparise.com
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For qualitative data, we analyzed participants’ responses during 
the short interviews to understand their perceptions of the given 
tool and how they leveraged it for their purposes. We also iteratively 
coded the requests used by Stylette participants in Task 2 to classify 
them according to the vagueness of their content and language. 

6 RESULTS 
Our results demonstrated that Stylette helped participants perform 
styling changes faster and with greater success in Task 1, but it 
did not enhance productivity in Task 2. For the statistic analysis of 
each measure, we frst conducted a Shapiro-Wilk test to determine 
if the data was parametric (noted with “P”) or non-parametric 
(noted with “NP”). When comparing between conditions, we used 
an independent t-test (if parametric) and a Mann-Whitney U test (if 
non-parametric). When comparing between tasks within the same 
condition, we used a paired t-test (if parametric) and a Wilcoxon 
signed-rank test (if non-parametric). 

6.1 Task 1: Well-Defned Task 
To answer RQ1, we analyzed participants’ performance in Task 1 
(i.e., time taken and success rate to perform the given changes). We 
additionally measured participants’ perceived workload. 

6.1.1 Performance. Overall, Stylette participants signifcantly out-
performed DevTools participants in this task (Fig. 6). While only 
7 out of 20 DevTools participants completed all changes, 16 out 
of 20 Stylette participants completed the task. Additionally, when 
comparing only those who completed the task, Stylette participants 
(M=971.8s, SD=314.4s) completed the task in 35% less time than 
those that used DevTools (M=1493.0s, SD=295.9s, t=-3.72, p=0.001, 
P). Comparing the time taken to successfully change each compo-
nent revealed that DevTools participants struggled signifcantly 

with specifc properties (e.g., border-radius (BR) and padding (P) in 
Fig. 6). These struggles generally involved two scenarios: (1) vague 
search queries led to unhelpful results, or (2) the name of a CSS 
property did not immediately reveal its visual function. 

To illustrate the frst scenario, several participants tried queries 
like “enlarge the border in CSS” when searching for the padding 
property, but this only returned results for border-width—the search 
engine took them “too literally” (D2, D7, D9, D14). In other cases, 
participants’ vague queries returned search results for more ad-
vanced changes beyond their needs. For example, to adjust the 
height or width, participants searched “resize image in CSS” but 
this returned results about “responsive images”. In contrast, as our 
system was trained on vague requests and presents multiple prop-
erties for one request, Stylette participants had more success using 
similarly vague language—requesting “enlarge the border” to the 
system returned padding among the options. 

The second scenario involved properties with names that could 
be unclear for novices, such as border-radius or text-decoration. In 
these situations, the properties were frequently found in the search 
results, but DevTools participants would overlook them as they 
could not immediately visualize the functions from the names or 
mismatched with their mental models. However, hovering over the 
suggested values allowed them to quickly use and test the functions 
of properties. S5 mentioned: “By applying [the recommendations], 
I could understand what [visual] concept the [margin and padding] 
were related to”. 

6.1.2 Perceived Workload. In Task 1, responses to the NASA-TLX 
questions revealed that the efect of Stylette on perceived workload 
was mixed (Table 4). Stylette participants reported experiencing sig-
nifcantly less temporal demand (U=118.0, p=0.0118, NP) and efort 
(U=133.0, p=0.0336, NP) than those that used DevTools. DevTools 
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Figure 6: The average time taken for participants to successfully change each component using Stylette or DevTools. Each 
component is represented with the abbreviated names of the properties changed (Table 3). For each property, the fgure shows 
if the diference in time taken for each condition was statistically signifcant (*: p <.05, **: p < .01). 
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Task Condition Mental Physical Temporal Efort Performance Frustration 

Stylette 3.90 (1.41) 2.55 (1.57) 3.45 (1.73) 3.15 (1.79) 5.45 (1.10) 3.00 (1.52) 
1 DevTools 4.35 (1.42) 1.65 (0.93) 4.50 (0.95) 4.00 (1.45) 4.85 (1.53) 2.25 (1.21) 

p 0.14 0.02 0.01 0.03 0.11 0.05 

2 
Stylette 
DevTools 

4.75 (1.29) 
4.90 (1.21) 

2.90 (1.71) 
2.00 (1.45) 

4.35 (1.66) 
4.55 (1.50) 

4.25 (1.48) 
4.55 (0.83) 

4.05 (1.43) 
4.45 (1.39) 

3.55 (1.47) 
2.65 (1.50) 

p 0.34 0.03 0.69 0.23 0.24 0.03 

Table 4: For Task 1, participants’ average ratings on the perceived workload questions (NASA-TLX) showed that temporal 
demand and efort were signifcantly lower with Stylette, but physical demand and frustration were signifcantly higher. For 
Task 2, physical demand and frustration were still rated signifcantly higher with Stylette, but temporal demand and efort no 
longer difered signifcantly. 

participants felt signifcant time pressure due to the lengthy and ef-
fortful process of thinking about what to search, skimming through 
search results, and reading resources. In comparison, Stylette par-
ticipants could simply say something and look through the three 
to fve properties presented by the system. 

However, Stylette participants also experienced signifcantly 
higher frustration when compared to DevTools participants 
(U=139.5, p=0.0472, NP). According to participants, this frustration 
was partially attributed to the fact that the coupled AI algorithms 
(i.e., speech-to-text and property prediction) could both fail. For 
example, as they did not notice the transcription errors, several 
participants were confused when concrete requests (e.g., “under-
line text”) did not return the correct properties. Other participants 
were overly preoccupied with the transcription and immediately 
corrected any errors—failing to notice that the system had already 
returned desired properties. When fxing errors, participants also 
had to alternate between modalities (i.e., voice, text, and clicks) 
which could explain why Stylette participants reported feeling a 
higher physical demand (U=127.0, p=0.0187, NP). 

6.2 Task 2: Open-Ended Task 
To answer RQ2, we evaluated participants’ productivity in Task 2 
(i.e., how many changes were made and whether varied properties 
were used). As in Task 1, we also analyzed perceived workload. Sam-
ples of the participants’ fnal designs (Fig. 7) show their creativity 
and how they each focused on diferent aspects of the website. 

6.2.1 Productivity. While participants in the Stylette condition 
(M=42.85, SD=12.18) made more property changes than those in the 
DevTools condition (M=39.30, SD=12.71), this diference was not 
statistically signifcant (t=0.901, p=0.3729, P). The lack of a statisti-
cal diference could be attributed to the benefts and drawbacks of 
each tool’s interaction method. DevTools participants spent more 
time searching for information, but, once they had the required 
knowledge, they could directly make changes. Stylette participants 
could use natural language to easily fnd properties, but, even if 
they already knew which property to change, they expended time 
waiting for the system to process requests and fxing any AI-related 

S1 D12S17

D9

Figure 7: Sample of designs created by Task 2 participants. S1 used padding to spread content vertically such that each item 
would appear gradually as the user scrolls down the page. S17 serendipitously found the border-width property and used it to 
add a “shadow” to the container for the “Creative Projects” subheader. D9 used opacity in several components to lighten the 
web page’s content. D12 increased the border-width and added border-color to add colored bars on the sides of the page. 

https://SD=12.71
https://SD=12.18
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errors. Several participants (S5, S6, S7, S15) noted that, after learn-
ing the properties in Task 1, they wanted to directly change the 
properties in Task 2—without using natural language. 

Additionally, as Stylette presents other options in the palette, 
participants appeared to spend additional time browsing through 
them. While this exploration could increase efort, it also appeared 
to encourage familiarization with a wider range of properties. The 
Gini index for property usage shows that Stylette participants tried 
various properties (M=0.292, SD=0.045) while DevTools participants 
mostly stuck with a few properties that they were accustomed to 
(M=0.325, SD=0.052, t=-2.169, p=0.0364, P). Beyond encouraging 
experimentation with more properties, in some cases, the system 
also led participants to serendipitously fnd alternative uses for 
known properties. S17 mentioned, “Accidentally I just found [border-
width] while trying to change the radius [so I changed it] and it 
shows a shadow efect that looks really, really good.” (design shown 
in Fig. 7). 

6.2.2 Perceived Workload. Similar to the results of Task 1, par-
ticipants in the Stylette condition reported experiencing higher 
physical demand (U=131.5, p=0.0278, NP) and frustration (U=129.0, 
p=0.0258, NP) than those in the DevTools condition (Table 4). Unlike 
Task 1, however, Stylette participants no longer reported feeling 
signifcantly less temporal demand or efort. It is plausible that, 
due to the open-ended nature of Task 2, Stylette participants now 
spent more time and efort exploring the design space through the 
alternatives presented by the system—Gini index results support 
this explanation. 

6.2.3 Usage Paterns of Stylete. As Task 2 allowed for more fexible 
and natural use, we also analyzed participants’ usage of Stylette 
during this task. Participants issued an average of 36.8 requests 
(max=58, min=18, SD=11.2) and the requests had an average length 
of 3.2 words (max=12, min=1, SD=1.2). 

Our categorization of these requests showed that, unlike our 
formative study results, the requests were frequently specifc and 
became more specifc and less vague towards the end of the task (Ta-
ble 5). Participants’ interviews revealed that this gradual specifcity 
was due to various reasons. For one, the tool helped participants 
learn property names so they could now use them in requests (S5, 
S8, S13, S19). Others observed that the system was more accurate if 
they were more specifc, so they adjusted their requests accordingly 
(S3, S4, S16, S20). A sample of participants’ requests (Table 6) shows 
that the system was indeed more likely to predict users’ expected 
properties if the requests included more specifc information. 

Like our formative study, however, around half of the requests 
were vague (“PP”, “PV” and “A” in Table 5). Several vague requests 
were due to participants not remembering the name of a property, 
but they were able to quickly remember them by seeing Stylette’s 
predicted properties. In other cases, vagueness was to deliberately 
get the system to act in a certain way. Several participants (S5, S6, 
S7, S14, S18, S19) mentioned using requests as “macros”—being 
vague (e.g., “change font”) so the system returned several related 
properties that could be changed in one go. Others (S1, S2, S4, S8, 
S15) used vague requests to explore what other styling changes 
they could make. 

Regarding the value suggestions, there were three particular uses: 
(1) as a “starting point”, (2) as a “guideline”, or (3) as a “shortcut”. For 
the frst type, participants (S4, S11, S14, S17, S20) picked a suggested 
value and then manually adjusted it more to their preference. Others 
(S2, S5, S9, S10, S18) used the suggestions as a guideline—hovering 
through values to mentally map numerical diferences to visual 
diferences. Finally, as similar values would be suggested for similar 
components, several participants (S1, S7, S15) looked for the same 
suggestion when editing multiple similar components—as a sort of 
“value shortcut”. 

Type of Request Description Examples Percentage Q1 Q4 

Property Specifc (PS) 

Property Partial (PP) 

Property Vague (PV) 

Specifc property name expressed in 
request. 
Property name partially expressed in 
the request. 
Property name not clearly apparent in 
the request. 

"change background color" 
"align text in the center" 
"add border" 
"change the font" 
"make this bigger" 
"increase the spacing" 

48.1% (352) 

35.3% (258) 

11.5% (84) 

46.6% 

35.2% 

11.9% 

56.0% 

34.7% 

4.7% 

Property Total - - 94.9% (694) 93.8% 95.3% 

Value Specifc (VS) 

Value Vague (VV) 

Specifc value expressed in the 
request. 
Vague direction given for a value 
in the request. 

"change to dark grey color" 
"increase font size to 14 px" 
"decrease the height" 
"make the edges rounder" 

11.4% (83) 

20.0% (146) 

14.0% 

25.9% 

9.8% 

15.0% 

Value Total - - 31.2% (229) 39.9% 24.9% 

Abstract (A) Request with abstract description 
of a change. 

"make it look more stylish" 
"make it more playful" 

3.3% (24) 3.6% 3.1% 

Table 5: Coding of the participants’ requests during Task 2. Requests can either mention both properties and values, only 
properties or only values, or be abstract. The percentage of requests for each category are shown. The table also shows the 
percentage for each category for the frst quartile (Q1) and last quartile (Q4) of participants’ requests. 
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6.3 Self-Confdence Across Tasks 
To answer RQ3, we evaluated how self-confdence changed during 
the study by analyzing intra-condition diferences in participants’ 
responses (Fig. 8). Stylette participants’ self-confdence increased 
signifcantly between the pre-survey (M=4.30, SD=1.12) and the end 
of Task 1 (M=5.13, SD=1.22, z=18.5, p=0.0035, NP). Participants felt 
satisfed about completing Task 1, and mentioned that it was easy to 
learn about and make changes using Stylette: “It gave me the feeling 
of learning and becoming familiarized with web development terms.” 
(S12). Surprisingly, DevTools participants’ self-confdence also in-
creased signifcantly between the pre-survey (M=4.01, SD=1.26) 
and Task 1 (M=4.81, SD=1.25, z=34.5, p=0.0148, NP). Despite most 
of these participants not completing Task 1, they were satisfed 
with what they had accomplished as they expected that CSS code 
would be exceptionally challenging. 

For similar reasons, DevTools participants’ self-confdence in-
creased between Task 1 (M=4.81, SD=1.25) and Task 2 (M=4.99, 
SD=1.32), although this was not statistically signifcant (t=0.540, 
p=0.595, P). These participants felt proud about their own efort and 
learning during the study: “This is my frst time handling [CSS] but I 
did this!” (D14). In contrast, self-confdence for Stylette participants 
decreased signifcantly between Task 1 (M=5.13, SD=1.22) and Task 
2 (M=4.58, SD=1.16, t=-3.204, p=0.0047, P). Unlike DevTools partic-
ipants’ self-refective comments, Stylette participants’ comments 
mostly focused on the tool. Some participants (S9, S16, S17, S20) 
mentioned how the system presented too many possibilities, mak-
ing it difcult to decide on changes: “It was hard [to choose] because 
the suggestions were all cute.” (S16). On the other hand, several 
participants (S4, S7, S11, S15) felt limited by the tool’s possibilities— 
expecting the system to reveal new properties or support more 
complex changes (e.g., adding a “sparkle” animation). 

7 DISCUSSION 
In this paper, we propose Stylette, a system that allows users to 
easily edit a website’s design through a suggested set of proper-
ties and values generated from natural language requests. Stylette 
can be generalized to a variety of applications: expanded with a 
community feature for users to share website modifcations, imple-
mented as an IDE plugin to support web developers’ help-seeking, 
or integrated into tools for user feedback. In this section, we further 

Stylette
1

2

3

4

5

6

7

4.3 ± 1.1

5.1 ± 1.2

4.6 ± 1.2

Pre-Task Task 1 Task 2

DevTools
1

2

3

4

5

6

7

4.0 ± 1.3

4.8 ± 1.2
5.0 ± 1.3

Figure 8: For both conditions, participants’ reported self-
confdence increased signifcantly between the pre-survey 
and the post-Task 1 survey. However, self-confdence de-
creased signifcantly for Stylette participants after Task 2, 
but did not change signifcantly for DevTools participants. 

elaborate on the potential of Stylette and suggest opportunities for 
future work. 

7.1 Stylette as a Web Designing Springboard 
In our study, Stylette allowed users with no prior knowledge to 
quickly perform desired styling changes on websites. Unlike search 
engines that can take the meaning of queries “literally”, our sys-
tem interpreted the vagueness behind users’ requests to present 
more varied and suitable solutions. Stylette also allowed users to 
“learn-by-doing” by immediately testing the functions of proper-
ties by hovering on value suggestions—instead of having to skim 
through search results. As a side efect of interpreting vagueness, 
the system appeared to encourage creativity by presenting users 
with alternatives beyond their initial intentions. Together, these 

Request Type Expected Predicted 

“change the font family to Helvetica” (S7) PS & VS FF FF FSz FSt FW 
“increase padding” (S8) PS & VV P BW M P W 
“change text color” (S6) PS C BgC C FSt O TD 
“change the picture radius to 24” (S18) PP & VS BR BC BR C FSz W 
“increase the size” (S16) PP & VV FSz BR BW H P W 
“change borders” (S11) PP BW BC BR BW C W 
“make it go in the middle” (S15) PV & VS TA H M P W 
“add some spacing at the bottom” (S2) PV & VV P BR H M P 
“change the distance” (S5) PV M BW C H P W 
“make this modern” (S19) A FF BW H M P W 

Table 6: A sample of participants’ requests in Task 2, ordered from most specifc to most vague/abstract. For each property, the 
table shows the request type, the property expected by the user, and the properties predicted by the system. 
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insights suggest that Stylette can support novices to explore and 
learn about CSS with continued usage. 

The back-to-back tasks in our study provided a window into 
such continued usage of Stylette. We observed that users gradually 
developed knowledge about concrete CSS property names and 
values. For these now more knowledgeable users, the system still 
provided beneft: enabling the request of multiple properties for 
increased efciency, supporting exploration of the design space, and 
helping users quickly remember forgotten information. However, 
we also observed that perceived efort could increase with continued 
usage and users’ learning. This owed to the fact that, even after 
acquiring the knowledge to directly make changes by themselves, 
user still had to interact with the underlying, probabilistic AI— 
waiting for its processing and correcting any errors. 

Thus, while Stylette is well-suited for novices to learn about CSS, 
its beneft may decrease with users’ increasing knowledge due to the 
form of interaction. Elaborating on Amershi et al.’s guidelines [3], 
this suggests how human-AI interaction should be designed for 
over time use in the context of novice support systems. For future 
work, we propose an adaptive approach: initial natural language 
interaction to help users acquire knowledge about properties, and 
then gradually exposing direct manipulation widgets for properties 
that users have acquired knowledge about. Knowledge could be 
modeled by identifying previously used properties, repeated usage 
of a property, or the use of the property’s name in voice requests. 

To further overcome the frustration and physical demand ob-
served in the study, future work could also investigate mecha-
nisms to support the discoverability of natural language input. 
Prior work [14, 23, 56] has demonstrated that supporting discov-
erability can reduce the amount of “guessing” that users must do. 
As Stylette’s NLP pipeline appears to provide more accurate pre-
dictions for specifc requests, future iterations of the system could 
guide users to new or desired properties by suggesting more specifc 
language. For example, if the user makes a vague request but does 
not use any of the predicted properties, the system could suggest 
specifc requests related to other properties that the user has not 
seen before. 

7.2 Leveraging Large Language Models to 
Support Software Use 

The grand scale of large language models (e.g., GPT-3 [8] or GPT-
Neo [6]), in terms of architecture and datasets, has allowed them 
to perform previously unseen tasks with only a few data points. 
We leveraged this quality and the P-tuning technique [42] to allow 
novices to interact with website designs by constructing only a 
small dataset of 300 requests. Similar approaches can be taken to 
enable novices to use natural language to use various complex 
software—overcoming the vocabulary problem [22]. While a rich 
body of work has enabled similar natural language interaction to 
support software usage [1, 18–21], their approaches relied on a 
wealth of user-generated content. Thus, these approaches are not 
possible for new applications or features as such content might not 
exist. Moreover, as shown by the struggles of DevTools participants 
in our study, the language used in such content may also difer 
greatly from the vague language used by novices as the content 
is usually created by intermediate or advanced users. With our 

approach, in contrast, natural language interaction can be enabled 
for new applications with only the efort of creating a small dataset 
of examples, and, by including representative examples of novices’ 
language, the support can be designed specifcally for novices. 

7.3 Natural Language Coding as a Learning 
Tool 

Our natural language interface helps novices learn about a cod-
ing language by demonstrating how the code realizes high-level 
goals—lowering the selection, coordination, and use barriers identi-
fed by Ko et al. [31]. In addition, by exposing novices to multiple 
alternatives for an intended goal, we observed that our approach 
allowed users to acquire a greater breadth of knowledge about the 
code—familiarizing with more properties and learning new uses 
for properties. However, the study also revealed that DevTools par-
ticipants appeared to feel more satisfaction about their learning 
experience when compared to Stylette. We suspect that this is due 
to DevTools participants expending more deliberate efort searching 
for and reading through resources. Based on these insights, we frst 
suggest that natural language coding tools should provide multiple 
code alternatives for the same goal. Then, by incorporating interven-
tions that prompt users to refect on these alternatives—similar to 
prompts used in video learning [55]—to gain a wider understanding 
about the code through a deliberate learning experience. 

7.4 Beyond CSS 
Stylette aims to make the web more malleable for general users 
with no prior knowledge. Our work focuses on CSS code and allows 
novices to simply describe their high-level goal to start modify-
ing it—without requiring the user to decompose the goal them-
selves [58] or look for examples [16, 33, 37]. However, websites are 
also composed of HTML (structure) and JavaScript code (function-
alities). As structure-related changes might be more suitable for 
direct manipulation, Stylette could be combined with systems that 
already support this [46, 47]. Finally, to allow end-users to program 
new functionalities, models like OpenAI’s Codex [62], which can 
generate JavaScript code from natural language descriptions, could 
be coupled with Stylette. By integrating these three types of sup-
port into one coherent system, future work could enable all users 
to fully access the web’s malleability. 

8 LIMITATIONS 
Our work has several limitations which we address in this section. 

• Stylette currently supports 16 diferent CSS properties. These 
were the ones used the most in the creation of our request 
dataset. While Stylette could be extended to support more 
properties by expanding the dataset, certain complex prop-
erties (e.g., those related to fexbox and grid) also require 
corresponding modifcations on parent elements. As Stylette 
only modifes the selected element’s properties, it cannot 
currently support these properties. To overcome this limi-
tation, the system could be enhanced to cascade necessary 
property modifcations up the HTML tree. 

• In our evaluation, we compared Stylette against using Dev-
Tools and search engines. A possible concern is that DevTools 
participants could change more properties and might have 
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misdirected efort into these. Although the average DevTools 
participant only tried around two properties that were not 
supported in Stylette, we acknowledge that this could have 
afected results in Task 1. 

• We relied on a dataset of 300 requests to train and evaluate 
our computational pipeline. While participants were gen-
erally satisfed with the pipeline’s predictions, evaluating 
on a larger dataset would provide a better understanding 
of its performance. Also, while P-tuning has demonstrated 
high performance with even smaller datasets (N=32) [42], a 
larger dataset could increase our pipeline’s performance and 
robustness. 

• As we focused on a controlled evaluation of Stylette, it is 
still unclear how users would modify websites in the real-
world. Future work could conduct a deployment study to 
understand how Stylette integrates into users’ actual web 
experiences. 

9 CONCLUSION 
This paper presents Stylette, a novel system that allows users to 
describe a styling request in natural language to change the visual 
design of websites. By combining a GPT-Neo-based model and a 
convolutional VAE model, our computational pipeline processes 
the user’s request and the component they clicked. The processed 
outputs are then combined to generate a palette of CSS properties 
and values that the user can experiment and iterate on to reach their 
desired style. A user-study revealed that Stylette could help users 
familiarize themselves with CSS properties in a shorter amount of 
time and with greater breadth. Insights from the study regarding 
the benefts and limitations of natural language support can guide 
the design of future work on novice support systems. 
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