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Figure 1: Overview of FitVid, an interactive video interface powered by an automated content adaptation pipeline for mo-
bile video-based learning. The pipeline frst retrieves in-video elements (e.g., text, images) from raw pixels in the video by 
analyzing static and dynamic objects. It then builds mappings between visual elements and the audio narrations. Finally, it 
generates content adaptations and renders them to mobile screens. Our video player UI supports direct manipulation and 
design customization with auto-generated adaptations. (Lecture Source and License: Aruna Chandran, Holly Ott) 

ABSTRACT 
Mobile video-based learning attracts many learners with its mo-
bility and ease of access. However, most lectures are designed for 
desktops. Our formative study reveals mobile learners’ two major 
needs: more readable content and customizable video design. To 
support mobile-optimized learning, we present FitVid, a system that 
provides responsive and customizable video content. Our system 
consists of (1) an adaptation pipeline that reverse-engineers pixels 
to retrieve design elements (e.g., text, images) from videos, lever-
aging deep learning with a custom dataset, which powers (2) a UI 
that enables resizing, repositioning, and toggling in-video elements. 
The content adaptation improves the guideline compliance rate by 
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24% and 8% for word count and font size. The content evaluation 
study (n=198) shows that the adaptation signifcantly increases 
readability and user satisfaction. The user study (n=31) indicates 
that FitVid signifcantly improves learning experience, interactivity, 
and concentration. We discuss design implications for responsive 
and customizable video adaptation. 
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1 INTRODUCTION 
An increasing number of learners use their mobile devices to watch 
instructional videos due to their ease of access and mobility. Accord-
ingly, the instructional designers, video engineers, and researchers 
attempted to adapt learning content to small mobile screens. For 
example, responsive design techniques adapt educational websites 
to diverse screen sizes by adjusting layouts and amount of con-
tent [11, 53, 70]. 

However, the content adaptation is limited to static content such 
as websites and ebooks [7, 94], leaving the video content with small 
fonts and dense text less accessible in mobile environments. This 
indicates a need for responsive content adaptation of video content, 
which is, however, challenging for multiple reasons. 

First, it is required to decompose video into design elements such 
as text and images to resize and rearrange them to ft small screen 
sizes. Nonetheless, the video becomes a sequence of frames and 
collection of pixels after encoding, with no access to semantic infor-
mation of the in-video elements (e.g., text boxes, images). Although 
the existing research used a non-pixel-based approach to extract 
metadata from the video content utilizing lecture slides and lecture 
notes, access to the lecture materials is often limited. Furthermore, 
video lectures involve dynamic elements such as talking-head in-
structors and real-time handwriting, which are not included in the 
lecture slides. Second, a high diversity of lecture designs makes the 
content adaptation even harder. There have been attempts to adapt 
the video content by using rule-based methods [43, 107], but creat-
ing heuristic rules entails massive manual work and consideration 
for the combinatorial explosion of possible conditions. This huge 
cost of the heuristic method limits the generalizability of content 
adaptation techniques. 

To design a system that mitigates the above challenges of video 
content adaptation, we frst investigated mobile learners’ needs 
through a formative study. They wanted to have more readable 
content and customize the video design depending on their learning 
contexts. The fndings from the formative study lead to the design 
of a new system for video content adaptation. In this paper, we 
propose FitVid (Fit your Video), a content adaptation pipeline and 
video interface that provides responsive and customizable video 
content for mobile learning. Our system (Fig. 1) includes a computa-
tional pipeline that automatically generates a responsive adaptation, 
which powers an interactive video interface that supports direct 
manipulation and content customization, including dark mode and 
instructor/template toggle option. The automated pipeline consists 
of two stages: decomposition and adaptation. First, it is essential to 
locate and identify in-video elements (e.g., text, images), to resize 
and rearrange them for adaptation. The decomposition module ex-
tracts metadata of in-video elements from raw pixels by leveraging 
deep learning techniques. We collected and annotated 5,527 video 
frames and trained a custom object detection model to classify lec-
ture design elements. Second, the adaptation module generates and 
renders adapted content for mobile devices by applying existing 
design guidelines for mobile content. To maximally apply the guide-
lines in limited screen space, we used constrained optimization and 
a set of heuristics. 

However, the automated pipeline may sometimes produce incor-
rect adaptations and may not satisfy every user’s needs, for exam-
ple, not having enough large fonts or proper layout. Thus, FitVid’s 
UI provides users control over the content adaptation instead of 
automating the whole process. Users can directly manipulate the 
in-video elements by resizing and repositioning them. Users can 
further customize the content by applying dark mode to a video and 
toggling talking-head instructors or slide templates (e.g., university 
logos) to optimize the mobile screen space. 

We demonstrate the efectiveness of FitVid through a quantita-
tive pipeline evaluation and a user study. Our adaptation pipeline 
increases the guideline compliance rate of design elements by 24%, 
8%, and 4% for word count, font size, and text font size in images, 
respectively. The content evaluation study (n=198) corroborated 
the quantitative evaluation results, showing that the adaptation 
signifcantly increases the perceived readability and design satis-
faction. The user study (n=31) indicates that FitVid signifcantly 
improves the learning experience with increased interactivity and 
concentration. We also identifed three motivations of direct ma-
nipulation usage; to adjust the design, promote concentration, and 
simply interact with content. 

In summary, the primary contributions of this work are: 

• An annotated dataset of 5,527 video frames for design ele-
ment detection in lecture videos 

• An automated pipeline that generates mobile-friendly con-
tent adaptation 

• A design and implementation of FitVid, a system that pro-
vides learners with responsive and customizable video con-
tent 

• Results of quantitative pipeline evaluation and empirical 
user study 

2 RELATED WORK 
Our work is informed by previous work on (1) content adaptation 
for mobile learning, (2) detection of lecture design elements from 
pixels, and (3) direct manipulation for video content. 

2.1 Content Adaptation for Mobile Users 
In response to the prevalent use of mobile devices, there have been 
attempts to adapt content to mobile screens. Some work introduced 
a concept of responsive web design for mobile learning [11, 70]. 
A responsive design such as excluding menus and images from 
educational websites increased mobile readability [53]. Other work 
introduced techniques of responsive content adaptation for infor-
mative visualization, which includes repositioning axes, removing 
labels from charts [35], repositioning legends, and word-wrapping 
for text overfows [99]. Meanwhile, responsive eBook design tech-
niques allow users to customize font sizes, font styles, and line 
spacing on mobile devices [79, 94]. 

However, most approaches for content adaptation are limited to 
adjusting static content such as text documents or websites. Our 
research uniquely introduces techniques to adapt dynamic con-
tent –instructional video–, that has been challenging due to the 
following characteristics of video medium; difculties of editing 
video content after release and a high diversity of lecture designs 
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which cannot be easily adapted using a simple set of rules or heuris-
tics. Our work reverse engineers video content at an element level, 
enabling fexible adaptation even after release. Our deep-learning-
based approach also covers a variety of lecture designs overcoming 
limitations of heuristic methods. 

2.2 Detection of Lecture Design Elements from 
Pixels 

Content adaptation requires detecting and identifying design el-
ements for fexible resizing and rearrangements. Existing studies 
used a non-pixel-based approach to extract design elements [71, 
91, 92]. In other words, they utilized lecture slides as a data source, 
which contains metadata such as locations and types (e.g., text, im-
age) of each design element. However, access to the lecture slides is 
not always available. Furthermore, video lectures involve dynamic 
elements such as talking-head instructors and real-time handwrit-
ing, which are not included in the lecture slides. 

On the other hand, pixel-based methods that extract metadata 
from raw pixels are generalizable to most existing video lectures 
that have no accompanying slides. Previous work on pixel-based 
methods lies in two branches: traditional edge-based techniques 
and deep learning approaches. First, the traditional edge detection 
approaches [5, 43, 100, 103, 104, 106, 107] identify edges in images 
by looping over the pixel values and classify the design elements 
based on a set of IF-THEN rules. However, building heuristic rules 
includes huge manual work and a combinatorial explosion of pos-
sible conditions because of the high diversity of lecture designs. 
On the other hand, deep learning approaches learn such patterns 
from data. ViZig [102] used Convolutional Neural Networks with 
their own dataset of images downloaded from image search engines. 
WiSe [34] and SPaSe [33] contributed an annotated dataset for the 
presentation slide segmentation task to train deep learning models. 

Despite the eforts to utilize deep learning to classify design 
elements in lecture slides, existing datasets are limited in size and 
diversity, covering only engineering and science courses, and lack 
semantic groupings considering structural information (e.g., hierar-
chical bullet points). To fll this gap, we created a new dataset of 
5,527 video frames for video lecture adaptation. We then trained 
an object detection model by pretraining with a document layout 
dataset, which is more suitable for our task than general-purpose 
image datasets and fne-tuning with our new dataset. Our dataset 
and trained models enable design element detection tailored to 
video-based learning content, fnally allowing an in-video-level 
content adaptation. 

2.3 Direct Manipulation for Video Content 
Direct manipulation is an interaction style in which users act on 
displayed objects of interest directly involving rapid, reversible, 
and incremental actions and feedback [38, 84]. A rich body of work 
proposed interaction designs that allow users to control the video 
motions using a video interface that directly refects their input 
gestures. For example, some research enabled the in-video object 
dragging along its motion trajectory [25, 45, 46], and reduced tempo-
ral ambiguities by allowing spatial-temporal manipulation [47, 66]. 
On the other hand, another thread of work introduced zoomable 

video interfaces to overcome the constraint of small screen sizes 
[4, 18, 68, 75, 86]. 

However, the interaction design for mobile video-based learning 
remains unexplored. Our work investigates users’ challenges of 
the current interaction design of video lectures and suggests a new 
functionality that enables content customization through directly 
resizing and repositioning in-video elements. 

3 FORMATIVE STUDY 
We conducted formative interviews to investigate mobile learners’ 
needs and learning experiences with video lectures. 

3.1 Interview Study 
3.1.1 Interviewees. We recruited 21 participants (13 male, 8 female) 
through Amazon Mechanical Turk (AMT) and advertisement posts 
on online university communities. Their age ranged from 18 to 44 
years old. Interviewees were from South Korea (11), Brazil (4), the 
U.S. (3), India (2), and Canada (1). We ensured that all participants 
had a mobile video-based learning experience by asking them to 
upload a mobile screen capture of learning history or certifcate 
from online video-based learning platforms. We provided a $10 
Amazon gift card to each participant for a 30-minute long interview. 

3.1.2 Protocol. We conducted remote interviews using Zoom and 
recorded the interviews under consent. We frst asked them if they 
think existing video lectures are suitable for mobile learning. After 
that, we interviewed them on new features they hope to see to 
mitigate the challenges, regardless of their technical feasibility. 
The complete set of questions is included in the Supplementary 
Materials. 

3.1.3 Analysis. We followed an iterative coding process [37]. Two 
authors independently created a codebook for half of the transcripts, 
each using an inductive approach, and they merged and refned 
the codebook through discussions. After reaching a consensus on 
the codebook, another author reviewed their work to fnalize it. 
The two authors then coded three interview transcripts randomly 
selected from the entire dataset using the codebook. Finally, we 
computed Cohen’s kappa to access inter-rater reliability. The aver-
age Cohen’s kappa score across all codes was 0.85 (SD=0.05, ranging 
from 0.80 to 0.89) with an average of 92.75% agreement. Each of the 
two authors then coded the remaining interviews independently. 
After independent coding, they met to discuss interpretations, ad-
dress any discrepancies in applying the code set, and then adjust 
their coded data. Finally, we produced ten subcodes for difculties 
derived from inappropriate visual design of lectures. 

3.2 Interview Results 
To inform the design decisions of our system, we encouraged inter-
viewees to share features they hope to use in their mobile video in-
terfaces. The interviewees submitted 27 ideas total, and we merged 
overlapping ideas into nine themes that can be largely categorized 
into two: improving readability and customizing video design. 

Improving readability. The following six ideas are related to im-
proving the readability of learning content: 
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• Automatic zoom-in feature: Automatically zooming in 
small or dense text. 

• Element-wise zoom-in feature: Allowing users to zoom 
in on the complete elements of interest (e.g., text boxes, 
images) on a per-element basis since the current pinch-zoom 
interaction results in cut-ofs of part of the elements. 

• Optimized font sizes for mobile screen sizes: Providing 
enlarged font sizes in response to small mobile screens. 

• Optimized amount of text for mobile screen sizes: Re-
ducing the amount of text on screen to improve readability. 

• Typewriting of hand-written materials: Replacing the 
hand-written content with typewriting to improve legibil-
ity [21]. 

• Highlighting the currently explained spot. Adding vi-
sual cues such as highlights to guide learners’ attention to 
the part of the screen currently being explained by the in-
structor [59]. 

Providing customization options. The remaining three ideas are 
about providing options to users: 

• Text-only or image-only mode: Allowing users to choose 
a preferred type for the same content [60] by supporting 
diferent types of medium (e.g., text, images) to deliver the 
same content 

• Dark mode: Providing dark mode for users in dim places. 
• Toggle a talking head: Allowing users to turn on and of 
the talking head view of the instructor to utilize the mobile 
screen space efciently [48, 93]. 

Based on the participants’ suggestions, we determined a list of 
features to implement based on the following criteria: (1) sever-
ity of the problem and (2) the idea’s novelty considering existing 
research. More specifcally, the following two ideas with a low 
severity were excluded since only one participant suggested each 
idea: typewriting of hand-written materials, text-only or image-
only mode. Considering the novelty, the idea of highlighting the 
current explanation was not adopted because they were already 
implemented by the previous work [43, 71]. This selection process 
that excluded the three ideas above led to a subset of the originally 
suggested features, including automatic and element-wise zoom-
in, mobile-optimized size and amount of content, dark mode, and 
toggle talking heads. 

4 DESIGN GOALS 
The formative study results led us to the following design goals in 
creating a system that supports responsive and customizable video 
content. 

G1. Automatically generating responsive design for video 
content 

The formative study indicated a need for adapting video con-
tent at an element-level in response to small mobile screens (e.g., 
enlarged text, reduced amount of content). The video content adap-
tation requires a decomposition of raw video into visual elements 
(e.g., text, images) to be fexibly resized and rearranged. We aim to 
create an automated pipeline that extracts in-video elements using 
deep learning algorithms and generates responsive design without 

a need for costly human labor or manual work. 

G2. Supporting direct manipulation of in-video elements 
The formative study showed that there is a need for element-wise 

interactions to adjust the design of original content. Furthermore, 
the automatically generated content may contain incorrect adapta-
tions and may not satisfy every user’s needs [1, 80], for example, 
not having enough large fonts or proper layout. We aim to allow 
users to have control over the content adaptation instead of au-
tomating the whole process by supporting direct manipulation of 
in-video elements. 

G3. Providing options for content customization 
The “one-size-fts-all” approach of providing the same video 

content design to every learner is unlikely to be optimal in mobile 
learning because of various learning environments (e.g., diverse mo-
bile screen sizes, distracting situations). The formative interviews 
revealed that users want to customize video design, for example, 
by toggling instructor displays and changing color themes. We aim 
to provide users with options to adjust video content to mitigate 
constraints in mobile environments. 

We will describe our computational pipeline that automatically 
generates adapted content (G1) in Section 5 and our user interface 
that supports direct manipulation (G2) and content customization 
(G3) in Section 6. 

5 COMPUTATIONAL PIPELINE FOR 
AUTOMATED ADAPTATION 

This section describes our computational pipeline that automati-
cally creates an adapted version of video lectures (G1. Automatically 
generating responsive design for video content). Our key idea is 
to decompose a video into design elements that can potentially 
be adapted. The pipeline consists of two stages: (1) decomposition 
and (2) adaptation, as depicted in Fig. 2. This section describes 
the main idea of each stage, while we provide additional details in 
Supplemental Materials for rigor and reproducibility. 

5.1 Decomposition Stage 
In this stage, video content is decomposed into design elements, 
and metadata for these elements is extracted to be used for content 
adaptation. To support adaptation that resizes and rearranges the 
decomposed elements, which we further describe in Section 5.2, 
we identify the following information to be extracted from video 
content: 

• Shot Boundary Detection. A shot in video analysis refers 
to a series of frames that runs for an uninterrupted time [85]. 
For the video lecture domain, we are interested in identifying 
transitions between lecture slides or scenes in which an 
instructor narrates continuously so that we can analyze each 
lecture slide. 

• Static Object Analysis. Once the representative frame is 
identifed for each video shot detected, we extract design 
elements that do not change or move over time (e.g., text, 
images). These elements are adapted based on the existing 
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diagram simple.png 

Figure 2: A computational pipeline of FitVid consists of two 
main stages, decomposition and adaptation. The decompo-
sition stage extracts metadata of in-video elements used 
for adaptation. The adaptation stage generates and renders 
adapted content for mobile screens. The detailed version of 
the diagram is included in Supplementary Materials. 

design guideline in the adaptation stage (e.g., enlarged font 
sizes). 

• Dynamic Object Analysis. Lecture videos not only contain 
static elements but dynamic elements that change or move 
over time within a video shot (e.g., laser pointer). We perform 
a separate analysis to detect these dynamic objects. 

• Text-to-Script Mapping. For on-screen text elements, we 
identify the corresponding audio narrations. This is used to 
determine the right timings to display segmented content 
after adaptation. 

5.1.1 Shot Boundary Detection. To detect shot boundaries of video 
lectures (e.g., the transition between lecture slides), we used HSV 
(Hue, Saturation, and Intensity Value) peak detection and template 
matching techniques [6]. It returns a sequence of shots, each consist-
ing of start time, end time, and a single representative video frame. 
Information about the detailed implementation and threshold is 
included in the Supplementary Materials. 

5.1.2 Static Object Analysis. Once a video is decomposed into a se-
ries of shots with its representative frame, we analyze these frames 
to identify elements that can potentially be adapted (e.g., text box). 
We use deep-learning-based object detection models to classify and 
locate visual design elements in the video frames. 

New Labeled Dataset of Lecture Designs. A large and high-quality 
dataset is crucial to train high-performing object detection mod-
els. Previous work released annotated datasets for presentation 
slides [33, 34], however, these datasets are not applicable to our 
context primarily for three reasons: small size (i.e., only consisting 
of 2,000 slides), limited diversity of subjects (e.g., only engineering 
and science courses), and the lack of semantic groupings consider-
ing structural information in learning materials (e.g., hierarchical 
bullet points). Thus, we annotated dataset of 5,527 video frames 
sampled from 66 courses.1 Our dataset includes lecture videos taken 
from courses over 44 institutions in 11 countries with the subjects 
across 14 domains (e.g., computer science, management, and art). In 
selecting 5,527 frames to be labeled, we frst run the shot boundary 
detection algorithm to extract keyframes that naturally select a set 
of diverse frames fltering out too similar frames across the videos. 

We chose 12 class labels for classifying design elements in lec-
ture material [33, 102], which include title, text box, picture, chart, 
fgure, diagram, table, schematic diagram, header, footer, handwrit-
ing, and instructor. We labeled design elements based on semantic 
units, which is considered important in data annotations for design 
elements [14]. For example, we grouped multi-level lists with hi-
erarchical relationships as a single text box and complex graphics 
consisting of separate elements connected with arrows as a single 
diagram. These semantic groupings enable content adaptation with 
the semantic relations of the original elements preserved. 

We released the dataset to the open dataset repository for further 
research2. The use of this dataset is not limited to the training 
of object detection models. The semantic annotation of learning 
materials is an important task in extracting lecture topics [22] and 
building microlearning content [54]. Our dataset can also be utilized 
as a source dataset for ontology construction [72, 76] and as a basic 
unit in knowledge point recognition [88]. 

Model Training. Although one may directly use existing pre-
trained object detection models, general-purpose detection models 
trained on natural images (e.g., scenery images) often perform 
poorly in domain-specifc tasks. The detection of design elements 
in lecture videos is such an example because of the unique charac-
teristics of lecture content, which calls for domain-specifc models. 
Thus we pretrained our model with DocBank, a benchmark dataset 
of 500K document pages [52]. We chose DocBank because both 
the DocBank documents and our lecture slides consist of a mix of 
image and text elements and contain location-sensitive elements 
such as titles and footers. Once a model is pretrained with DocBank, 
we fne-tuned the model using the dataset we collected. This trans-
fer learning process improves the performance of object detection 
models. Without the pretraining step, when we tested with four 
widely-used deep-learning-based object detection models, namely 
Faster R-CNN [55], SSD based on ResNet [56], EfcientDet [89], 
and CenterNet [65, 108], the highest mean Average Precision (mAP) 
value (with IoU of 0.5) was 74% for the CenterNet architecture. The 
pretraining step with DocBank increased the mAP from 74% to 
79%, demonstrating a positive efect of pretraining a model on a 
document layout dataset for the lecture design detection task. More 

1We used two diferent ranking measures (i.e., popularity, user reviews) from Class-
Central [40, 41].
2https://github.com/imurs34/lecture-design-dataset 

https://github.com/imurs34/lecture-design-dataset
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detailed information about these experiments and hyperparameters 
is provided in the Supplementary Materials. We released both the 
pretrained model and fne-tuning code as open-source3. We expect 
our model to be used by future researchers as a baseline for lecture 
design element detection. 

Postprocessing for Adaptation. We perform two postprocessing 
analyses for adaptation in the later stage. First, we extract design 
properties for text elements, including font size, typeface, and font 
color.4 The formative study (Section 3) informs us that these prop-
erties afect readability. Second, we extract the background of the 
slides for the reconstruction of slides in the adaptation stage. We 
used an image in-painting model to remove the detected static ob-
jects (e.g., text, fgures) from the original lecture materials [9], which 
returns an image without static objects but only the background 
left. 

5.1.3 Dynamic Object Analysis. Lecture videos often contain small 
objects, such as mouse pointers and handwriting, that dynamically 
change over time; however, these objects are often not accurately de-
tected by object detection models because of their small sizes [105]. 
In order to detect these dynamic objects in a video shot, apart from 
Static Object Analysis (Section 5.1.2), we used OpenCV motion anal-
ysis module [26]. We matched the area of the detected motions with 
the object detection results from Section 5.1.2 to identify dynamic 
objects. Details can be found in the Supplementary Materials. 

5.1.4 Text-to-Script Mapping. Lastly, we determine mappings be-
tween the audio and on-screen text so that when adapting content, 
we can segment a slide that has excessive text into multiple slides 
while ensuring that we split the slide at the right moment. We 
developed a rule-based mapping algorithm, which consists of two 
steps: alignment and grouping. 

Alignment Stage. We frst identify alignments between the on-
screen text and the transcript based on two factors: progressive 
disclosure and semantic similarity. If one new text element appears 
in a video (e.g., bullet point) and it is currently explained by an 
instructor [62, 82, 107], we create a mapping between the newly 
disclosed element and current narration. Otherwise, we calculate 
the semantic similarity between a narrated sentence and every text 
element in the current video frame using Sentence-BERT [77]. After 
that, we use a bipartite graph matching algorithm [28, 44] to fnd 
optimal mappings. Details including thresholds can be found in the 
Supplementary Materials. 

Grouping Stage. Once we fnd element-level mappings, we com-
bine text elements into units that need to be displayed to learners 
at once in a single slide. For example, three bullet points should 
be displayed in a single frame if an instructor explains them in a 
non-linear manner, referring to them back and forth. In this case, 
the three bullet points should not be segmented into three diferent 
frames, but need to be grouped as an atomic unit. We implement 
two rules in grouping the element-level mappings. First, we con-
sider the linearity of lecturing. For example, if an instructor does 
not mention the text elements in a linear order (i.e., from top to 

3https://github.com/imurs34/lecture_design_detection 
4We used Pytesseract OCR [27], DeepFont [97], and color clustering techniques [16] 
to extract font size, typeface, and font color, respectively. 

bottom, from left to right), we merge all non-linearly mentioned 
elements into a group. Second, we merge multiple text elements 
that an instructor concurrently mentions. If an instructor mentions 
multiple text elements in a single sentence, then learners should be 
able to refer to all the elements at once. 

5.2 Adaptation Stage 
In this stage, the decomposed elements are adapted through mul-
tiple strategies. The adaptation stage consists of three modules: 
(1) local content adaptation, (2) layout adaptation, and (3) global 
content adaptation. The frst and second modules are designed to 
maximize the guideline compliance rate for mobile learning, while 
the global adaptation is intended to refne the adapted results to be 
consistent and coherent. 

5.2.1 Local Content Adaptation. We locally adapt content accord-
ing to design guidelines from the literature (see Appendix). For 
font size, image size, and line spacing, we enlarge them until they 
meet the guidelines. For the typeface, we change the handwriting, 
script, and serif fonts to sans-serif fonts. For color contrast between 
the fonts and background, we adopt the closest color to the origi-
nal color of fonts that exceeds the threshold from the guidelines. 
Lastly, the amount of text is adjusted if it exceeds the threshold, 
being segmented into multiple slides. However, we do not segment 
a single text box or atomic unit from Section 5.1.4 even if it violates 
the guidelines. Since lecture material is a creation of instructors 
and engineers, we took a preservative approach that maximizes the 
guideline compliance rate while maintaining the original design as 
much as possible. The details of the balance between preservation 
and adaptation, along with exact thresholds are included in the 
Appendix. 

5.2.2 Layout Adaptation. When optimizing the structures of the 
visual elements for mobile devices, a design compromise is required 
since the guidelines often cannot be fully achieved for every element 
due to the limited screen space. If there is only one type of design 
element (e.g., text-only or image-only frames), we can easily enlarge 
the elements at the same rate to the extent to which they meet the 
guidelines without overlaps. However, if there are diferent types 
of elements in a frame, we have to choose an element to prioritize 
for enlargement. To determine a point where the overall guideline 
compliance rate is maximized, we use a constrained optimization 
technique [10]. We defne the objective function as follows: �c − x �2+ 

�c − y �2min , where 0 < x < xmax and 0 < y < ymax. 
c c 

(1) 
In this function, x and y represent the average font size of text 
elements and image elements, and c indicates a threshold from the 
font size guideline. xmax is the largest available font size of text 
without resizing image elements, and ymax is that in image elements 
without resizing text elements. Our algorithm aims to minimize 
deviations between the guideline and content, thereby maximizing 
the overall guideline compliance rate. We consider the available 
space on the screen to set constraints for font sizes. To determine 
xmax and ymax , we fx the size of one type of element and enlarge 
the other type of element as long as there is no overlap. The two 
solutions that minimize the optimization function determine the 

https://github.com/imurs34/lecture_design_detection
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Figure 3: A learner can resize, reposition, and toggle various in-video elements using FitVid’s video UI. (a) Original Content: 
original content without adaptation is displayed to the learner by default, (b) Direct Manipulation: the learner can resize 
and reposition design elements (e.g., text boxes, images, and talking-head instructors) using touch and drag interactions, (c) 
Adapted Content: the learner can view the adapted content obtained from the automated pipeline (e.g., size and amount of 
text are adjusted in the fgure), (d) Dark Mode: the learner can choose the dark background and bright text of video content, 
(e) Toggle Instructor and Template: the learner can turn on and of the talking-head instructor view and the slide template 
(e.g., university logos in headers or footers). (Lecture Source and License: Holly Ott) 

compromised sizes and locations for all elements. The details of the 
enlargement and locating methods are in Supplementary Materials. 

Lastly, we reconstruct a column layout inspired by the concept 
of the content refow in responsive web design, which converts 
multiple columns into a smaller number of columns to ft the width 
of viewport of devices [73, 98]. We frst extract a column layout and 
reading orders of learning materials [58]. We then determine a fnal 
column layout by adopting the layout that has a higher guideline 
compliance rate between the original layout and the converted ones 
with content refow. 

5.2.3 Global Content Adaptation. The global content adaptation 
stage refnes the local adaptation results in consideration of the 
consistency of designs. Specifcally, we consider font size of title, 
runt, aspect ratio of images, progressive disclosure, and positional 
word. The detailed implementation can be found in Supplementary 
Materials. 

6 VIDEO INTERFACE 
We designed and developed an interactive video player of FitVid, 
depicted in Fig. 3. It renders the automatically adapted results and 
further supports direct manipulation and content customization. 

Direct Manipulation. As automatically generated results may pro-
duce incorrect adaptations, AI-powered systems are recommended 
to support the correction of the automated results [1, 83]. FitVid 
allows users to edit and refne the automated adaptation results 
through direct manipulation. As shown in Fig. 3 (a) and (b), a learner 
can directly resize and reposition in-video elements (e.g., text boxes, 
images, and talking-head instructions) using touch and drag inter-
actions. In particular, a learner can resize elements by dragging 

their edge. We chose the drag interaction instead of the commonly 
used pinch-zoom interaction based on the formative study results, 
in which participants suggested an element-wise zoom feature that 
does not result in cutting of part of the content. The changes a 
learner has made are preserved even when they navigate back and 
forth through a video. 

Content Customization. Based on the formative study, we provide 
customization options for users to determine whether to display 
talking-head instructors, slide templates, and change background 
colors. For instance, Fig. 3 (e) shows the turn-of option for the 
talking-head instructor. Learners can also use the dark theme that 
provides bright fonts in dark backgrounds (Fig. 3 (d)). 

The control bar of the player shown at the bottom of the inter-
face includes six buttons: mobile-friendly mode, dark theme, lock, 
refresh, template toggle, and talking-head instructor toggle. The 
lock button disables direct manipulation in case a learner does not 
want to manipulate content (e.g., when holding a phone when on 
the move). Learners can disable the mobile-friendly mode to ac-
cess the original content before the adaptation. This is to allow 
users to easily dismiss system-generated results as suggested by the 
human-AI interaction guideline [1]. The dark gray bars on the video 
timeline in the play bar indicate the shot transitions, which mostly 
correspond to lecture slide transitions. The player runs on web 
browsers and is implemented using HTML, CSS, and JavaScript. 

7 PIPELINE EVALUATION 
We evaluated the performance of our computational pipeline through 
content analysis and content evaluation study. For the evaluation, 
we sampled 53 video frames from 24 videos, which are included 
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Original Content Adapted Content # of Target Cases # of Adapted Cases 

0-20 words: 24% 0-20 words: 39% 

Word Count 20-45 words: 40% 
Above 45 words: 36% 

20-45 words: 49% 
Above 45 words: 12% 

20 20 

Average: 38.58 words Average: 26.14 words 

1-16 pt: 86% 1-16 pt: 78% 

Font Size 
16-28 pt: 14% 

Above 28 pt: 0% 
16-28 pt: 22% 

Above 28 pt: 0% 
35 31 

Average: 11.19 pt Average: 12.04 pt 
Typeface Serif, Script, Handwritten Sans-serif 15 15 

Line Spacing Average: 127.5% Average: 150% 2 2 

1-16pt: 88% 1-16pt: 83% 
Font Size in 
Images 

16-28pt: 13% 
Above 28pt: 0% 
Average: 9.72 pt 

16-28pt: 17% 
Above 28pt: 0% 
Average: 11.43 pt 

19 19 

Color Contrast 5.03 7.0 6 6 

Table 1: Statistics of design elements from original content and adapted content. The result demonstrates that the adaptation 
pipeline improves the design guideline compliance rate. 

in Supplementary Materials. Specifcally, two of the authors ex-
amined every keyframe extracted from the dataset for the object 
detection model training, and selected a subset of them for eval-
uation to include diverse design factors that are not uniformly 
distributed across videos. We applied our pipeline from end to end 
to the sampled videos without correcting propagated errors from 
the submodules. The detailed evaluation for each submodule with-
out considering dependencies between submodules is included in 
Supplementary Materials. We also report representative error cases 
with examples. 

7.1 Content Analysis 
We conducted the content analysis to compare the design guide-
line compliance rate before and after the adaptation. The guideline 
thresholds are in Appendix. In Table 1, the number of target cases 
indicates how many video frames initially violate the guidelines. 
The number of adapted cases is the number of video frames success-
fully adapted to satisfy the guidelines. The guideline compliance 
rate increased by 24% and 8%, respectively, for the word count and 
font sizes. The compliance rate changed from 13% to 17% for the 
font sizes in images. For typefaces, line spacing, and color con-
trast, all the target cases of adaptation were successfully adapted to 
comply with the guidelines. Fig. 4 shows the examples adaptation 
results. In Fig. 4 (a), the fonts are enlarged, and the text is trimmed 
down. Fig. 4 (b) shows an example of converting the column de-
sign with content refowing. In Fig. 4 (c), the adaptation algorithm 
fnds the balance between enlarging text and images containing 
text, compromising the compliance rate of each element. Fig. 4 (d) 
demonstrates the increased color contrast. Lastly, Fig. 4 (e) shows 
an example of typeface adaptation from handwriting to a sans-serif 
font. Overall, the results demonstrate that our pipeline is applicable 
to various types of lecture content designs. 

Meanwhile, we identifed three representative failure cases. First, 
an overlap occurs due to the errors of the object detection model. 
For example, in Fig. 4 (f), the checkbox beside the text box ’B) 
Quadruped’ was not detected by the model and caused an overlap. 
Second, four cases did not satisfy the font size guidelines even after 
the adaptation (Table 1). The issue derived from one of the global 
adaptation rules, "Font size of the title should be larger than that 
of the rest of the text elements.". If the size of the title does not 
comply with the guidelines (Fig. 4 (g)), the other text elements also 
fail to meet the guidelines. Third, the number of words could not 
be reduced below the threshold since the text-to-script mapping 
module grouped multiple text boxes as atomic units. Meanwhile, 
the direct manipulation feature can compensate for the system’s 
failure by allowing users, for example, to reposition the overlapping 
elements or resize text that is not large enough. 

7.2 Content Evaluation Study 
The content evaluation study evaluated perceived readability and 
ratings of the adaptation results by comparing them with the origi-
nal content. This large-scale evaluation reveals how general users 
perceive the previous section’s adaptation results for the same 
content. 

7.2.1 Participants. We recruited 198 respondents (70 female, 127 
male, 1 prefer not to specify) with ages ranging from 20 to 69 (20-
29: 86, 30-39: 93, 40-49: 12, 50-59: 5, 60-69: 2) through Amazon 
Mechanical Turk (AMT). They were provided with 0.9 USD for a 
10-minute long survey for a Human Intelligence Task (HIT) on 
AMT. Participants’ highest level of education was as follows: less 
than high school (1.0%), high school degree (11.7%), some college 
(9.2%), bachelor’s degree (62.6%), Master’s degree (0.5%), and gradu-
ate degree (15.0%). We ensured that all respondents evaluated the 
content adaptation results on their mobile device by asking them 
to upload a mobile screen capture of their survey response screen. 
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Figure 4: Examples of adapted content. (a) Resized fonts and reduced text, (b) Changed column layout, (c) Adjusted image 
and text at compromise point, (d) Increased color contrast, (e) Changed typeface. The representative failure cases are: (f) over-
lappings due to errors from the object detection stage and (g) incomplete text resizing due to its comparative size with titles 
(Lecture Source and License: Holly Ott, Aruna Chandran, Charlie Nuttelman, Google Career Certifcates, Philip John Currie, 
Jim Sullivan) 

7.2.2 Method. We designed a content evaluation survey by uti-
lizing the adaptation results in Section 7.1. The study began with 
an introduction of the experiment with instructions, and a demo-
graphic questionnaire followed. We then presented fve pairs of the 
original and adapted content in sequence using a paired comparison 
method [101]. The participants were required to rate the subjective 
readability and design satisfaction for six design elements: font 
sizes, amount of text, typeface, line spacing, image sizes, color con-
trast between fonts and background. The question was on a 7-point 
ordinal scale and included the ’Not Applicable’ option. The order 
of the presented content and condition was randomized. We pub-
lished a total of 10 HITs on AMT, three with six pairs and seven 
with fve pairs of comparisons. A participant could participate in 
multiple HITs with diferent image datasets. Our form also included 
an attention check question [67] to flter invalid responses. 

7.2.3 Results. We initially collected 401 responses and removed 
152 responses for invalid attention check answers, 44 for invalid 
screen capture, and 7 as outliers beyond 2 standard deviations from 
the mean [2]. Finally, we had valid responses from 198 participants 
with at least 16 ratings for each pair of the original and the adapted 
content. 

We tested the internal consistency of the responses using Cron-
bach’s alpha [20], and it showed high reliability with 0.78 on average 

(min: 0.63, max: 0.90). Thus, we averaged participants’ ratings for 
each item. We then conducted a Wilcoxon signed-rank test for 
analysis due to the ordinal nature of scales. On a 7-point scale ques-
tion (1: very poor, 7: very good), the participants rated that the 
adapted content is signifcantly more satisfactory than the original 
content on all seven design elements: font size (p < 0.0001), amount 
of text (p < 0.0001), typeface (p < 0.0001), line spacing (p < 0.0001), 
image size (p < 0.0001), and color contrast (p < 0.0001) (Table 2). 
They also rated the readability of the adapted content signifcantly 
higher than the original content (p < 0.0001). The result showed 
that content adaptation improves general users’ readability and 
design satisfaction. 

8 USER STUDY 
This section evaluates the users’ learning experience and percep-
tions using our system. In addition to the quantitative study in the 
previous section, we investigate the usage cases in a learning situa-
tion. We conducted a controlled user study that compares FitVid’s 
interface with the baseline interface without content adaptation 
and customization. We designed our study to answer the following 
research questions: 
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Original Content Adapted Content 
M SD M SD p-value 

Font Size 5.10 1.19 5.83 0.75 <.0001 
Amount of Text 5.38 1.04 5.76 0.80 <.0001 

Typeface 5.26 1.02 5.65 0.82 <.0001 
Line Spacing 5.41 1.04 5.76 0.80 <.0001 
Image Size 5.46 0.91 5.78 0.81 <.0001 

Color Contrast 5.60 0.95 5.88 0.79 <.0001 
Readability 5.36 1.01 5.91 0.73 <.0001 

Table 2: Subjective content rating results demonstrate that FitVid signifcantly increases the users’ design satisfaction. Signif-
icant p-values are in bold. 

• RQ1. How does FitVid’s automated content adaptation im-
pact the perceived readability and design satisfaction com-
pared to the baseline video interface? 

• RQ2. How do users use and beneft from FitVid’s direct ma-
nipulation? 

• RQ3. How do users use and beneft from FitVid’s content 
customization feature? 

• RQ4. How does FitVid afect learning experience, concentra-
tion, and cognitive demand compared to the baseline video 
interface? 

The study was a within-subjects design, where each participant 
used two diferent video players: (1) baseline interface and (2) FitVid 
with adapted content and UI that provides direct manipulation and 
content customization. To maintain the uniformity in the look 
and feel of both interfaces, the baseline used the same interface 
design as our system. We selected two videos each from two courses 
considering the diversity of lecture designs (C1: Lean Production 
(edX), C2: Essential Epidemiologic Tools for Public Health Practice 
(Coursera)). Each video has a similar length (C1: 6:37, 10:22, C2: 
7:50, 7:44) in slide-based lecture type. 

8.1 Participants 
We recruited 31 participants [P1-P31] (15 male and 16 female) 
through social media posting. They were college students, graduate 
students, and ofce workers who had a prior mobile learning expe-
rience. They received 15 USD for up to 70 minutes of participation. 

8.2 Procedure 
The study was conducted remotely using Zoom, and the informed 
consent was collected via email. We frst introduced the interface of 
our system. The participants then familiarized themselves with our 
system for as long as they wanted. After the exploration, the partici-
pants were required to watch two lectures using two diferent video 
players in counterbalanced order on their mobile phones. They were 
randomly assigned to watch two videos from one of the two courses. 
After the watching session, we interviewed their perception of each 
video player and the reasons behind their manipulations. They 
then completed a questionnaire on difculty, cognitive load, con-
centration, easiness to use, readability, perceived learning efciency, 
and learning experience for each interface. We used three readabil-
ity questions from existing work: Design choices made reading 

harder (fonts, colors, etc.); It was easy for me to lose my place while 
reading; Overall the content was easy to read [53, 63]. The ques-
tionnaire also includes scoring four design elements of content: the 
size of content, amount of content, line spacing, and typeface. The 
complete questionnaire is included in Supplementary Materials. 

8.3 Results 
We summarize the results and describe the main fndings with a 
focus on the research questions, system usage patterns, and our 
system’s usefulness. 

8.3.1 RQ1. How does FitVid’s automated content adaptation impact 
the perceived readability and design satisfaction compared to the 
baseline video interface? Most of the participants (28/31) watched 
the video primarily with the ‘mobile mode’ on, which provides the 
adapted content. Except for one participant (P21), all participants 
expressed willingness to use the mobile mode for their daily mobile 
learning. P21 commented that he would not use mobile devices for 
video learning due to their limited screen sizes, even with mobile 
mode. 

To analyze the survey results, we used a Wilcoxon signed-rank 
test due to the ordinal nature of Likert-type scales. For three read-
ability questions, we tested internal consistency using Cronbach’s 
alpha [20], which was all higher than 0.65. Thus we used the av-
erage of the three responses. On a 7-point Likert scale question (1: 
strongly disagree, 7: strongly agree), the participants reported that 
the adapted content is signifcantly more readable compared to the 
original content (W = 9, p < 0.0001). They rated that the adapted 
content is signifcantly more appropriate for mobile devices in size 
of content (W = 6.5, p < 0.0001), amount of content (W = 8, p < 
0.0001), line spacing (W = 3.5, p < 0.0001), and typeface (W = 19, p 
< 0.01). 

The interview responses confrmed the survey results. P24 em-
phasized the increased readability, "I would have quit watching 
the lecture without the mobile mode with good readability.". On 
the other hand, P2 mentioned that he has astigmatism and stated 
that "The original content was almost painful to watch, while the 
adapted content was readable enough.". Meanwhile, some learners 
had concerns about missing necessary content since adaptation 
sometimes reduced the amount of content. However, they noted 
that they could check there is no missing content after referring to 
the original content by turning of the mobile mode. 
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Figure 5: Manipulation types observed in the user study, including resizing, repositioning, and highlighting. (Lecture Source 
and License: Holly Ott, Aruna Chandran) 

8.3.2 RQ2. How do users use and benefit from FitVid’s direct manip-
ulation? For a single video, the mean number of direct manipulation 
interactions (i.e., number of touch interactions) was 21 (min: 0, max: 
84). Almost all participants (30/31) were willing to use direct ma-
nipulation in their daily mobile learning, while one participant said 
that he does not need direct manipulation if he can have the adapted 
content with sufcient readability. Based on the post-interview, we 
identifed three high-level reasons for using direct manipulation. 
Fig. 5 shows the behaviors of manipulation, including resizing, 
repositioning, and highlighting. We report the reasons behind the 
manipulations below, which include adjusting the design, promot-
ing concentration, and interacting with content (Table 3). 

To adjust the design. The primary reason for enlarging ele-
ments was to improve the readability. The participants noted that 
direct manipulation allows them to customize the automated adap-
tation results further. For example, P18 stated, "Although the adap-
tation optimizes the content sizes, I sometimes wanted to see them 
bigger. In that case, I utilized the direct manipulation." When asked 
to compare the direct manipulation with the pinch-zoom interac-
tion that is supported by most video interfaces, the participants 
noted that "direct manipulation does not cut of the content, al-
lowing to see the whole part of the zoomed content." (P15). They 
also mentioned the convenience of zooming in on the individual 
content selectively. 
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Category of Reasons 

To adjust design 

Reasons for Using Direct Manipulation 

To enlarge content for improved 
readability and legibility 
To arrange content into preferred layout 

Participants 

20/31 

3/31 

Direct Manipulation 

Resize 

Reposition 

To promote 
concentration 

To put away unnecessary content that learner 
fnishes watching and focus on current 
important content 
To highlight where instructor is explaining 
or emphasizing to better memorize content 

7/31 

3/31 
2/31 

Resize, Reposition 

Resize, Highlight 
Resize 

To interact with content to enjoy interaction itself 5/31 Resize, Reposition 

Table 3: Reasons behind direct manipulation usage. Users used the direct manipulation to adjust the design, promote concen-
tration, and interact with content. 

To promote concentration. The participants manipulated the 
content to aid their concentration. They used direct manipulation to 
put away the content they fnished watching, highlight important 
parts, and better memorize the materials. Some participants put 
away elements one by one as they fnished watching them. Others 
merely touched an element with its edges highlighted to mark 
where they are reading or focusing. P4 elaborated that "I could 
focus on the items on screen more easily when I am manipulating 
them.". 

To interact with content. Several participants enjoyed the feel-
ing of interaction itself. They expressed excitement about the in-
teractivity, for example, "I have never seen this feature in existing 
video players, so it was interesting to use it [direct manipulation]." 
(P27). P22 stated that "[Using the baseline player,] I found the lec-
ture boring. The increased interactivity by moving and touching 
the element made it more engaging and less tedious.". 

8.3.3 RQ3. How do users use and benefit from FitVid’s content cus-
tomization feature? Overall, the participants appreciated the con-
tent customization option, which allows customization of lecture 
design. Almost all participants (30/31) want to use the content cus-
tomization feature for their daily mobile learning. For the toggle 
instructor feature, 58% of the participants watched the video with 
the instructor not displayed on the screen. They turned of the in-
structor display for two reasons. First, they tried to make the most 
of the mobile screen space since they could have larger text and 
images without the instructor. Second, they found it easier to focus 
on the main content without the instructor. They explained that 
talking head split their attention. Other participants had diferent 
opinions, noting that the presence of an instructor gives a feeling 
of engagement and two-way communication. 

For the toggle template, 93% of the participants watched the video 
with the template hidden. They wanted to remove the irrelevant 
content to focus on the main content and increase the readability 
of the main content by utilizing the space taken by the template. 

For the dark mode, 58% of participants watched the video in dark 
mode. They highlighted the reduced eye fatigue using it. For ex-
ample, P24 said that "The video content basically does not support 
the dark theme, so I did not watch a video before going to bed in 

dim light. But now I can watch them in comfort.". Other partici-
pants switched original and dark themes for a change, refreshing 
themselves with a diferent color theme. Meanwhile, other partic-
ipants indicated that they did not need it in bright environments 
and preferred dark fonts in a bright background. 

8.3.4 RQ4. How does FitVid afect learning experience, concentration, 
and cognitive demand compared to the baseline video interface? The 
videos used in the study had a similar reported level of difculty 
(W = 56, p > 0.05). For a 7-point scale question, FitVid signifcantly 
improved learning experience (W = 12.5, p < 0.0001) and perceived 
learning efciency (W = 20.5, p < 0.0001). We also found a signifcant 
diference on the levels of concentration (W = 35, p = 0.0002). The 
participants reported greater willingness to use FitVid in their daily 
mobile learning (W = 14.5, p < 0.0001) and greater easiness to use 
(W = 39.5, p < 0.001) compared to baseline. However, FitVid turns 
out to be signifcantly more confusing to use compared to baseline 
(W = 41, p < 0.05). Nonetheless, there was no signifcant diference 
in cognitive load (W = 133, p = 0.0680) and FitVid signifcantly 
decreased the frustration level while watching the video (W = 45.5, 
p = 0.0001). 

Most participants expressed that our system was benefcial for 
their learning. Some participants reported that the increased read-
ability made it easy for them to follow the lecture. Other participants 
noted the benefts of manipulating talking-head instructor, "I felt 
more engaged and focused after I moved the position of the instruc-
tor to the center of the screen." (P11). P12 said that "I felt like I have 
more control over my learning because I could adjust the content 
in my own way.". 

Concerning the cognitive demand, some participants noted that 
reading text with FitVid was less demanding with more legible 
fonts compared to the original content. They appreciated that they 
could remove unwanted design elements, including the instructor, 
template, and cursive typefaces, which can pose an unnecessary 
cognitive load. On the other hand, some participants stated that 
they needed time to get used to manipulating content in real-time 
while watching the video. 
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9 DISCUSSION AND FUTURE WORK 
We discuss limitations and future research directions for responsive 
and fexible video content adaptation. 

Responsive design for various display settings. Although our work 
mainly focused on smartphone devices, FitVid can be extended 
to support various display settings, such as tablets, smartwatches, 
and very large screens. For example, content can be optimized for 
smartwatches by compressing information into keywords or short 
summaries. FitVid’s pipeline can also support large screens or mul-
tiple screens. For example, for a video lecture to be displayed on a 
large screen in a conference hall, the system can adjust the font size 
to be visible to audiences or combine content across multiple video 
shots into a single slide for efectively presenting the information. 
On the other hand, a learner with a dual monitor can have one 
screen dedicated to lecture slides and the other to talking-head 
instructors, with a customized layout. 

Controlling the degree of adaptation. While the user study results 
revealed that FitVid improves the overall learning experience with 
increased concentration and readability of content, the participants 
did not fully trust the results from automated adaptation. For exam-
ple, because the adapted content contains less text than the original 
lecture material, participants checked if the system removed neces-
sary content from the slide by comparing the adapted and original 
content. They appreciated the feature for accessing original content. 
The human-AI interaction guidelines [1] are also in line with the 
participants’ responses, which suggest providing users control over 
automated results and allowing easy correction. Future work may 
allow learners to choose the degree of adaptation (e.g., only minor 
adjustments to very aggressive adaptation). 

Direct manipulation for video content. We observed a variety of 
needs for directly adjusting adapted content. Noticeable motiva-
tions for direct manipulation include adjusting design, promoting 
concentration, and interacting with content. One of the unexpected 
benefts of the manipulation was that learners interacted with the 
content itself to increase their cognition without pragmatic goals 
such as resizing or repositioning elements. 

Meanwhile, several participants noted that they needed time 
to get used to the direct manipulation feature while watching the 
video. While dragging interaction is intuitive to manipulate the sizes 
and positions, one possible improvement is to provide font size or 
image size options enabling resizing with fewer touch interactions. 

Furthermore, adaptation technique may evolve to be adaptive 
and personalized, based on usage log or user-specifed preferences. 
For instance, if a user enlarges the font size to 30pt on average 
using direct manipulation, the system can remember this setting 
and generate text with the same font size in their future use instead 
of adopting general design guidelines. The future work can collect 
users’ manipulation log at scale, and the visual design of lectures 
can even be crowdsourced by using the log data. 

Advanced accessibility with content customization. The idea of 
content customization can be used to increase the accessibility 
of videos in various contexts. FitVid can readily generate adapted 
content for specifc populations, such as for low vision [50, 90], older 
adults [19], and dyslexia [23, 78] populations, based on the design 

guidelines for these populations. For example, we provide color 
settings for color blindness by providing them with an inclusive 
color palette, instead of the dark theme we provided for mobile 
learners [42, 95]. Our work can be an initial step toward enhancing 
the accessibility of visual video content for various user groups 
with diferent ability profles. 

Generalizing to other video domains. While this work mainly 
focused on video lectures, FitVid can also be applied to other types 
of informational videos, such as tutorials, news, and educational 
talks. Depending on the characteristics of the video contents, peo-
ple may adjust the parameters in our computational pipeline. For 
example, TED talk videos often involve more dynamic elements 
such as moving speakers compared to slide-based lectures, then a 
lower threshold for the shot boundary detection algorithm can be 
adopted. 

Ecosystem of mobile-friendly video content. While this work tar-
gets learners, FitVid can potentially beneft other stakeholders, 
including instructors and learning platform engineers. For example, 
our automated adaptation technique can be helpful for instructors 
to create mobile-friendly videos without receiving help from peo-
ple with professional video editing skills. FitVid can also beneft 
learning platform engineers by automatically rendering content to 
ft mobile devices and providing design options to learners without 
additional development work. 

10 CONCLUSION 
This paper introduces FitVid, a system that enables automated 
content adaptation and design customization for mobile learning 
environments. FitVid consists of an adaptation pipeline that reverse-
engineers pixels to retrieve design elements (e.g., text, images) from 
videos, using deep learning with a custom dataset, which powers a 
UI that enables resizing, repositioning, and toggling in-video ele-
ments. The content adaptation results improve the design guideline 
compliance rate by 24% for word count and 8% for font sizes com-
pared to the original content. To demonstrate the efectiveness and 
usefulness of our system, we conducted a user study and content 
evaluation study. We fnd that FitVid provides an improved learning 
experience, signifcantly increasing perceived readability and the 
level of concentration. We expect to apply the proposed techniques 
to enhance the accessibility of video content, lowering the barrier 
not only for mobile users but for diverse user groups under diferent 
contexts, abilities, and preferences. 
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A APPENDIX 

A.1 Design Guidelines from the literature 

Jeongyeon Kim, Yubin Choi, Minsuk Kahng, and Juho Kim 

and purpose of the adaptation. We suggest regarding it as an initial 
step to establish a metric for learning content design in mobile 
environments. The averaged design principles we used for content 
adaptation are: (1) average font size of a frame should be above 21.4 
pt, (2) the number of words per frame should be below 30 words, 
(3) decorative fonts such as handwriting and script typeface should 
be adapted to sans-serif, (4) line spacing should be above 1.5 * font 
size, (5) complex images containing text should be enlarged for font 
size to be above 21.4pt, (6) color contrast ratio between text and 
background should be above 5.75:1. 

Category Design Element Design Guideline Prior Work 

Font Size Above 16 - 28 pt [29, 31, 36, 39, 49, 51, 57, 74] 

Text Element 
Number of Words Below 20-45 words [13, 31, 36, 39, 96] 

Typeface Avoid handwriting and script fonts [3, 8, 24, 31, 36, 39, 51, 57, 64, 74, 81, 96] 

Line Spacing 1.5 * font size [74] 

Letter Spacing 0.12 * font size [17] 

Image Element Small and Complex Images As large as possible [30, 31, 51, 69] 

Color Color Contrast above 4.5 - 7.0 [17, 31, 32, 36, 39, 51, 74, 96] 
Table 4: Design guidelines from the literature 

• Font Size. Apple’s Human Interface Guidelines suggest us-
ing 17 pt as body text size [39] while Google Material Design 
Guidelines recommend 16 pt [57]. We also considered guide-
lines for presentation slides that suggest 28 pt [12, 36] as 
minimum font size. 

• Number of Words. Using less than 45 words per presenta-
tion slide is recommended for readability [13], while stricter 
guidelines advise using less than 20 words per slide [15, 87]. 

• Small and Complex Images. It is recommended to enlarge 
the images in slides as large as possible [31]. Our formative 
study results indicated that learners’ main pain point was 
a complex image that contains text, such as charts, tables, 
and diagrams. Based on users’ feedback, we applied font 
size guidelines in adaptation for complex images with text, 
resizing the image until the fonts within the image meet the 
guidelines. 

• Line Spacing. Several guidelines including WCAG [17, 61] 
suggest the line height to be at least 1.5 times the font size. 

• Typeface. The existing guidelines for typeface design rec-
ommend avoiding handwriting and script fonts [3, 8, 64, 81]. 

• Color Contrast. With regard to the color contrast between 
the font and background, WCAG suggests the color contrast 
ratio of 4.5:1 (Level AA) and 7.0:1 (Level AAA). 

To set up basic design principles for content adaptation, we used 
the average values from the guidelines since there is no rule-of-
thumb guideline with hard numbers. We do not claim that this 
value is a strict standard, but it can vary depending on the context 
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