
The MOOClet Framework: Unifying Experimentation,
Dynamic Improvement & Personalization in Online Courses

Mohi Reza
University of Toronto
Toronto, ON, Canada

mohireza@cs.toronto.edu

Juho Kim
KAIST

Daejeon, South Korea
juhokim@cs.kaist.ac.kr

Ananya Bhattacharjee
University of Toronto
Toronto, ON, Canada

ananya@cs.toronto.edu

Anna N. Rafferty
Carleton College

Northfield, MN, USA
arafferty@carleton.edu

Joseph Jay Williams
University of Toronto
Toronto, ON, Canada

williams@cs.toronto.edu

ABSTRACT
How can educational platforms be instrumented to accelerate
the use of research to improve students’ experiences? We show
how modular components of any educational interface – e.g.
explanations, homework problems, even emails – can be imple-
mented using the novel MOOClet software architecture. Re-
searchers and instructors can use these augmented MOOClet
components for: (1) Iterative Cycles of Randomized Exper-
iments that test alternative versions of course content; (2)
Data-Driven Improvement using adaptive experiments that
rapidly use data to give better versions of content to future
students, on the order of days rather than months. A MOOClet
supports both manual and automated improvement using rein-
forcement learning; (3) Personalization by delivering alterna-
tive versions as a function of data about a student’s character-
istics or subgroup, using both expert-authored rules and data
mining algorithms. We provide an open-source web service
for implementing MOOClets (www.mooclet.org) that has been
used with thousands of students. The MOOClet framework
provides an ecosystem that transforms online course compo-
nents into collaborative micro-laboratories, where instructors,
experimental researchers, and data mining/machine learning
researchers can engage in perpetual cycles of experimentation,
improvement, and personalization.

Author Keywords
Randomized Experiments; A/B Comparisons; Education
Technology; Massive Open Online Courses; Personalization;
Dynamic Improvement; Multi-Armed Bandits.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
L@S ’21, June 22–25, 2021, Virtual Event, Germany.
© 2021 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8215-1/21/06 ...$15.00.
http://dx.doi.org/10.1145/3430895.3460128

CCS Concepts
•Human-centered computing → Human computer inter-
action (HCI); •Applied computing→ Education; Interac-
tive learning environments;

INTRODUCTION
Even after online courses are deployed to students, many
instructors wonder about how to identify better versions of
course content. For example, if instructors and researchers
could add alternative explanations of key concepts, they could
experimentally compare which version is more helpful to stu-
dents [27, 28]. Data from initial experiments could be used to
enhance the experience of future students [28], as well as in-
spire ideas for new explanations to experiment with, producing
iterative cycles of data-driven improvement. In addition, data
about how alternative explanations benefited students with dif-
ferent characteristics could be used for personalization, such
as giving an explanation of Type A to students with lower prior
knowledge versus Type B to those with higher prior knowl-
edge [27, 24]. How can educational platforms better facilitate
such iterative experimentation, data-driven improvement, and
personalization?

Our answer is the MOOClet software architecture, which aug-
ments front-end components of educational interfaces with
back-end APIs and databases. These are designed so course
content can be flexibly adapted, through the process of instruc-
tors and researchers exploring new ideas, data, analysis and
algorithms. We refer to any interface component augmented
with this back-end architecture as a MOOClet. Figure 1 and
the following usage scenario illustrate what a MOOClet is and
the affordances it provides: An instructor has a MOOClet im-
plemented which delivers an explanation of standard deviation
on a particular lesson page in edX, by following instructions at
www.mooclet.org to instantiate a MOOClet back-end and link
it to the front-end webpage. The motivation for the instructor
to use the MOOClet is that they anticipate that future research
could be conducted to improve the explanation (or other web-
page content). Although there is not yet a formulated plan
for what ideas to test and the MOOClet simply delivers the

L@Scale 1: Perspectives from North America L@S'21, June 22–25, 2021, Virtual Event, Germany

15

https://www.mooclet.org

A B N…

Multiple Version of Educational Resources

Rules, Bayesian statistics, and machine
learning algorithms for deciding which

versions to deliver to learners

A B

Improvement

0% 100%

Personalization

50% 50%

A B

0% 100%

A B

0%100%

Instructors, Experimental Researchers, and
Data Mining/Machine Learning Researchers

Figure 1. The MOOClet Framework enables Instructors, Experimental
Researchers, and Data Mining/Machine Learning Researchers to collab-
oratively conduct A/B comparisons to improve and personalize educa-
tional resources in online courses.

single original explanation, it leaves the door open for future
improvement.

Imagine that students’ questions and comments on the discus-
sion forum later suggest an alternative explanation for standard
deviation. This is added to the MOOClet, and the probability
of assigning the two explanations is manually set to [90% Orig-
inal,10% New] at first out of caution but with no red flags it is
changed to [50% Original, 50% New]. The instructor collabo-
rates with a researcher to evaluate the two explanations using
quantitative metrics (e.g., ratings of explanations, accuracy in
solving related quiz questions) as well as qualitative feedback
(students’ comments and questions on the explanations). The
instructor comes up with a third explanation based on this
data, and after another experiment with probabilities set to
[33%, 33%, 33%], decides it is better and adopts it for the
foreseeable future by setting probabilities to [0%, 0%, 100%].
The MOOClet enables this cycle of iterative experimentation
and data-driven improvement to be repeated anytime in the
coming years as new ideas arise or data emerges about how to
better explain.

The MOOClet also enables automation of data-driven improve-
ment. Logging code can be used to send the MOOClet metrics
like student ratings of explanations. The next time new ex-
planations are proposed, to avoid manual analysis, the course
team could use a built-in widely-used multi-armed bandit al-
gorithm for adaptive experimentation [26, 14] to automatically
analyze explanation ratings and change the experience for
future students. The algorithm automatically modifies the
probability of assigning an explanation, using Bayesian anal-

ysis of the probability the explanation is the highest-rated.
As explained in Use Case 2, course teams can access a user-
friendly dashboard built on the MOOClet APIs, to monitor the
algorithm’s behavior in case they want to intervene [28].

The MOOClet also enables personalization. As a more diverse
range of students take the course, survey data suggests that
changing the vocabulary and examples of an explanation could
make it more helpful to students from different countries. The
MOOClet enables the course team to work with researchers
to either: (1) run an experiment to test the impact of alterna-
tive phrasings on different subgroups of students; (2) write
IF-THEN rules that give certain explanations to students from
certain countries; (3) apply a range of algorithms for personal-
ization and recommendation to optimize delivery of different
content based on a more complex learner profile.

This usage scenario illustrates how implementing a course
component as a MOOClet allows for perpetually iterative
cycles of experimentation, data-driven improvement, and per-
sonalization, for a range of future research where the exact
ideas, data, analysis or algorithms may not be specified in
advance.

There are many challenges in achieving the usage scenario us-
ing current platforms, including: (i) the use of one-off software
implementations to answer a particular pedagogical question
in a particular Learning Management System (LMS), (ii) dif-
ficulties associated with making changes to existing resources
once a course goes live, (iii) limited flexibility in testing out
ideas or using data in ways that were not part of the original
study design, (iv) the challenge of combining and managing
data from various sources.

The technical contribution of the MOOClet framework is a set
of design requirements and a proof-of-concept web-service
implementation that exemplifies how to architect software to
enable the kind of research we envision. We describe how to
implement different front-end components as MOOClets, pro-
vide a set of design requirements for the framework, and show
how to improve and personalize resources over time using a
three-fold abstraction layer consisting of a Version Set, Policy
Set and Learner Data Store, as illustrated in Figure 2. Our
implementation supports (i) easy switching between experi-
mentation, improvement, and personalization of educational
resources, (ii) the creation of flexible policies for deciding
what to present, (iii) the use of machine learning algorithms
and reinforcement learning to automatically analyze data and
present higher rated resources to future students, (iv) the addi-
tion of new versions of resources at any point in time without
major redeployment of front-end code, and (v) personalization
of resources using data mining algorithms, as well as manual
rule-based specification of which problems to give to learners
with different characteristics.

To summarize, this paper makes the following contributions:

• The conceptual contribution that a unified software infras-
tructure can be used to architect modular components of
educational interfaces to enable practical research using
iterative experimentation, data-driven improvement, and
personalization.

L@Scale 1: Perspectives from North America L@S'21, June 22–25, 2021, Virtual Event, Germany

16

• Eight design requirements for the MOOClet Framework,
a detailed description of its architecture, and an open-
source web-service implementation that provides back-end
databases and APIs that plug into multiple platforms such
as MOOCs and Learning Management Systems.

• Real-world use cases of MOOClets demonstrating how to
use them and when their use can bring together instruc-
tional improvement, experimental research, and data min-
ing/machine learning algorithms.

Readers interested in implementing MOOClets in courses or to
conduct research can contact usingmooclets@googlegroups.com
or consult www.mooclet.org for more guidance and access to
the web-service.

RELATED WORK
We consider related work on the implementation of online
field experiments, accelerating improvement of educational
resources using data from experiments, data-driven personal-
ization, and common educational data standards and infras-
tructures.

Implementation of Online Field Experiments
Over the past few years, experiments and A/B testing have
become ubiquitous in the technology industry, particularly in
the context of developing user interfaces and marketing [7, 12].
Tools for experiments have been deployed in industry settings
like website testing, where companies like Facebook and Mi-
crosoft have substantial resources to hire programmers to im-
plement experiments and apply machine learning algorithms
for product improvement and personalized recommendations.
Tools like Planout [1] and Optimizely [23] have made end-user
experimentation on websites possible by allowing users to de-
fine the logic of experiments, such as factorial designs and
stratified sampling. However, there is far less functionality for
randomized experimentation in most Learning Management
Systems and MOOC Platforms, with some notable exceptions
being platforms like edX [2] and ASSISTments [8]. A key
advantage of the MOOClet framework is that it augments
existing platforms with capacities for experimentation, and
further provides functionality for data-driven enhancement
and personalization.

Accelerating Improvement of Educational Resources us-
ing Data from Experiments
In industry settings, rapid use of data from experiments to
improve products is a top priority [25], as A/B comparisons
are seen more as a tool for product improvement than scien-
tific research. In addition, machine learning algorithms like
Thompson Sampling for the multi-armed bandit problem have
been applied by tech companies to rapidly analyze data from
randomized experiments, to try to accelerate the creation of
better performing resources and experiences for future users
[22]. Multi-armed bandit algorithms have also been used in
some cases to improve educational experiences for students [4,
14]. Although such adaptive experiments have been applied
with great success by leading technology companies, they
introduce a range of complex issues concerning statistical
analysis, which are active areas of research [21]. The aim of

this paper and the MOOClet framework is not to solve all the
challenges that arise from using adaptive experiments, but to
make it easier for instructors and researchers to have the option
to even conduct adaptive experiments for rapid data-driven
improvement. This can also open up new opportunities for
research on how to improve methods for adaptive experimen-
tation in real-world contexts.

Data-Driven Personalization
There is a vast literature on using data for personalization
in education, such as in Intelligent Tutoring Systems (ITS)
[19, 5], as well as work on educational recommender systems
[18]. Personalization can be understood as delivering one of
several alternative experiences, as a function of data about
an individual student – such as recommending one of several
problems as a function of data about how a student performed
on similar previous problems. Existing approaches to person-
alized learning in online courses tend to explore the use of
specific factors such as competency [17], prior knowledge
[11], or level of motivation [9]. The MOOClet framework, in
contrast, is a general approach to personalization where any
student characteristic or interaction with the learner interface
can be used for personalization, as long it can be logged, and
any algorithm, manual or automated, can be used to decide
which versions to deliver to the learner interface. Furthermore,
the famework’s approach to personalization is also flexible
because at any point in time, these characterstics, interactions,
and algorithms can be easily modified. Therefore, MOOClets
can make it easier to apply existing approaches to new settings
and then refine them over time.

Relationship to Common Specifications, Standards & In-
frastructures in Education
How does the MOOClet framework relate to existing useful ed-
ucation standards surrounding data use? Efforts like MOOCdb
[18] and xAPI [29] aim to provide a common format for data
across multiple platforms or components of a platform, so that
it can be readily understood by researchers, or used by specific
tools. The MOOClet framework is not a standard for data,
but an architecture for implementing educational resources
that learners interact with, so as to enable a range of experi-
mentation and improvement. So the Learner Data Store that a
MOOClet accesses can be implemented using specifications
from MOOCdb or xAPI, and the key value addition of the
MOOClet is that such data could be easily used by multiple
different algorithms or methods for experimentation, dynamic
improvement, and personalization.

DESIGN REQUIREMENTS
The overarching design goal of the MOOClet framework is
to implement the underlying software architecture for compo-
nents of real-world learner interfaces so that they are “future-
proofed” for a broad range of not-yet-specified research in-
volving manual and automated methods for Experimentation,
Data-Driven Improvement, and Personalization.

To operationalize this overarching goal and delineate a set of
constraints and considerations for the framework, we define
eight design requirements (D1-8). These are motivated by field
observations, conversations, and interviews during the authors’

L@Scale 1: Perspectives from North America L@S'21, June 22–25, 2021, Virtual Event, Germany

17

mailto:usingmooclets@googlegroups.com
https://www.mooclet.org

experiences with conducting over fifty randomized experi-
ments across a range of software platforms (Khan Academy,
ASSISTments, edX, NovoEd, Moodle, Canvas), our review
of existing software and tools for experimentation, and our
characterization of the relationship between experimentation,
data-driven improvement, and personalization.

D1: Enable iterative experimentation based on random-
ized A/B comparisons where successive versions of re-
sources can be added or removed. To help users investigate
the advantages and disadvantages of multiple resource ver-
sions, our framework must enable iterative A/B testing, where
data is readily available for analysis, and where potentially bet-
ter versions of resources can be easily added for investigation
even after real-world deployment.

D2: Enable resource improvement using data on past
learners. To help framework users choose between alternative
resource versions, and converge towards the best version, the
framework must collect data about past learners who have
received alternative versions of the resource.

D3: Enable resource personalization using data about spe-
cific learners. To help framework users account for the hetero-
geneity in learning profiles and preferences between different
students, as is typical in large and diverse online student pop-
ulations, the framework must help users take into account
different student characteristics to personalize which versions
are delivered to them.

D4: Work with existing learner interfaces. To maximize
user adoption, our framework must be compatible with ex-
isting learner interfaces and require only minimal, modular
changes to the front and back end infrastructures of these
interfaces.

D5: Support the addition, modification, and removal of
resource versions at any point in time. Whenever new ideas
arise, framework users must be able to add them into the
system, and test them against existing versions. This should
be possible at any point in time, as opposed to only before
deploying a course, or after finishing it. For example, let’s say
in week 1, learners see version A of an explanation. In week
2, if users want to test a new version, the framework must
allow them to easily deliver it to some subset of learners, and
compare it with earlier versions.

D6: Support multiple methods for deciding how versions
are delivered to learners. These include but are not limited to
uniform randomization, weighted randomization, and person-
alization based on learner characteristics and their interactions
with the learner interface.

D7: Support the addition, modification, and removal
of policies for delivering resources at any point in time.
Framework users should be able to change the methods be-
ing used to assign versions, and alter parameters such as the
weights or probabilities of assignment and any rules used to
select between versions.

D8: Support the continual addition of data from multiple
sources for use in improvement & personalization. This
ensures increasing access to unanticipated or not yet available

sources of data, in order to inform both research and practical
improvement.

MOOCLET ARCHITECTURE & WEB SERVICE
The design requirements motivate the MOOClet architecture.
This section explains what the components of the MOOClet
architecture are, how components interact with each other, and
the APIs that must be available, as illustrated in Figure 2.

To preview, implementing a Resource in a front-end Learner
Interface as a MOOClet requires that the Version assigned to a
resource is obtained by an API call to the MOOClet back-end,
which consists of a Version set, Policy, and Learner Data Store
associated with a particular MOOClet. Specifically, the API
call uses the MOOClet’s associated Policy (rule/algorithm) to
choose a Version from its Version Set, with the Policy having
access to the variables in the Learner Data Store to choose
Versions. Critical to the architecture is that there must be APIs
for accessing, modifying, and adding to the contents of the
Version Set, Policy Set, and Learner Data Store. We elaborate
more on each component below.

Open-Source Web Service Implementation. We instanti-
ated the architecture in a web service for using MOOClets
that deliver text and HTML Resources. We used the Django
(python-based) framework for web applications, to provide:
(1) Classes that allow the creation and modification of SQL
database objects to instantiate particular MOOClets and as-
sociated entities (e.g. Version Sets, Learner Data Stores); (2)
Appropriate RESTful APIs (see example calls in Figure 3); (3)
a graphical user interface Admin Panel as an alternative to the
APIs. The MOOClet Use Cases section used this MOOClet
web service, and www.mooclet.org provides details on inter-
acting with our web service and/or implementing one’s own.
(4) A number of policies, elaborated on in the Examples of
MOOClet Policies section.

We now elaborate on the key concepts:

Learner Interface: The front-end educational-interface that
displays the content a learner will interact with (e.g. Canvas,
edX, Khan Academy, Coursera, Qualtrics, Tools using Learn-
ing Tools Interoperability, emails, text messages, mobile apps),
into which MOOClets are embedded.

Resource: A component of a Learner Interface that presents
a Version of content/experience/interactions to a learner (e.g.
paragraph on a website, an explanation to a problem, an email
sent to students, a video lesson, HTML code for a problem,
a reflective prompt etc.) and is implemented as the front-end
part of a MOOClet. The Version presented to a learner must
be chosen via an API call to the back-end, to allow flexibility
in adding Versions and changing Policy, rather than the typical
approach of hard-coding these into code enmeshed to the
Learner Interface, which is far more complicated to modify.

Version & Version Set: A back-end data structure that con-
tains alternative Versions that are delivered via Resource in
the Learner Interface. An API must be available for retrieving,
adding, and modifying Versions.

Learner Data Store: A data structure that can contain a wide
range of data and variables about learners that is useful for

L@Scale 1: Perspectives from North America L@S'21, June 22–25, 2021, Virtual Event, Germany

18

Front-End Learner Interface

ID Condition Mindset Time Spent Performance …

P1 A Growth 30 minutes 80% …

P2 B Fixed 10 minutes 65% …

… … … … … …

Learner Data Store

Policy Set

Rule-based assignment
If Condition = A:

show Q1
If Condition = B:

show Q2
…

Uniform Randomization Thompson Sampling

… …

Q1: What is the key principle?
Q2: How would you explain this to

another student?

… ……

… …

…

Version Set

Back-End Admin Panel

API/modifyVariable

API/assignVersionOfResource

The MOOClet Framework

API/assignVersionOfResource API/setPolicyAndParams

API/modifyVersion

Figure 2. The MOOClet framework architecture consists of the Learner Data Store, Policy Set and Version Set. These components serve as an
abstraction layer between the front-end Learner Interface and the Back-End Admin Panel for instructors, researchers and developers, who can interact
with the framework via API calls.

experimentation, improvement, and personalization. Variables
tied to a learner are linked by an anonymous learner ID. These
variables can include which Version a particular learner re-
ceived, and an accompanying metric/dependent variable for
evaluating the impact of the Version. Variables relevant for per-
sonalization include student characteristics, such as whether
a learner got a previous problem right. Variables can also be
added that represent new variables produced in interim statis-
tical analyses, as well as algorithm parameters. An API must
be available for retrieving, adding, and modifying variables.

Policy: A function for determining which version of a Re-
source is presented to a particular learner, from decision rules
as simple as “assign with probability XX” to as complex as
any range of algorithms. A Policy can have parameters, which
can be modified by API. A Policy has API access to use vari-
ables from the Learner Data Store as input. An API must be
available for changing the Policy associated with a particular
MOOClet (or, relatedly, modifying a Policy’s parameters) at
any point in time.

Policy Set: A collection of all the potential Policies a
MOOClet can use, which can be added to and extended.

Admin Panel: An optional interface for making it easier
for users to interact with the components associated with a
MOOClet, such as a graphical user-interface that provides
access to the API calls previously specified.

MOOClet: We use the term MOOClet to refer to a particular
implemented constellation of a Resource as a front-end com-
ponent of an educational interface (e.g. text on a webpage),
an associated Policy, Version Set, and a Learner Data Store
with the appropriate APIs. A front-end Resource component
is ‘counted’ as a MOOClet if and only if it is linked to a Ver-

sion Set, Policy, and Learner Data Store, and if these have
been implemented using the specified architecture and APIs.
All of the following must be true: the content displayed in
the MOOClet interface component is selected by an API call
which uses an associated Policy (from the Policy Set) to chose
a Version from the Version Set; the Policy has API access to
data from the Learner Data Store in selecting versions; API
calls can be used to modify and access data in the MOOClet’s
associated Version Set, Policy, and the Learner Data Store.

The reason we introduce the novel term MOOClet1 is to be
precise in labeling educational resources implemented using
this architecture, as discussions with potential users revealed
they often believe an interface component enables what a
MOOClet does, but if the architectural constraints are not met
there is inevitably some capacity missing. For example, a com-
ponent can be randomized, but code reimplementation (rather
than API calls) is required to enable personalization. Or a
component can be adapted by a single algorithm for adaptive
experimentation, but switching to using an alternative algo-
rithm (and sometimes even changing an algorithm parameter!)
requires redeploying the Learner Interface code.

MOOClet Users: Instructors, Experimental Researchers,
and Data Mining/Machine Learning Researchers can use
MOOClets to conduct experiments, analyze data, or use al-
gorithms for data-driven improvement and personalization.
The people who typically have programming skills needed to

1The stem MOOC and diminutive “let” were chosen because a natural
use of this approach is to design the software underlying components
of MOOClets. However, it will become apparent that the approach
is not restricted to MOOCs, and the requirements specification can
be used to ensure dynamic experimentation and personalization in
any digital educational resource. In fact, it can be used for a range of
user-facing software, from websites to emails to mobile apps.

L@Scale 1: Perspectives from North America L@S'21, June 22–25, 2021, Virtual Event, Germany

19

implement experiments, data pipelines, and algorithms, will
also connect the MOOClet architecture to existing educational
platforms, and initialize MOOClets for specific applications.
The architects and developers for educational platforms (e.g.
Canvas, edX) and local university IT support staff can also use
and adopt the MOOClet architecture.

Examples of MOOClet Policies
We highlight some of the Policies currently implemented in
the Web Service, while noting that others can be added to the
policies file in the github repository (tiny.cc/githubmooclets).

A (Weighted) Randomization Policy that takes as parameters
a list of probabilities of assigning any learner to each version.
These probabilities can be uniform or weighted. For example,
if there are two versions, and the weights are set to [50%,
50%], each version will have a 50% chance of being delivered.
This is the uniform variant. An example of the weighted
variant would be [20%, 80%]. In this case, version A will
have a 20% chance and version b will have 80% chance of
being delivered to the learner. This policy can also be used
to give one version that is deemed to be the best to everyone,
with probabilities like [0%, 100%]. These parameters can be
updated at any point via API, so that manual updating allows
for improvement by giving resources that seem effective to
more future students.

A DynamicRandomization Policy, which takes as a parameter
an outcome variable from the Learner Data Store that it should
choose versions in order to maximize. It does this using al-
gorithms for solving multi-armed bandits from reinforcement
learning, specifically a Bayesian algorithm called Thompson
Sampling [3]. The use of Thompson Sampling for Dynam-
icRandomization aims to optimize for an outcome variable
that is available in the Learner Data Store (such as accuracy
on subsequent problems), by trading off assignment to the
different Versions of a MOOClet (exploring) against always
assigning learners to the Version that produces the highest
outcome (exploiting knowledge). Conceptually, DynamicRan-
domization can be understood as automatically reweighting
randomization, where the probability of assigning a Version
is the probability that it is the best Version (on the target out-
come variable) based on the data collected so far. So every
time more data becomes available, DynamicRandomization
has an updated set of probabilities.

A (Weighted) Personalization Policy takes as parameters
IF-THEN rules that specify how assignment of Versions to
a learner depends on data in the Learner Data Store, such as a
learner’s characteristics. The THEN clause can also provide a
set of weights/probabilities of assigning different versions.

An External Policy which assigns Versions by using an Ex-
ternal Eolicy via API, sending out relevant variables from
the Learner Data Store. Use case 4 uses an external Policy
to do problem recommendation based on applying Bayesian
Knowledge Tracing to learners past behaviors. A wide range
of multi-armed (contextual) bandit and other reinforcement
learning algorithms could be used as External Policies.

Adding and Refining Policies: The web-service implemen-
tation GitHub repository is accessible by all MOOClet users.

Any new Policy added by a data mining or machine learning
researcher becomes available for instructors and experimenters
to apply to any resource implemented as a MOOClet. These
policies could be used for personalization and recommenda-
tion of Resources, or a wide range of reinforcement learning
applications to adaptive experimentation.

MOOCLET USE CASES
In this section, we describe some use cases for the MOOClet
framework through four illustrative examples - (1) Motiva-
tional Messages: Improving and personalizing motivational
messages on edX, (2) DynamicProblem: enhancing online
problems using a instructor-entered approach to experimen-
tation, (3) AXIS: generating and experimenting with learner-
sourced explanations, and (4) Personalized Problem Recom-
mendation: recommending problems in a planetary-science
MOOC on edX.

Use Case 1: Enabling Experimentation, Data-Driven Im-
provement, and Personalization of Motivational Messages
Instructors can encourage students by embedding motivational
messages inside a tutorial page or quiz, such as before stu-
dents attempt some problems or start an assignment. However,
knowing which messages work best and for which students
is not always easy in online learning environments. In this
first example, we outline how we used our web-service to
implement motivational messages on edX as MOOClets, and
in doing so, enabled instructors to improve and personalize
messages given to learners. Then, we contrast our approach
with existing independent systems that do not use a unified
framework.

Step 1: Creating a MOOClet. Using the back-end admin panel
of our web service, we create a new MOOClet instance called
MotivationalMessage, and include an initial message Ver-
sion to the Version Set via modifyVersion API call.

Version A: Learning can be challenging, every minute of
effort moves you forward!

We link the MOOClet web service to the Resource edX us-
ing the getVersion API call via JavaScript embedded in an
edX page to MotivationalMessage to obtain and place the
message on the tutorial page.

Step 2: Choosing a Policy. We use the setPolicyandParams
API call to assign weighted_random as the Policy for our
MOOClet, with probability 100% (because it is the only possi-
ble version to be presented). Then, we use the addVariable
API call to create a new condition variable in the Learner
Data Store that will be automatically populated by the Policy
with information on which Resource Version is assigned to
each learner over time. Because we have a single message in
the Version Set at this point, the set-up so far corresponds ex-
actly to current practice. We now turn to how implementation
as a MOOClet enables flexible future research.

Step 3: Experimenting with alternative Versions. To try an
alternative message, we simply add it to the Version Set us-
ing another modifyVersion API call, and make an API call
to setPolicyandParams to set the weights as [50%, 50%].

L@Scale 1: Perspectives from North America L@S'21, June 22–25, 2021, Virtual Event, Germany

20

https://github.com/pretendWhale/mooclet-engine/blob/master/mooclet_engine/engine/policies.py
https://tiny.cc/githubmooclets

Web Service API Calls for the MOOClet Framework

Name Parameters* Action

assignVersionOfResource learner_id, mooclet_id, policy, [policy_parameters] Assign version of MOOClet using current policy

modifyVersion version_id, mooclet_id, version_content Add or modify a new version for a MOOClet

modifyVariable learner_id, mooclet_id, variable, value Add or modify variable in Learner Data Store

setPolicyAndParams mooclet_id, policy, [policy_parameters] Change or update policy and parameters

*Parameters enclosed in [] are optional.

Figure 3. The key API endpoints for the web service that serves as the backend for MOOClets by providing Resource Versions to the Front-End Learner
Interface, and allowing modification at any point via API calls to the Learner Data Store, Policy Set and Version Set

Then, we can compare the two versions using traditional A/B
testing because the weighted_random setting for the Pol-
icy with its current parameters will evenly split the resources
delivered to learners between the two versions.

Version B: Keep up the good work!

Step 4: Adding data to Learner Data Store. As
a first step towards analyzing the data, we add infor-
mation about the dependent or outcome variables to
the Learner Data Store. In this case, we include
two new variables, motivational_message_rating and
time_spent_on_problem, to sit alongside the condition
variable we added in Step 2. The addVariable API call al-
lows flexibility in how such dependent variables are added.
For example, we can use logging code in the Learner Inter-
face to pull data from edX (or use data APIs is available), or
download them into a spreadsheet. This flexibility allows our
framework users to gather all the information necessary to
analyze the experiments in the Learner Data Store.

Step 5A: Data-Driven Improvement. After running the A/B
comparison with a sufficiently large group of students, in our
case, say 150 people, we can look at the data and decide to
change the probability of delivering a particular Resource Ver-
sion using the setPolicyandParams API call. For example,
we can switch from [P(A) = 50%,P(B) = 50%] to [P(A) =
20%,P(B) = 80%] if the motivational_message_rating
or time_spent_on_problem are significantly higher for B
than A. If the trend persists over time, we can eventually switch
to [P(A) = 0%,P(B) = 100%] as we become more confident
that B is the better version among the two.

Step 5B: Personalization from data. We could instead
choose to personalize the message delivered to students,
such as sending Version A to students with a low grade in
the course, and Version B to students with a higher grade.
This can be done by adding the course_grade variable
to the Learner Data Store, and updating the Policy from
weighted_random to weighted_personalization using
the setPolicyandParams API call, and setting the Policy
parameters to include some IF-THEN rules, which can be sum-
marized by this pseudocode:

IF course_grade < 50%: prob(A,B) = [100%, 0%]
IF course_grade >= 50%: prob(A,B) = [0%,100%]

Notably, because the code or algorithm for assigning Versions
is not stored in the Learner Interface, any IF-THEN rules can
be defined for personalization, at any point in time, using any
variables that can be added to the Learner Data Store.

Experimentation, Improvement, & Personalization with-
out MOOClets. We contrast this with trying to achieve sim-
ilar goals using standalone tools that do not use the unified
MOOClet architecture. We focus on the very popular LMS
(Learning Management System) Canvas to illustrate these chal-
lenges go beyond MOOC platforms, and because in our expe-
rience similar challenges arise in platforms that have siloed
conceptualizations and implementations of software for exper-
imentation, data-driven improvement, and personalization.

Experimentation. In Canvas, an independent LTI (Learn-
ing Tools Interoperability) tool was created [20] for doing
randomized A/B comparisons. This tool only allows us to ran-
domly divide students into different groups so that variations
of course content can be presented to them. One drawback of
this LTI tool is that the instructor is only allowed to edit the ex-
periment before it starts. As soon as the experiment is started,
the students will be distributed to the pre-allocated groups or
conditions, and no changes, including adding a new condition
or removing an ineffective one, can be made to improve the
experiment– the entire experiment has to be removed.

Improvement. Transitioning from running experiments to
making practical improvements to resources requires a longer
timescale due to the overhead in switching between custom
tools. To change which version is assigned, we have to remove
the A/B testing tool, delete the alternative version, and revert
back to regular Canvas. We have to choose between using
standard Canvas to present one version, or embedding a new
tool to randomly choose between multiple versions. Auto-
mated improvement of the kind shown in Use Cases 2 and 3 is
certainly out of the question.

Personalization. Canvas has a separate tool that allows some
Personalization, called MasteryPaths [15]. Using this tool,
we could choose which modules to deliver to students based

L@Scale 1: Perspectives from North America L@S'21, June 22–25, 2021, Virtual Event, Germany

21

on what their accuracy was before. For example, based on
the result of a pre-assessment quiz, we could put students
into different groups so that each group has the same level of
expertise in the subject. Then, we could design different paths
for each group by delivering content webpage A vs content
webpage B, tailored to the needs of the students of that group.
MasteryPaths is a very natural way to do Personalization, but
it is limited in only applying to a very specific set of data– the
designer of the tool has to decide ahead of time exactly what
variables might or might not be useful to personalize on. In a
MOOClet, any variable stored in the learner data store can be
used.

Another drawback is the very specific set of rules for personal-
izing content – using a particular graphical interface– whereas
the MOOClet allows new Policies to be added, whether code,
or even algorithms for problem-recommendation, such as
those considered in Use Case 4. Finally, MasteryPaths cannot
be used to do Experimentation – as mentioned that is a com-
pletely separate tool. That is problematic because it prevents
us from testing whether our personalization approach is good,
or discovering better ones. For example, we cannot use the
same infrastructure/tool to randomize students to receive Con-
tent Type A vs Content Type B, and then obtain data about
which is better for students with different levesl of knowledge.

Use Case 2: End-User Tools for Adaptive Experimentation
DynamicProblem [28] is an end user tool2 that enables ran-
domized experiments on the explanations, hints, feedback
messages, and learning tips that show up after students at-
tempt problems. This interface component (what is shown
after submitting an answer) was implemented as the Resource
component and linked to a MOOClet, and the Version Set
contained explanations, hints, feedback messages, or learning
tips as the Versions. [28] report three deployments using the
DynamicRandomization Policy, which allows for machine-
learning driven automated improvement using the Thompson
Sampling multi-armed bandit algorithm. Student ratings of
helpfulness of a given Version (e.g. hint/explanation/learning
tip) was used as the outcome variable to be optimized for, and
was logged and sent to the Learner Data Store. Instructors
could also choose to use other MOOClet policies, and could pi-
lot Versions using the WeightedRandomization policy, starting
with equal probability of assignment and eventually moving
to giving everyone a single Version by tweaking the weights.

DynamicProblem, provides a custom interface for instructors
and researchers to author experiments and interact with the
MOOClet backend, without using any API calls or program-
ming. It also provides a Data and Policy Dashboard (Figure 3
in [28]) to allow instructors to see the behaviour of the system
in real-time. This illustrates how the MOOClet architecture
allows for the development of custom end-user tools built on
top of its data structures and APIs, for purposes like authoring
experiments, examining data, and interpreting algorithms for
adaptive experimentation.

2It can be embedded into “any learning management system or
MOOC platform that supports the ubiquitous Learning Tools In-
teroperability (LTI) standard” [28].

Although this functionality was not used in these deployments,
the MOOClet would also have allowed Personalization of
explanations/hints/learning tips as a function of any data about
students that was added to the Learner Data Store, such as
accuracy on previous problems, prior grades, information from
a course survey.

Use Case 3: Learnersourcing Versions for Iterative Adap-
tive Experimentation
AXIS [27] (the Adaptive Explanation Improvement System)
is a system that uses learner sourcing [10] to generate explana-
tions and then adds these to an adaptive experimentation that
eliminates lower rated explanations and keeps higher rated
ones (as in Use Case 2). The original system was a one-off im-
plementation using code written just for one purpose, making
it a good candidate to re-implement using MOOClets to illus-
trate how its functionalities can be extended by the framework.
The interface component displaying explanations was imple-
mented as a MOOClet, and explanations generated by students
that met a minimum length were added to the Version Set au-
tomatically, resulting in a series of iterative experiments with
new Versions. The DynamicRandomization Policy was used
with explanation rating as the outcome variable to optimize.

This MOOClet implementation provides several advantages.
It allowed an interface to be built that let instructors review,
edit, and/or remove student explanations (via API calls to
the Version Set). Moreover, the outcome variable for opti-
mizing explanations could be changed from ratings, to any
other variable sent via API calls to the Learner Data Store,
such as accuracy on a particular problem. As in Use Case 2,
the MOOClet framework would also allow personalization
of these explanations, based on data like which explanations
students have seen before, or their reading fluency on a survey.

Use Case 4: Personalized Problem Recommendation
In this final example, we use the framework to provide individ-
ualized problem recommendations to students in a planetary
science MOOC on edX based on performance on prior prob-
lems. While the previous use cases focus on experimentation,
this use case shows how a MOOClet can be used for person-
alized problem recommendation [13]. It also shows how our
approach to designing software for dynamic experimentation
and personalization generalizes beyond our specific web ser-
vice instantiation, by having the Versions Set act as a proxy
for serving content authored in edX, and going beyond the
existing policies by using a policy external to the web service.

The Learner Data Store collects variables and sends them to
an API service from an adaptive learning company, and which
acts as a variant of Bayesian Knowledge Tracing [6].

We add resources to the Learner Interface using an LTI tool
that allows us to embed various problem “windows” inside an
edX MOOC. These windows show one problem at a time, and
students click a “next" button to move on to a new problem.

There were four MOOClets in this context, one for each place
in the course that an LTI problem window appeared. Each
MOOClet had a Version Set of about 10 items, each item
being a possible problem that the window could display. These

L@Scale 1: Perspectives from North America L@S'21, June 22–25, 2021, Virtual Event, Germany

22

problems were built inside the the edX course, and displayed
within the LTI tool using the URLs. Each version in the
version set was associated with its respective problem URL.

When learners attempt problems inside the content window,
the application passes data from each problem to the Learner
Data Store, recording the date and time, whether the attempt
was correct, and the associated problem_id. Clicking the
“next” button, triggers the MOOClet, which then uses its asso-
ciated policy to select the next problem version to serve.

A notable feature about the Policy used in this case was that it
involved an API call to an external web service. This external
service was an API implementation of a variant of Bayesian
Knowledge Tracing (BKT-Variant) [6]. For a given MOOClet
and user id, the company’s API would recommend one of
the problems from the Version Set using BKT-Variant, which
consumed variables from the Learner Data Store about that
user’s performance on past problems. The Policy was therefore
realized through an API call to ExternalPolicy, with user_id,
and mooclet_id as policy parameters. By linking user_id
and mooclet_id, the Learner Data Store could receive a new
entry every time a student viewed a problem in the MOOC.
The Learner Data Store also received information about other
MOOC courses that the student had enrolled in, and their
course activity outside problems, such as the number of videos
watched.

DISCUSSION
Several insights and implications follow from our presentation
of the MOOClet framework’s motivation, design requirements,
architecture, web-service implementation, and use cases.

Connecting the Architecture & Design Requirements. We
highlight three reasons why the MOOClet framework sep-
arates the front-end Resource from the back-end databases
(Version Set, Policy, and Learner Data Store) and provides
APIs to access/modify these databases. This: (1) Enables
three typically siloed activities (Design Requirement D1, D2,
D3) to share a common infrastructure, by simply changing
the Policy (D6) for how alternative Versions are assigned: (a)
Experimentation (Versions assigned with equally weighted
randomization, e.g. 50/50); (b) Data-Driven Improvement
(unequally weighted randomization) that is manual (humans
choose weights) or automated (algorithms choose weights
based on data about past students from Learner Data Store);
(c) Personalization (Versions assigned based on data about cur-
rent student from the Learner Data Store); (2) ‘Future-proofs’
infrastructure for research/practical activities that were not
initially conceptualized but might be of higher quality, such
as testing new Versions (D5), using new algorithms/decision-
rules (D7), and using new data (D8). This allows agility in how
research is conducted and speeds up iteration cycles, which is
especially important when predictions of the most promising
activities will change after a study/algorithm is deployed in
the real-world; (3) Enables a common approach to be taken
across multiple platforms (MOOClets have used been used
in Canvas, edX, PCRS, Qualtrics, Mailservers, Twillio text
messaging).

Where might readers apply the MOOClet framework?3

Even without knowledge of a finalized experimental design
or algorithm, which MOOClets could set the stage for fu-
ture research using iterative experiments, dynamic data-driven
improvement, and personalization? The potentially broad ap-
plications of the framework mean almost any component of an
educational interface could be used. On the other hand, there
are constraints in the kinds of work enabled by MOOClets
(e.g. experimenting and changing assignment of alternative
Versions based on past data). One consideration we use is
which Resources are “sufficiently” modular/scoped for the
goals of prospective users/stakeholders of MOOClet-enabled
platforms. Since MOOClet-enabled work can clearly bene-
fit from collaborators across disciplines (e.g. researchers in
experimental psychology, learning analytics, reinforcement
learning) and roles (e.g. researchers, instructors, instructional
designers, programmers), we often have discussions with po-
tential collaborators about candidates for potential MOOClets,
with reference to a collaborator’s goals, resources and con-
straints.

Such discussions led to the following applications, with over
ten thousand learners. Course webpage components were
implemented as MOOClets and used to vary Versions of Re-
sources like: explanations, feedback on answers, motivational
messages to solve problems, assignment to practice problems,
instructions for how to engage with discussion forums, self-
regulation activities that encourage planning, brief lessons
teaching study strategies, and psychological interventions such
as teaching a growth mindset. Implementing emails and text
messages as MOOClets enabled testing of prompts for stu-
dents to plan their work, reminders to start homework early,
and activities for managing stress.

Implications for Educational Platforms, Developers, In-
structional Teams, Researchers conducting experiments,
Researchers publishing in data mining, reinforcement
learning, and applied statistics. We hope the value to in-
structional teams of having course components implemented
as MOOClets is clear. Even if one does not yet know the de-
tails, it leaves the option open for one’s future self or collabora-
tor to experiment with, improve, and/or personalize the course
components in as-yet-unknown ways. Similar value accrues to
educational platforms like LMS and MOOC providers, if they
link (something like) the MOOClet architecture to particular
course components. We have observed many platforms miss
tremendous opportunities when they have developers imple-
ment a framework/tool for experimentation or personalization
without consulting the MOOClet architecture: Use Case 1
shows how Canvas has a tool for experimentation that enables
no personalization, and vice versa not being able to randomize
versions in a personalization tool and test the effectiveness of
personalizing. The edX A/B testing tool and ASSISTments
A/B testing tools cannot simply use WeightedRandomization
to ‘flick a switch’ and transition from an experiment to giving
the better version, they must replace the experiment.

Similar missed opportunities arise for any education researcher
conducting a randomized experiment, whose code simply gen-

3Or a better version of MOOClets they are inspired to develop.

L@Scale 1: Perspectives from North America L@S'21, June 22–25, 2021, Virtual Event, Germany

23

erates random numbers. Putting the thought into using some-
thing closer to a MOOClet allows the addition and removal
of new conditions, making follow-up studies easier to run.
Instructors have assurance there is a clear pathway to move
from randomizing to giving a best version to students, and the
potential to use reinforcement learning and bandit algorithms
for automated improvement– and, uniquely, to change which
outcome metric to optimize for without redeploying a webapp.
Applied Statistics researchers can use MOOClets as sources
of real-world data from adaptive experiments, and a unique
opportunity to design and deploy adaptive experiments. Rein-
forcement learning and bandit researchers can use MOOClets
as a test-bed for applying and evaluating algorithms for adap-
tive experimentation, with the rare capacity to choose actions,
and get access to outcomes and contextual/state data in real-
time. Data mining researchers can use MOOClets to evaluate
a range of algorithms for personalization, individualization
and content recommendation, in a real-world dynamic setting,
as opposed to static ‘found’ data sets.

Limitations & Future Work
The MOOClet architecture aims to enable new activities, pro-
viding a “high ceiling” for what can be done, and making
these activities easier than current practice. But it should be
acknowledged that some setup and use of this expressive web
service will require skills that not all potential users might have
– such as using APIs – just as researchers and instructional
teams may work with technical staff when doing field experi-
ments or deploying algorithms. Future HCI need-finding work
with stakeholders can explore the more usable/specialized end
user tools, like graphical user interfaces built on top of the
MOOClet data structures and APIs (like Use Case 2: End-User
Tools for Adaptive Experimentation).

Relatedly, MOOClets lower barriers and can democratize ac-
cess to valuable methodologies like conducting experiments
and using bandit algorithms to put research into practice. How-
ever, this raises many questions for future work. How does one
give users guidelines, training, and collaborative support in
how, when, and why to use different methods? Under what cir-
cumstances are the potential benefits of greater access to new
methods outweighed by the potential risks? For example, Use
Case 2 and 3 using adaptive experimentation might increase
the chances students get better explanations, but also increase
the chances of bias or complications in statistical analysis of
data from the adaptive experiment. The MOOClet framework
doesn’t claim to answer this question for a user, but to first
make it possible to conduct real-world adaptive experiments
and ask these questions, sparking discussions in education akin
to the ones started many years earlier in industry settings. One
way MOOClets could help in developing answers to questions
about adaptive experimentation, is through facilitating collabo-
ration with the applied statistics/biostatistics [16] and machine
learning researchers developing methods to analyze such data.
MOOClets can provide access to real-world data and a testbed
for evaluating algorithms for adaptive experimentation.

Many challenges can arise in getting a front-end LMS (Learn-
ing Management System) to interact with an external service
like a MOOClet. Interoperability issues can make it hard to use
an API call to a MOOClet’s Version Set to display a Version in

some LMSs, if they have restrictions on embedding code, or if
a particular university prevents such use. Getting data from an
LMS into a Learner Data Store can also pose technical issues –
the LMS might not allow embedding of logging code, might
not have APIs. Such data might then have to be manually
downloaded, and then sent to the MOOClet. Beyond technical
challenges, there are also security and privacy concerns in
making student data more readily available (whether to bene-
fit students or to help research) to both internal and external
services. While the current web-service implementation uses
de-identified data, there is always the risk of identification, and
future work can explore how to enable dynamic improvement
while integrating best practices for security and privacy.

Platform owners can also implement their own sand-boxed
and internalized version of the open-source MOOClet web
service, integrating into their platforms. They can also use the
paper’s conceptual insights about the architecture and design
requirements to implement their own custom infrastructures.
More broadly, we provide the MOOClet architecture and open
source web-service so that future work can take inspiration,
but then build better versions. MOOClets have the potential
to provide inspiration for a range of cyberinfrastructure that
supports the use of experimentation for dynamic improvement
and personalization in real-world user interfaces.

CONCLUSION
The MOOClet framework aims to transform components of
educational interfaces into micro-laboratories, by providing
a software architecture and open-source web service to en-
able multi-disciplinary collaborations that improve student
outcomes in tandem with conducting research. MOOClets
enable experimental researchers and instructors to experiment
iteratively and do the follow-up studies necessary to pin down
what works and why, and to use data from experiments to
more rapidly help future students. Statistics and machine
learning researchers can investigate how to use algorithms for
adaptive experimentation to automatically give students better
resource versions, while collecting data that leads to statisti-
cally reliable conclusions. Data mining researchers can apply
different algorithms for personalization and use data from
real-world courses to improve them, while giving better and
better problem recommendations to students. The MOOClet
architecture’s ‘future-proofing’ allows researchers to be more
agile in incorporating novel ideas from unanticipated collab-
orators, adapting algorithms to the messiness of real courses,
and using constantly emerging real-world data. Going beyond
the use cases presented, how can we each leverage MOOClets
for iterative experiments that lead to data-driven enhancement
and personalization of educational resources, in real-world
online courses?

ACKNOWLEDGEMENTS
We thank members of the Intelligent Adaptive Interventions
lab for their input on the paper, and Sam Maldonado for his
work on the MOOClet web-service implementation. This
work was supported by the Office of Naval Research (ONR)
(#N00014-18-1-2755) and the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC) (#RGPIN-2019-
06968).

L@Scale 1: Perspectives from North America L@S'21, June 22–25, 2021, Virtual Event, Germany

24

REFERENCES
[1] E. Bakshy, D. Eckles, and M. S. Bernstein. 2014.

Designing and Deploying Online Field Experiments. In
Proceedings of the 23rd ACM conference on the World
Wide Web. ACM.

[2] Lori Breslow, David E Pritchard, Jennifer DeBoer,
Glenda S Stump, Andrew D Ho, and Daniel T Seaton.
2013. Studying learning in the worldwide classroom
research into edX’s first MOOC. Research & Practice in
Assessment 8 (2013), 13–25.

[3] Olivier Chapelle and Lihong Li. 2011. An empirical
evaluation of thompson sampling. Advances in neural
information processing systems 24 (2011), 2249–2257.

[4] Benjamin Clement, Didier Roy, Pierre-Yves Oudeyer,
and Manuel Lopes. 2013. Multi-armed bandits for
intelligent tutoring systems. arXiv preprint
arXiv:1310.3174 (2013).

[5] Tyne Crow, Andrew Luxton-Reilly, and Burkhard
Wuensche. 2018. Intelligent tutoring systems for
programming education: a systematic review. In
Proceedings of the 20th Australasian Computing
Education Conference. 53–62.

[6] Ryan SJ d Baker, Albert T Corbett, and Vincent Aleven.
2008. More accurate student modeling through
contextual estimation of slip and guess probabilities in
bayesian knowledge tracing. In International conference
on intelligent tutoring systems. Springer, 406–415.

[7] Aleksander Fabijan, Pavel Dmitriev, Helena Holmstrom
Olsson, and Jan Bosch. 2018. Online controlled
experimentation at scale: an empirical survey on the
current state of A/B testing. In 2018 44th Euromicro
Conference on Software Engineering and Advanced
Applications (SEAA). IEEE, 68–72.

[8] Neil T Heffernan and Cristina Lindquist Heffernan.
2014. The ASSISTments ecosystem: Building a
platform that brings scientists and teachers together for
minimally invasive research on human learning and
teaching. International Journal of Artificial Intelligence
in Education 24, 4 (2014), 470–497.

[9] ChanMin Kim. 2012. The role of affective and
motivational factors in designing personalized learning
environments. Educational Technology Research and
Development 60, 4 (2012), 563–584.

[10] Juho Kim and others. 2015. Learnersourcing: improving
learning with collective learner activity. Ph.D.
Dissertation. Massachusetts Institute of Technology.

[11] Aleksandra Klašnja-Milićević, Boban Vesin, Mirjana
Ivanović, and Zoran Budimac. 2011. E-Learning
personalization based on hybrid recommendation
strategy and learning style identification. Computers &
education 56, 3 (2011), 885–899.

[12] Ron Kohavi, Roger Longbotham, Dan Sommerfield, and
Randal M Henne. 2009. Controlled experiments on the

web: survey and practical guide. Data mining and
knowledge discovery 18, 1 (2009), 140–181.

[13] Lihong Li, Wei Chu, John Langford, and Robert E
Schapire. 2010. A contextual-bandit approach to
personalized news article recommendation. In
Proceedings of the 19th international conference on
World wide web. 661–670.

[14] J Derek Lomas, Jodi Forlizzi, Nikhil Poonwala, Nirmal
Patel, Sharan Shodhan, Kishan Patel, Ken Koedinger,
and Emma Brunskill. 2016. Interface design
optimization as a multi-armed bandit problem. In
Proceedings of the 2016 CHI conference on human
factors in computing systems. 4142–4153.

[15] MasteryPaths. Last accessed: 22-02-2021. MasteryPaths.
https://community.canvaslms.com/t5/Instructor-
Guide/How-do-I-use-MasteryPaths-in-course-
modules/ta-p/906. (Last accessed: 22-02-2021).
https://community.canvaslms.com/t5/Instructor-Guide/

How-do-I-use-MasteryPaths-in-course-modules/ta-p/906

[16] Philip Pallmann, Alun W Bedding, Babak
Choodari-Oskooei, Munyaradzi Dimairo, Laura Flight,
Lisa V Hampson, Jane Holmes, Adrian P Mander,
Matthew R Sydes, Sofía S Villar, and others. 2018.
Adaptive designs in clinical trials: why use them, and
how to run and report them. BMC medicine 16, 1 (2018),
1–15.

[17] Gilbert Paquette, Olga Mariño, Delia Rogozan, and
Michel Léonard. 2015. Competency-based
personalization for massive online learning. Smart
Learning Environments 2, 1 (2015), 1–19.

[18] Zachary A Pardos, Steven Tang, Daniel Davis, and
Christopher Vu Le. 2017. Enabling real-time adaptivity
in MOOCs with a personalized next-step
recommendation framework. In Proceedings of the
Fourth (2017) ACM Conference on Learning@ Scale.
23–32.

[19] Gigliola Paviotti, Pier Giuseppe Rossi, and Dénes Zarka.
2012. Intelligent tutoring systems: an overview. Pensa
Multimedia (2012).

[20] Penzance. 2021. A/B Tool GitHub Repository.
https://github.com/penzance/ab-testing-tool/wiki/

Getting-Started. (2021). Last accessed: 22-02-2021.

[21] Anna Rafferty, Huiji Ying, and Joseph Williams. 2019.
Statistical consequences of using multi-armed bandits to
conduct adaptive educational experiments. JEDM|
Journal of Educational Data Mining 11, 1 (2019),
47–79.

[22] Steven L. Scott. 2015. Multi-armed bandit experiments
in the online service economy. Applied Stochastic
Models in Business and Industry 31 (2015), 37–49.
http://onlinelibrary.wiley.com/doi/10.1002/asmb.2104/

abstract Special issue on actual impact and future
perspectives on stochastic modelling in business and
industry.

L@Scale 1: Perspectives from North America L@S'21, June 22–25, 2021, Virtual Event, Germany

25

https://community.canvaslms.com/t5/Instructor-Guide/How-do-I-use-MasteryPaths-in-course-modules/ta-p/906
https://community.canvaslms.com/t5/Instructor-Guide/How-do-I-use-MasteryPaths-in-course-modules/ta-p/906
https://github.com/penzance/ab-testing-tool/wiki/Getting-Started
https://github.com/penzance/ab-testing-tool/wiki/Getting-Started
http://onlinelibrary.wiley.com/doi/10.1002/asmb.2104/abstract
http://onlinelibrary.wiley.com/doi/10.1002/asmb.2104/abstract

[23] Dan Siroker, Pete Koomen, Elliot Kim, and Eric Siroker.
2014. Systems and methods for website optimization.
(Sept. 16 2014). US Patent 8,839,093.

[24] Cem Tekin, Jonas Braun, and Mihaela van der Schaar.
2015. etutor: Online learning for personalized education.
In 2015 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE,
5545–5549.

[25] Konstantinos Vassakis, Emmanuel Petrakis, and Ioannis
Kopanakis. 2018. Big data analytics: applications,
prospects and challenges. In Mobile big data. Springer,
3–20.

[26] Joannes Vermorel and Mehryar Mohri. 2005.
Multi-armed bandit algorithms and empirical evaluation.
In European conference on machine learning. Springer,
437–448.

[27] Joseph Jay Williams, Juho Kim, Anna Rafferty, Samuel
Maldonado, Krzysztof Z Gajos, Walter S Lasecki, and
Neil Heffernan. 2016. Axis: Generating explanations at
scale with learnersourcing and machine learning. In
Proceedings of the Third (2016) ACM Conference on
Learning@ Scale. 379–388.

[28] Joseph Jay Williams, Anna N Rafferty, Dustin Tingley,
Andrew Ang, Walter S Lasecki, and Juho Kim. 2018.
Enhancing online problems through instructor-centered
tools for randomized experiments. In Proceedings of the
2018 CHI Conference on Human Factors in Computing
Systems. 1–12.

[29] xAPI. 2021. xAPI. (2021). https://xapi.com/overview/
Last accessed: 22-02-2021.

L@Scale 1: Perspectives from North America L@S'21, June 22–25, 2021, Virtual Event, Germany

26

https://xapi.com/overview/

	Introduction
	Related Work
	Implementation of Online Field Experiments
	Accelerating Improvement of Educational Resources using Data from Experiments
	Data-Driven Personalization
	Relationship to Common Specifications, Standards & Infrastructures in Education

	Design Requirements
	MOOClet Architecture & Web Service
	Examples of MOOClet Policies

	MOOClet Use Cases
	Use Case 1: Enabling Experimentation, Data-Driven Improvement, and Personalization of Motivational Messages
	Use Case 2: End-User Tools for Adaptive Experimentation
	Use Case 3: Learnersourcing Versions for Iterative Adaptive Experimentation
	Use Case 4: Personalized Problem Recommendation

	Discussion
	Limitations & Future Work

	Conclusion
	Acknowledgements
	References

