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Abstract
Video lecture content is increasingly consumed in mobile en-
vironments with varying screen sizes. However, most video
content originally designed for desktop is not readable and
digestible on small screens. We developed a computational
pipeline that automatically adapts learning video content to
a smaller screen by segmenting and resizing the in-video ele-
ments. We present FitVid, a video interface that provides both
the pipeline-generated content adaptation and user-controlled
direct manipulation of the in-video elements to fit their own
needs. FitVid also provides customized content adaptation
based on learners’ manipulation log. In the user study (N=24)
we find that FitVid significantly improves learning experience
with increased concentration and readability. We further dis-
cuss design implications for responsive and customized video
content adaptation.

1 Introduction
In online learning, video is a dominant medium with the edu-
cational benefits of media-rich content (Havice et al. 2010;
O’Neill-Jones 2004; Liu, Liao, and Pratt 2009). In addition,
the lockdowns and school closures caused by the global pan-
demic have created a spike in learners on video learning
platforms such as MOOCs (e.g., edX, Coursera, Udacity, and
FutureLearn) due to their openness and easy accessibility
(Zhou et al. 2020; Alamri et al. 2020; Seale et al. 2020).
MOOC learners are not bound to a desk and often access
learning content via mobile devices at both a time and loca-
tion suitable for them (DeWaard et al. 2011).

However, one of the key limitations of mobile learning
is the small screen size, which deteriorates the learning ex-
perience and decreases the effectiveness of learning with
too small font size, content-heavy lecture slides, and com-
plex graphics to digest in a mobile environment. Most of
the existing video learning content is originally designed for
desktops with wide screens, resulting in a degraded learning
experience when learners access learning material from a
smartphone or a tablet.

Despite the need for content adaptation, the inflexible
nature of video as a medium poses a challenge to fluid content
adaptation compared to static content such as text and images.
It remains time-consuming and tedious to edit and tailor video
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content, which often requires complex editing skills (Hua,
Wang, and Li 2005; Long et al. 2004; Casares et al. 2002).

To address these challenges, we propose FitVid, an inter-
active video interface which supports fluid content adaptation
in response to target devices and user needs. We first devel-
oped a computational pipeline which automatically adapts
video learning content to mobile environments by trimming
information and resizing content, based on the existing de-
sign guidelines for font size and amount of information (Inc.
2020 (accessed September 10, 2020; Pugsley 2010; Alred,
Brusaw, and Walter; Larocque, Kenny, and McInnes 2015).
The pipeline-generated content showed an improved com-
pliance rate for the design guidelines, from 2% to 89% for
the font size, and 67% to 87% for the word count with ten
sampled videos. FitVid then provides the pipeline-generated
content adaptation in response to the target devices.

Another main aspect of FitVid is the direct manipulation
of the in-video elements, which enables content customiza-
tion to fit individual learners’ needs. While watching a video,
FitVid enables users to directly manipulate the in-video con-
tent in real-time by repositioning and resizing objects shown
on screen. This approach gives learners control over con-
tent adaptation instead of automating the entire adaptation
process.

Furthermore, we attempt to improve the default content
adaptation based on users’ manipulation log. While users
manipulate the design elements, the system captures the ma-
nipulation log and creates user profiles to reflect them to
future content adaptation. We explore the possibility of im-
proving adaptation iteratively, aiming to reduce the need for
manual adjustments. While having direct control on design is
important, making manipulations each time can be cumber-
some and may even hinder learning.

In our user study (N=24), FitVid significantly improved
participants’ learning experience with increased readability
and concentration. We also observed the patterns and strate-
gies of using direct manipulation, and categorized them by
the purpose of manipulations. The identified purposes include
adjusting design and improving concentration. Participants
used the direct manipulation to refine the automated content
adaptation and increase their level of concentration.

In summary, the primary contributions of this work are:
• An automated computational pipeline that generates video
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• A system that provides learners with fluid and responsive
video content adaptation

• An implementation and exploration of user-controlled cus-
tomization of content adaptation

• An empirical evaluation with learners showing that FitVid
improved video-based learning experience

2 Related Work
Our work is informed by previous work in the domains of
learning content adaptation, direct manipulation interfaces
for video, and learning content design.

Learning Content Adaptation
Previous work has investigated techniques for learning con-
tent adaptation in response to an increasing demand for ubiq-
uitous learning. Researchers proposed web design adaptation
for mobile learning by introducing the concept of responsive
web design for mobile learning (Peng and Zhou 2015; Bhut-
too, Soman, and Sungkur 2017). Others suggested responsive
content adaptation for information visualization (Hoffswell,
Li, and Liu 2020; Wu et al. 2020). However, most approaches
are limited to adjusting static content such as text and images.
Our research extends the domain of learning content adapta-
tion from static content to dynamic content—video—which
has been challenging due to its inflexible nature, not allowing
adjustments for in-video elements such as text and images
once the video is recorded.

Direct Manipulation Interfaces for Video
Direct manipulation interaction coined by Ben Shneiderman
is an interaction style in which users act on displayed objects
of interest using physical, incremental, and reversible actions
whose effects are immediately visible on the screen (Shnei-
derman 1997; Shneiderman and Maes 1997). A rich body of
work attempted to support direct manipulation video naviga-
tion by enabling in-video object dragging along its motion
trajectory (Dragicevic et al. 2008; Karrer et al. 2008; Karrer,
Wittenhagen, and Borchers 2009). Another body of previous
work introduced zoomable video interfaces to overcome the
constraint of small screen size (Pang et al. 2011; Song et al.
2010; Quang Minh Khiem et al. 2010; Axel, Ravindra, and
Tsang 2010; Carlier et al. 2011). Our system builds upon
the existing work on video content adaptation with direct
manipulation for in-video elements, enabling the direct ma-
nipulation for in-video elements to overcome the constraint
of small screen size and to fit their own needs.

Learning Content Design
When creating mobile learning content, instructional design-
ers and video engineers should consider the limited screen
size of mobile devices. Design principles for mobile learning
content suggest adjusting the amount of information dis-
played on the screen (Ally 2005). The conceptual framework
of design issues and learning contexts in mobile learning is
also discussed (Parsons, Ryu, and Cranshaw 2006; O’Malley
et al. 2005; Stanton and Ophoff 2013; Kukulska-Hulme and
Traxler 2007). Other research conducted content analysis of

MOOC videos to explore ideal content distribution for course
developers (Carlon, Keerativoranan, and Cross 2020).

3 Design Goals
The need for learning content adaptation for mobile devices
led to the following design goals that informed the design of
techniques for interactive content adaptation in response to
mobile devices:

D1. Support responsive design of video content for
mobile devices Existing content adaptation techniques lack
adapting content at an in-video level mainly due to the in-
flexible nature of video as a medium. Content adaptation
at an in-video level that enables fluid and responsive video
content adaptation across various devices is needed. For this
adaptation, we should enable flexible deconstruction and re-
construction of the in-video elements such as text and images.

D2. Enable user-controlled direct manipulation The
”one-size-fits-all” approach applying a single design to all the
learning contexts without tailoring to individual needs has
limitations in two main ways. First, each user has their own
preferences and constraints. Second, lecture content varies
significantly depending on the subject and instructional de-
sign, thereby requiring different content designs according to
the characteristics of each lecture. Thus, the blanket applica-
tion of the suggested guidelines from the literature would not
address the diversity of user needs and lecture content. This
demand indicates the importance of customization and user
control in content adaptation. One way to provide customiza-
tion and user control is to enable direct manipulation of the
in-video elements as needed. We design a direct manipulation
technique based on the important factors in video content
adaptation which are informed by the formative interviews
with video production engineers.

D3. Support customized content adaptation While hav-
ing direct control over the content design allows users to
adjust the design to fit their needs, it might hinder learning
if they need to manually adjust the content each time. To re-
duce the need for manual manipulation, we design techniques
to personally calibrate the content adaptation by reflecting
individual users’ preferences.

4 System Overview
To accomplish the design goals, we present FitVid, a fluid
and responsive video content adaptation tool. Before learners
start watching a video, FitVid generates content adaptation
automatically based on the design guidelines from literature.

Design Guidelines
We investigated the existing guidelines for key design factors
in lecture material including text and image elements.

Font Size Inappropriate font sizes of learning material
impose unnecessary cognitive load (Lewis 2016) and lower
judgements of learning (JOLs) (Rhodes and Castel 2008; Ha-
lamish 2018). Apple’s Human Interface Guidelines adopt 17
pt as a default body text size (Inc. 2020 (accessed September
10, 2020) and Google Material Design Guidelines suggest 16
pt as body text size (GoogleLLC 2020 (accessed September



10, 2020), whereas the guidelines for presentation slides en-
courage using font size above 24 or 26 pt in the body of the
slide (Pugsley 2010; Holzl 1997; Cavanaugh and Cavanaugh
2000).

Number of Words An excessive amount of words is
another factor that increases cognitive load (Sweller 1994;
Sweller, Van Merrienboer, and Paas 1998; Lewis 2016) and
information overload (Ally 2005). Using no more than 45
words per presentation slide is recommended (Alred, Brusaw,
and Walter) and more strict guidelines advocate using less
than 20 words per slide (Brock and Joglekar 2011). Another
work suggests that the maximum number of words per slide
should be 25 (Stein 2006).

Image Image elements can also increase cognitive load
by splitting learners’ attention (Lee, Plass, and Homer 2006;
Lewis 2016). Existing work on lecture slide design for radi-
ology recommends lecture slides to contain maximum two
images in a single slide (Larocque, Kenny, and McInnes
2015; Christian Davidson and Wiggins 2003).

Before watching: automated content adaptation
FitVid applies automated content adaptation based on the
design guidelines (addressing D1: Support responsive design
of video content for mobile devices). The adaptation enlarges
the text and trims the amount of information. The criteria of
design features we considered are font size, the number of
words, and the number of images. To generate content adapta-
tion, our system deconstructs an original video into in-video
visual elements such as text box and images, and reconstructs
them to comply with the following design guidelines: (1)
font size: enlarge the font size of text when it is smaller than
28.5 px; (2) number of words: segment a slide with more
than 30 words into multiple slides; and (3) number of images:
segment a slide with more than two images into multiple
slides. The details of content adaptation technique are de-
scribed in Section 4. After reconstructing the visual elements,
we determine the time duration the reconstructed elements
should be displayed. To this end, we establish correspon-
dences between visual elements such as text and images in a
video lecture and their descriptive speech text (i.e., instruc-
tor’s current narration). We use a variant of slide-transcript
matching algorithms suggested in previous work (Tsujimura,
Yamamoto, and Nakagawa 2017; Xu et al. 2019; Zhao et
al. 2019; Jung, Shin, and Kim 2018). We use BERT-based
semantic similarity (Reimers and Gurevych 2019) to improve
the performance of text similarity estimation.

During watching: in-video direct manipulation
While users are watching a video lecture with FitVid,

they can directly manipulate in-video elements (addressing
D2: Enable user-controlled direct manipulation). They can
manipulate text and images using two types of interactions:
reposition and resize. For example, learners can enlarge a
complex image which is not visible on a small screen. They
can also resize text as needed by dragging the edges of the
text box.

We developed a web-based interactive video player al-
lowing users to directly manipulate the in-video elements

Figure 1: (a) The FitVid video player consists of (A) the
manipulatable video content area and (B) the video player
control bar. (b) If the learner touches an in-video element,
then edges of element are highlighted.

such as text boxes and images. FitVid is implemented us-
ing JavaScript, jQuery, and CSS media queries. Figure 1 (a)
shows an interface of the video player. All elements in the
video content area can be manipulated in real-time while
watching a video. The video player control bar has three but-
tons; start, pause, and reset. The reset button initializes all
the changes made in the current frame. Learners can resize
elements by dragging the edges and reposition them by touch
and drag interaction. Figure 1 (b) demonstrates that the edges
of the in-video elements are highlighted when learners touch
them.

After watching: customized content adaptation
We built a prototype which generates customized content
adaptation based on users’ manipulation log (addressing D3:
Support customized content adaptation). In this work, we
specifically focus on font sizes. The system calculates the
average size of fonts to which a user manipulates the text.
It then creates a user profile on their preferred font size.
Based on the user profile, the system generates future content
adaptation tailored to individual learners. For instance, if a
certain learner watches a video resizing the font size as 20
pt on average, then the prototype displays the future content
adaptation which adjusts the font sizes of text as 20 pt.

Computational Pipeline
To automatically apply content adaptation, we introduce

a technical pipeline which includes: (1) shot boundary detec-
tion, (2) deconstruction into in-video elements, (3) text-to-
script matching, and (4) adaptation generation. The pipeline
is shown in Figure 2. In this section, we discuss the technical



Figure 2: Our computational pipeline for generating content adaptation: (a) extraction of video frames using edge-based shot
boundary detection algorithm, (b) deconstruction of original video content into in-video elements by detecting connected-
components from the edge image, (c) matching in-video elements with transcript of instructor’s current narration using
BERT-based semantic similarity, (d) generation of adaptation through reconstructing the elements based on existing design
guidelines.

details of the pipeline.

(a) Shot Boundary Detection We first extract the set
of frames in a video lecture and segment the frames based
on shot boundary detection. For shot boundary detection, we
use a variant of methods suggested by Zhao et al. (Zhao et
al. 2019) and Jung et al. (Jung, Shin, and Kim 2018). The
shots extracted from the shot boundary detection correspond
to unique lecture slides in most cases. We then select the
first frame of each shot as a keyframe to represent a slide.
We simply choose the first frame as a keyframe, since most
frames in a shot with a lecture video only include trivial
changes such as the movement of an instructor’s head in a
picture-in-picture video.

(b) Deconstruction into In-video Elements For each
shot extracted using shot boundary detection, our pipeline
deconstructs the shot into in-video elements such as text
boxes and images. We use a variant of methods proposed by
Zhao et al. (Zhao et al. 2019) and Jung et al. (Jung, Shin, and
Kim 2018). The suggested methods first detect all connected-
components from the edge image of the shot. For each identi-
fied component, they find the minimal bounding box which
contains the component. All the text contained in each bound-
ing box is then recognized using the Tesseract OCR engine
(PythonSoftwareFoundation 2020 (accessed September 10,
2020).

(c) Text-to-Script Matching In this stage, the pipeline
estimates the part of a slide that is currently verbally ex-
plained by the instructor. We match text elements in a frame
with the transcript of the instructor’s narration using Google’s
Speech-to-Text API (GoogleLLC 2020 (accessed September
10, 2020). There have been attempts to align text elements
with a transcript for lecture retrieval (Lu et al. 2014; Zhao et
al. 2019; Jung, Shin, and Kim 2018; Tsujimura, Yamamoto,
and Nakagawa 2017). However, the challenges stem from a
diversity of features of lectures such as linearity of instruc-
tion and interactivity between elements (Sweller 2010; Leahy

and Sweller 2005). For example, if an instructor mentions
multiple elements in a single narrated sentence, then text and
transcript might not have a one-to-one correspondence. Due
to such complexity of the task, we devise a rule-based match-
ing algorithm enhanced by BERT-based text similarity. The
matching algorithm aims to match sentences in a transcript
with grouped text in a frame. The algorithm takes a two-step
approach: (1) matching and (2) grouping.

(c)-1 Matching Stage: In the matching stage, we establish
matches between the slide text and the transcript by using two
factors: progression of in-video elements and text similarity.
First, we consider the progression of each frame. We observe
that the latest element added to a frame corresponds to the cur-
rent explanation spot, which aligns with existing work (Zhao
et al. 2019; Monserrat et al. 2013; Shin et al. 2015). Hence
we detect the progression of elements and match them with
the transcript. Secondly, we calculate text similarity of each
sentence in a transcript with every text element in the same
frame, using a BERT-based model presented by Reimers et
al. (Reimers and Gurevych 2019). We build matches between
text and transcript if they have a similarity score higher than
a threshold. The threshold is determined based on the ratio
of text elements to sentences in the transcript since each text
element is explicitly mentioned by the instructor at least once.
We first sort all the similarity scores in descending order.
The i-th similarity score is selected as a threshold where i is
calculated as follows:

i = b number of text boxes

number of sentences in transcript
c

(c)-2 Grouping Stage: In the grouping stage, we merge
the deconstructed text elements in stage (b) into groups. The
goal of grouping is to combine text elements into units that
need to be displayed to learners at once in a single frame. For
example, three bullet points should be displayed at once in
a single frame if an instructor explains them in a non-linear
manner, such as referring to them back and forth. In this case,



Rule
Number Rule Rationale

Rule 1 IF lecturing is non-linear THEN merge all
non-linearly lectured text elements into a group

Non-linearly lectured elements should be displayed at
once so that learners can refer to them back and forth.

Rule 2 IF text elements in a single frame has high cohesion
THEN merge all text elements into a group

Text elements with high cohesion implying high
interactivity between elements should be displayed at

once so that learners can refer to them together.

Rule 3
IF any sentence in transcript within a single frame has
multiple text elements with high text similarity score

THEN merge all similar elements into a group

Multiple text elements mentioned in a single sentence
in transcript should be displayed at once so that

learners can refer to them in the sentence together.

Table 1: Rules and rationale for the rule-based method that groups text elements

the three bullet points should not be segmented into three
frames, even if they are deconstructed into three text boxes
in the previous step. Thus, we establish them as a single
atomic unit. The sentences in a transcript matched with text
elements in the matching stage are also grouped along with
the grouped text elements. We devised a rule-based method
to group text elements into atomic units. The defined rules
and rationale for each rule are shown in Table 1.

For Rule 2, we utilize the text analysis technique sug-
gested by Crossley et al. (Crossley, Kyle, and McNamara
2016), which estimates text cohesion indices. Text cohesion
index calculates the amount of semantic overlap between ad-
jacent sentences. The text elements with high cohesion imply
that they have high interactivity between elements (Sweller
2010; Leahy and Sweller 2005). Hence we merge all text
elements with high cohesion into a group so that learners can
refer to them together in a single frame. We set the threshold
as 0.3 in accordance with previous work (Karuna et al. 2018;
Ward and Litman 2008).

For Rules 1 and 3, we identify the linearity of a lecture
and concurrently mentioned text elements based on the es-
tablished matches in the matching stage. For Rule 1, if an
instructor does not mention text elements in a linear manner
from top to bottom and from left to right, then we merge all
non-linearly lectured text elements into a group since they
should be displayed at once. For Rule 3, we merge the concur-
rently mentioned text elements by combining text elements
that span multiple matches with a single sentence in the tran-
script. If an instructor mentions multiple text elements in a
single sentence, then learners should be able to refer to all
elements at once.

(d) Content Adaptation Based on Design Principles
To set up basic design principles for content adaptation, we
use the average of the existing design guidelines in Section
4. We use the averaged value instead of adopting a single
guideline since there is no universal design guideline with
a hard number. The averaged design principles we use are:
(1) average font size of a frame should be above 21.4 pt, (2)
number of words per frame should be below 30 words, and
(3) a frame should contain maximum two images. Based on
these design principles, we generate content adaptation. The
rest of this section describes details of generating the content
adaptation.

Font Size: If the average font size of a frame is smaller

than 21.4 pt, then the fonts are resized to meet the guidelines.
In case when the screen space is not enough to enlarge the
fonts, the system enlarges the font to the extent to which there
is no overlap between content.

Number of Words: The amount of text is adjusted if a
frame contains more than 30 words. For example, if a frame
consists of two text elements with 25 words and 20 words
each, then we segment the frame into two frames, each having
one text element with less than 30 words. We do not segment
a single text box even if it violates the guidelines. Another
exception is the text element which is grouped as an atomic
unit in the grouping stage. We do not segment the atomic unit
regardless of the number of words they contain.

Image and Headlines: We do not adjust image content
during the adaptation process for two reasons. It was because
of the difficulty of extracting semantic information from im-
ages (Xu et al. 2019; Tsujimura, Yamamoto, and Nakagawa
2017). Hence, the images in a single frame are not segmented
into multiple frames.

Layout: The final stage is to compose the layout of a
frame. We use the original positions of the elements in the
video as we focus on the four design features (font size,
amount of words, image size, amount of image), not including
other design features such as an optimal layout or line spacing.
Another main aspect of the generation of content adaptation
is a fluid and responsive design based on relative units and
media queries. The sizes of font and image are in relative
units (e.g., percentage (%), em) instead of absolute units (e.g.,
px, pt), so that they are resized in response to the viewport
size of devices.

5 User Study
The goals of evaluation were to investigate learner satisfac-
tion and task performance using the content adaptation and
direct manipulation features of of FitVid. We conducted a
controlled user study that compares video players with and
without the content adaptation and manipulation features.
Our hypotheses are as follows:

• H1. FitVid with automated content adaptation increases
the readability of content and perceived usefulness.

• H2. FitVid improves perceived learning experience and
concentration.

• H3. FitVid with direct manipulation and customized con-
tent adaptation enhances interactivity, allowing learners to



refine and complement the automated content adaptation.

The study was a within-subjects design, where each learner
used two different video players: (1) baseline interface and (2)
content adaptation + direct manipulation. To maintain unifor-
mity in look and feel for our comparative study, the baseline
condition had the same layout and interface design as our sys-
tem. We selected two videos each from three different courses
(C1: Quantum Mechanics for Everyone1, C2: Introduction to
Financial2, C3: Understanding Political Concepts3) and six
videos in total. Each video has similar length (C1: 4:54, 5:53,
C2: 6:22, 4:52, C3: 6:27, 7:51).

Participants
We recruited 24 participants [P1-P24] (12 male and 12 fe-
male) through online social media posting. Most of the par-
ticipants were college students. They received $15 for up to
70 minutes of participation.

Procedure
Participants were first required to watch two video lectures
using two different video players. They were randomly as-
signed to watch two videos from one of the three courses.
After watching the video, they were asked about their percep-
tion of each video player and the reasons behind the real-time
manipulations. They then completed a questionnaire on the
usability, learning experience, cognitive load, and mind wan-
dering for each interface. The questionnaire also includes
scoring four design features (font size, amount of words,
image size, amount of image) in each condition.

Results
We summarize the results (Figure 3) and describe the main
findings focused on the three hypotheses, patterns of tool
usage, and usability and usefulness of our system.

H1. FitVid with automated content adaptation
increases the readability of content and perceived
usefulness
In response to two 7-point Likert scale questions (1: strongly
disagree, 7: strongly agree) about the readability of the video
content, pair-wise Wilcoxon signed rank tests revealed that
the lecture with adapted content is significantly more read-
able (Question 1: Z = 45.5, p < 0.005, Question 2: Z = 29.0,
p = 0.0025). To measure the perceived usefulness of con-
tent adaptation, we asked participants to evaluate the design
features of adapted content if they are significantly more ap-
propriate than the ones of baseline interface (size of elements:
Z = 6.0, p = 0.0001, amount of elements: Z = 29.5, p < 0.01).
The scores on design features of the adapted content (Size
of Text: 4.27 / 5, Amount of Text: 4.275 / 5, Readability:
4.18 / 5) were higher compared to the design features of the
baseline interface (Size of Text: 1.82 / 5, Amount of Text:

1https://courses.edx.org/courses/course-
v1:GeorgetownX+PHYX-008-01x+1T2017/course/

2https://www.coursera.org/learn/wharton-accounting
3https://courses.edx.org/courses/course-v1:FedericaX+Fed.X-

21+1T2020/course/

1.68 / 5, Readability: 1.57 / 5). Thus, H1 is supported (Figure
3).

In accordance with the survey result about the readability
of the video content, most participants noted that the adapted
content is more readable and legible during the interview.

“The lecture material with less text and larger font size is more
readable. The learning material with dense text and small
fonts makes me not want to read them all.” (P1). “The video
content with less amount of information causes less fatigue.”
(P23). Some participants mentioned that it’s great that there’s
no need to find the spot where the instructor is currently
mentioning in the slide, which makes it easier to understand
the learning material. With the adapted content, all of the
participants (24/24) responded that they are willing to watch
a video lecture with a poor design that they would not have
watched without the adaptation.

H2. FitVid improves perceived learning experience
and concentration
FitVid improves the perceived learning experience with a
significant difference (Z = 33.5, p < 0.05). We also found a
significant difference in the levels of concentration and atten-
tion (Z = 51.0, p < 0.05), confirming that H2 is supported
(Figure 3).

Participants explained that the adapted content with a
large font size helps learn the content. “I could get the main
concept of content at a glance without additional effort to
find it.” (P18). They also mentioned that the adapted content
increases the levels of concentration and attention with less
distraction.

H3. FitVid with direct manipulation feature
enhances interactivity allowing learners to refine
and complement the automated content adaptation
Most of the participants used the manipulation feature (22/24),
while their goals differed. Common goals reported were to
refine the incomplete default adaptation (20/24) and to im-
prove concentration (18/24). We conceptually identified two
high-level categories: ‘Adjusting design’ and ‘Improving con-
centration’ based on the purpose of manipulations explained
in the interviews. We then classified the observed manipula-
tion interactions into four different types. Within the ‘Adjust-
ing design’ category: resizing image, resizing text, and large
repositioning. For the ‘Improving concentration’ category:
small repositioning and touching (highlighting). We describe
the types of manipulations based on our observation and the
reasons behind them explained in the interviews.

Adjusting design (20/24 participants) Participants ex-
plained they used the manipulation feature to make the con-
tent more readable. They noted that resizable elements com-
pensate for the limitations of small screen size, enabling them
to enlarge the content as needed. Another reason for resizing
was to selectively view the elements. “To efficiently use the
limited screen space, I filled the whole screen with what I’m
focusing on, covering other elements that I finished watching.”
(P12). Some participants changed the alignment of elements,
to be center aligned in most cases, based on their preferences.
On the other hand, participants who have not used the direct



Figure 3: 7-point Likert scale responses for video learning experience using the baseline and FitVid. (*: p < 0.05, **: p < 0.01)

manipulation feature explained they did not feel the need for
it since the adapted content was readable enough. “There
was no huge need for additional resizing or repositioning.
The design (of the adapted content) was sufficient for me to
read and understand the lecture content on my smartphone
screen.” (P11).

Improving concentration (18/24 participants) Notable
feedback from participants was that enabling interactions
while watching a video itself helps them concentrate on the
lecture. They slightly repositioned the elements or merely
touched the element with the edges highlighted. “I like that
the elements are highlighted when I touch them. Reactions to
my touch interactions make me recognize what content I’m
focusing on and processing.” (P16). When asked about the
reasons behind the manipulations they made while watching
a video, the participants elaborated that they unconsciously
touch the elements they are focusing on simply for the feeling
of interaction. Hence, the qualitative feedback from the users
supports H3.

We also found that using the manipulation feature in
real-time while watching a video does not pose additional
cognitive load to participants (Z = 99.0, p = 0.37), showing
no significant difference in the easiness of use compared to
the baseline interface with the use of the new feature (Z =
68.5, p = 0.5). On the other hand, the negative feedback for
the manipulation feature includes unintended interactions.
One participant noted that “It was confusing when unwanted
elements are touched.” (P18).

Customized Content Adaptation The participants all
expressed positive feedback on the customized content adap-
tation of the font sizes, focusing mainly on the advantages
of having tailored design settings based on their preferences.

“If I enlarged font sizes, then it implies that the original font
size was too small for me. I like that it automatically captures
my preference.” (P15). On the other hand, some participants
pointed out the importance of consideration for the context

and the need for user control. “My preference would differ
depending on the types of lecture content. It would be nice if
the system can also consider such context.” (P10). “Although
the automated content adaptation is convenient, I hope I can
change the font size manually if needed.” (P19).

6 Discussion and Limitations
We discuss findings, limitations, and possible extensions of
this work.

Responsive Video Content Adaptation
The result of the user study showed that responsive content
adaptation enhanced the video-based learning experience
with improved readability and levels of concentration. Most
of the participants evaluated the automated content adapta-
tion as sufficiently readable. While the current work focused
on text and images as the most basic and major objects as an
initial step for the automated content adaptation, future work
can adjust video content more flexibly by applying a respon-
sive and flexible layout such as Apple’s AutoLayout (Sadun
2013) or CSS FlexBox (W3Schools 2020 (accessed Septem-
ber 10, 2020), and even adapting to different orientations
(portrait and landscape). We also plan to further investigate
design features such as line spacing, font styles, and font
colors.

Extended Content Customization by Direct
Manipulation
The user study result revealed clear needs for content cus-
tomization. Some participants did not manipulate the adapted
content since the automated content adaptation is sufficient
for them, while other participants manipulated them to suit
their preference. It is important to give users control over
machine-generated results, instead of fully automating the
content adaptation process that lacks tailoring and customiza-
tion. This control enabled them to refine the incomplete re-
sults provided by FitVid. Future interaction mechanisms can



be extended to a hybrid workflow between humans and ma-
chines.

A possible extension of the direct manipulation in FitVid
includes add and delete interactions through which learners
can adjust and select the amount of elements to be displayed.
The added interaction can allow learners to interactively ac-
cess the original content before adaptation. On the other hand,
some participants mentioned the need for a lock feature which
disables touch interactions including resizing and reposition-
ing, since unintended interactions occurred when they touch
the screen for other purposes such as video navigation.

We also identified notable patterns and strategies for us-
ing the direct manipulation feature. One of the unexpected
benefits of the manipulation was that the interaction with the
content itself without pragmatic goals helps learners increase
the levels of attention. They sometimes touched or moved
the in-video elements without a specific manipulation intent.
This behavior can be seen as analogous to text highlighting.
Highlighting while reading text is a common activity and is
known to improve comprehension of content (Fowler and
Barker 1974; Gowases, Bednarik, and Tukiainen 2011). In
this regard, future work can explore additional interactions
such as enabling haptic pen writing on a video or highlight-
ing the region of interest, which can improve cognition and
attention.

AI-based Content Adaptation
In this research, we developed a prototype which generates
customized content adaptation for font sizes. The system
improved the default content adaptation by using the tai-
lored font sizes based on the users’ manipulation log. All the
participants expressed positive feedback on the customized
content adaptation, however they also pointed out the need
for consideration of various contexts such as characteristics
of lecture content and learning environment. The participants
expected AI to generate customized content designs that re-
flect their preferences, while they want to control the design
settings via manual adjustments. Future work can apply a
mixed-initiative approach (Horvitz 1999) to iteratively im-
prove content adaptation depending on individual learners’
context, which involves learners in-the-loop around AI. We
envision that the tailored context-aware content adaptation
could provide enhanced learning experiences by minimizing
the extraneous cognitive load caused by device environments
and capacities of designers.

7 Conclusion
In this paper, we have introduced FitVid, a video interface
that enables automated content adaptation and direct manip-
ulation for mobile learning environments. We develop an
automated pipeline which adapts learning video content to
mobile devices by segmenting and resizing the in-video ele-
ments. The pipeline-generated content shows the improved
compliance rate for the design guidelines, from 2% to 89%
for the font size, and 67% to 87% for the word count. The
user evaluation illustrated that FitVid improves the learning
experience with increased readability and levels of concen-
tration. We expect to apply the techniques suggested in this

paper to support the video-based learning ecosystem which
encompasses instructors, engineers, and learners.
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