AlgoPlan: Supporting Planning in Algorithmic
Problem-Solving with Subgoal Diagrams

Kabdo Choi' Sally Chen?

Hyungyu Shin!

Jinho Son? Juho Kim!

'KAIST, Daejeon, Republic of Korea
2Brown University, Providence, RI, USA
3 Algorithm LABS, Seoul, Republic of Korea
{kabdo.choi, hyungyu.sh, juhokim} @kaist.ac.kr sally_chen@brown.edu sjhfam@algorithmlabs.co.kr

ABSTRACT

Planning a solution before writing code is essential in algorith-
mic problem-solving. However, novices often skip planning
and jump straight into coding. Even if they set up a plan,
some do not connect to their plan when writing code. Learners
solving algorithmic problems often struggle with high-level
components such as solution techniques and sub-problems,
but existing representations that guide learners in planning,
such as flowcharts, focus on presenting lower-level details.
We use subgoal diagrams — diagrams made of subgoal labels
and the relationships between them — as a representation that
guides learners to focus on high-level plans when they develop
solutions. We introduce AlgoPlan, an interface that enables
learners to build their own subgoal diagram and use it to guide
their problem-solving process. A preliminary study with seven
students shows that subgoal diagrams help learners focus on
high-level plans and connect these plans to their code.

Author Keywords
Algorithmic problem-solving; planning; subgoal diagram;

CCS Concepts

*Human-centered computing — Human computer interac-
tion (HCI); Applied computing — Computer-assisted in-
struction;

INTRODUCTION

Algorithmic problem-solving [1] is a complex activity that
involves multiple stages, including problem comprehension,
solution planning, implementation, and testing [8]. Since algo-
rithmic problems often have tight time and space constraints,
learners have to develop efficient solutions to address the given
constraints. Meanwhile, novices often skip the planning stage
and go straight into coding [9]. Moreover, some students,
despite setting up a solution plan, do not connect their plan to
code and fail to solve the problem [3].

To guide novices in planning a solution, researchers have
proposed various representations, such as hierarchical plan

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions @acm.org.

L@S °20, August 1214, 2020, Virtual Event, USA.

© 2020 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7951-9/20/08 ...$15.00.

DOI: http://dx.doi.org/10.1145/3386527.3406750

decompositions [5], flowcharts [2, 12], and data flow net-
works [6]. These capture low-level details such as a line of
code or simple operations. However, learners solving algo-
rithmic problems mainly struggle from high-level components
such as solution techniques and sub-problems [14], which
cannot be well captured in these low-level details.

We designed a representation that shows these high-level com-
ponents using subgoals, which can promote learner’s under-
standing of the solution structure [4]. We propose subgoal
diagrams—diagrams made of subgoal labels and the relation-
ships between them (Figure 1). By formulating their solution
ideas into subgoal diagrams, learners can focus on the high-
level structure of the solution. Subgoal diagrams also act as
an intermediate representation that bridges plan and code.

We introduce AlgoPlan (‘algo’ means ‘know’ in Korean), a
problem-solving interface that supports solution planning us-
ing subgoal diagrams. AlgoPlan supports learners through a
three-stage problem-solving process: 1) Diagram Generation,
where learners build their own subgoal diagram, 2) Diagram
Comparison, where learners compare their diagram with a
reference diagram and improve theirs, and 3) Implementation,
where learners write code while referring to their diagram.

In a preliminary study with seven students who are learning
algorithms, participants found subgoal diagrams useful for
planning a solution by making them think in terms of subtasks
and the algorithmic flow. They were also able to connect these
plans with code, which led to an easier coding experience.

Our contributions are as follows:

e Subgoal diagram, a representation that guides learners to
focus on high-level plans when developing solutions

e AlgoPlan, an interface that supports algorithmic problem-
solving using subgoal diagrams

e Results from a preliminary study showing the usefulness of
subgoal diagrams in algorithmic problem-solving

BACKGROUND
We review prior research on representations that aim to support
planning and how novices work with plans.

Representations for Supporting Planning

Researchers have developed representations that could help
learners design programs. A common approach is the use of
flowcharts. RAPTOR [2] is a visual programming environ-
ment that uses flowcharts to help learners design and execute

algorithms without syntax issues. Smetsers-Weeda and Smet-
sers [12] suggested that flowcharts enable students to brain-
storm and plan solutions before diving into code. However,
flowcharts still show code-level details by representing each
line of code, which makes it difficult to understand high-level
plans as solutions become more complex.

Another line of research focuses on representing plans to guide
the problem-solving process. Guzdial et al. [5] introduced
GPCeditor, a tool that scaffolds the process where students de-
compose the problem into goals and plans and compose plans
into a complete program. However, students were required
to fully decompose the problem to code-level regardless of
expertise, which made them feel constrained. Also, students
did not receive any feedback on their decomposition, resulting
in low-quality products and ultimately diminished benefits.
Hu et al. [6] developed a representation using a network of
goals and plans to guide the process. However, the goals and
plans were still written in terms of simple operations (e.g.,
add, divide), which could be difficult for students to grasp
high-level components for complex solutions. Our design,
however, involves a representation that focuses on high-level
plans rather than code- or operation-level details.

Novice Behaviors When Working with Plans

Multiple studies reported that novices, in contrast to experts,
do not put much effort into planning solutions [3, 9]. Some
skip the planning stage entirely [9] or identify tasks (i.e., high-
level plans) on-the-fly as they code [3], resulting in unsuccess-
ful problem-solving. Castro and Fisler [3] further investigated
how novices move between tasks and code, and found that
students who clearly described tasks and connecting them
with code showed most success in solving problems. Our
system aims to guide learners to plan before coding, and make
connections between their plans and code.

The level of detail when planning solutions also depends on
expertise. Rist [11] noted that the degree a learner can plan
ahead differs between novices and experts. As expertise de-
velops, learners can more easily retrieve larger plans and can
design larger chunks of the solution at once. We design our
representation to capture multiple levels of subgoals so that it
can support learners with varying planning ability.

DESIGN GOALS
We list three design goals for supporting planning in algorith-
mic problem-solving process.

e G1: Match the learner’s expertise on planning solutions.

e G2: Connect plans with code to guide learners during im-
plementation.

e G3: Provide feedback on their solution plans.

SUBGOAL DIAGRAM

We introduce subgoal diagram (Figure 1), a representation
with which learners distill their solution ideas into high-level
plans and use it to make connections between plans and code.

Each node contains a subgoal label describing the functional
component of the solution. Nodes have different colors, which
give visual cues of the connection between the diagram and

1. Initialize the variables
N
2. Read the input
Vv
3. Sort the array based on its absolute value
Vv

4. Iterate over the sorted array and search for the two numbers whose
sum s closest to zero

‘ 4.1.Loop N times ‘
N2

4.2 Check if the absolute value of the sum of the two
consecutive numbers is less than or equal to the
current minimum

N2

Figure 1. An example reference subgoal diagram. Subgoal diagrams
guide learners in planning by encouraging them to focus on high-level
plans.

the code editor (Figure 3). The ordering of the node sequence
implies the program execution path. This consistency enables
learners to consider a program flow when planning solutions,
so that they can easily connect their plans with code (G2).

Subgoal diagrams contain multiple levels of detail, spanning
from the high-level, abstract subgoals to lowest-level imple-
mentation details. The hierarchy within subgoals is shown as
subdiagrams. Learners face only the top-level nodes first, and
can optionally expand the nodes (Figure 2) to see lower-level
plans. This is to accommodate a wider range of learners with
varying expertise in planning abilities (G1) while still main-
taining focus on the high-level structure, since showing all
details at once could overwhelm learners.

SYSTEM OVERVIEW

We provide a walk-through of AlgoPlan, a problem-solving
interface that guides the learner’s problem-solving process
using subgoal diagrams: Learners first build their own diagram
(Diagram Generation), improve it by comparing against a
reference diagram (Diagram Comparison), and then write code
by connecting it with the diagram (Implementation).

Diagram Generation

The skeleton subgoal diagram (Figure 2) is provided alongside
the problem text. The skeleton subgoal diagram is a replica of
a reference subgoal diagram — a diagram that shows a correct
solution — but with incomplete subgoal labels. The first words
of each subgoal, which are verbs, are provided in the skeleton,
enabling learners to get a sense of how the solution is being
structured and get useful hints in planning their solution.

Diagram Comparison

As learners complete their diagram, the reference subgoal
diagram is shown next to their initial diagram. As learners
compare the two diagrams, they can improve theirs by editing
their subgoal labels (G3).

1. Initialize

N2
2.Read
EXPAND BLOCK

N2
3.Sort

v
4. lterate
EXPAND BLOCK

N2

Figure 2. An example skeleton subgoal diagram. Learners structure
their solution ideas into diagrams using the skeleton subgoal diagrams.

Implementation

Right after improving their diagram, learners proceed to im-
plementation. The final diagram and the code editor are shown
side-by-side (Figure 3). The subgoal labels in the diagram
are shown as code comments in the editor. The two panes
are connected through block gutters, which are colored blocks
located at the left side of each line that matches the color
of the corresponding diagram node. These together support
learners in connecting their plan with code and guide their
implementation (G2).

EVALUATION

We conducted a preliminary study to evaluate the effective-
ness of subgoal diagrams in guiding learners to structure their
solution using high-level plans.

Participants

We recruited seven undergraduate and graduate students (male:
6, female: 1) who are currently learning algorithms. Their
learning experiences varied from self-learning (e.g., online
judge sites, MOOC:s) to offline lectures. The level of expertise
in problem-solving also varied from a casual learner who
solves problems as a hobby to an expert learner who has
participated in several programming contests.

Study Design and Materials

Participants solved one algorithmic problem using AlgoPlan.
After solving the problem, participants rated the usability of
the system through a five-point Likert scale (1: strongly dis-
agree, 5: strongly agree) and open-ended questions.

We selected the problem from the Korea Olympiad in Infor-
matics to ensure adequate difficulty. The reference subgoal
diagram was made by the first author by manually inspecting
three correct code examples and identifying their subgoals.

Results

All except one participant reported a positive experience using
the system. Overall, they found subgoal diagrams useful for
structuring their plans and writing code.

Support on planning

Participants were able to easily formulate ideas into a diagram
structure (average: 3.71) and found the skeleton diagram use-
ful for planning a solution (average: 4.00). Participants noted
that the diagram structure helped by guiding them to think in
a step-by-step manner and consider the algorithm flow.

However, participants also mentioned that the system lacked
flexibility when thinking of different solutions, forcing them
to think of a specific solution. One participant noted that the
provided words can act as hints, and wished not to see them
for their learning purpose.

Comparison

Participants found the reference diagram useful for improving
their plans (average: 4.00). All except one participant im-
proved their diagram. Three participants completely changed
their diagram, after realizing that their solution was more
complex than the reference diagram. One participant missed
important conditions in their initial diagram, but managed to
fix the issues by comparing with the reference diagram.

Support on coding

Participants found subgoal diagrams useful for implementing
their solution (average: 4.14). The diagram acted as an out-
line, helping them remember which components to implement.
Some reported they had already gained a clear mental structure
of the program by building the diagrams and had no difficulty
writing code.

However, participants showed mixed impressions on the use-
fulness of block gutters (average: 3.29). Several participants
did not make use of the gutters at all by not using the code
comments. One participant, who noted that they didn’t uti-
lize the gutters well, still found it useful for knowing their
implementation progress at a glance.

CONCLUSION AND FUTURE WORK

We introduced subgoal diagrams, a representation that guides
learners in planning solutions by making them focus on high-
level plans, and designed an interface that enables learners to
solve algorithmic problems with subgoal diagrams. Results
from a preliminary study show that the system helps problem-
solving by enabling users to structure their solution ideas into
high-level plans and use it to guide their implementations.

Immediate future work is to further evaluate the benefits of
subgoal diagrams and AlgoPlan. We plan to run a large-scale
study comparing subgoal diagrams against other representa-
tions that can support algorithmic problem-solving.

As learners continue to use our system, we can gather the
mappings between subgoal diagram nodes and corresponding
code snippets. These resources can then be applied as valuable
feedback to the learner’s implementation, such as providing
good code examples for specific parts of the program. We
plan to extend our system so that it can cover stages beyond
learners’ problem solving such as reflection, since reflecting
on their solutions can enrich their learning experiences [10].

The authoring cost of subgoal diagrams is an important factor
for the scalability of the approach. We are currently working

1. Initialize the variables
v
2. Read the input
N2
3. Sort the array based on its absolute value
Vv

4. lterate over the sorted array and search for the two numbers whose sum is closest
to zero

4.1. Loop N times
N2

4.2. Check if the absolute value of the sum of the two
consecutive numbers is less than or equal to the current minimum

Vv

4.3. Update the min value and the variable for storing the two
numbers

N

Figure 3. Layout of AlgoPlan in the Implementation stage. The subgoal diagram and the code editor are shown side-by-side, where block gutters,

attached to code comments showing subgoal labels, connects the two representations.

on replacing the authoring process of subgoal diagrams with
a learnersourcing workflow for labeling subgoals [7, 13], so
that learners can have a meaningful learning experience while
little to no expert effort is required for authoring.

REFERENCES
[1] Owen L Astrachan. 2004. Non-competitive

2

3

[4

[5

[6

[7

]

—

]

]

—_

[

programming contest problems as the basis for
just-in-time teaching. In 34th Annual Frontiers in
Education, 2004. FIE 2004. IEEE, T3H-20.

Martin C Carlisle, Terry A Wilson, Jeffrey W
Humphries, and Steven M Hadfield. 2005. RAPTOR: a
visual programming environment for teaching
algorithmic problem solving. ACM SIGCSE Bulletin 37,
1 (2005), 176-180.

Francisco Enrique Vicente Castro and Kathi Fisler. 2020.

Qualitative Analyses of Movements Between Task-level
and Code-level Thinking of Novice Programmers. In
Proceedings of the 51st ACM Technical Symposium on
Computer Science Education. 487—493.

Richard Catrambone. 1998. The subgoal learning model:
Creating better examples so that students can solve
novel problems. Journal of Experimental Psychology:
General 127, 4 (1998), 355.

Mark Guzdial, Luke Hohmann, Michael Konneman,
Christopher Walton, and Elliot Soloway. 1998.
Supporting programming and learning-to-program with
an integrated CAD and scaffolding workbench.
Interactive Learning Environments 6, 1-2 (1998),
143-179.

Minjie Hu, Michael Winikoff, and Stephen Cranefield.
2013. A process for novice programming using goals
and plans. In Proceedings of the Fifteenth Australasian
Computing Education Conference-Volume 136. 3—12.

Hyoungwook Jin, Minsuk Chang, and Juho Kim. 2019.
SolveDeep: A System for Supporting Subgoal Learning

in Online Math Problem Solving. In Extended Abstracts
of the 2019 CHI Conference on Human Factors in

Computing Systems. 1-6.

[8] Dastyni Loksa, Amy J Ko, Will Jernigan, Alannah

Oleson, Christopher J] Mendez, and Margaret M Burnett.
2016. Programming, problem solving, and
self-awareness: effects of explicit guidance. In
Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems. 1449-1461.

[9] Michael McCracken, Vicki Almstrum, Danny Diaz,

Mark Guzdial, Dianne Hagan, Yifat Ben-David
Kolikant, Cary Laxer, Lynda Thomas, Ian Utting, and
Tadeusz Wilusz. 2001. A multi-national,
multi-institutional study of assessment of programming
skills of first-year CS students. In Working Group
Reports from ITiCSE on Innovation and Technology in
Computer Science Education. 125-180.

[10] Thomas W Price, Joseph Jay Williams, Jaemarie Solyst,

and Samiha Marwan. 2020. Engaging Students with
Instructor Solutions in Online Programming Homework.
In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems. 1-7.

[11] Robert S Rist. 1991. Knowledge creation and retrieval in

program design: A comparison of novice and
intermediate student programmers. Human-Computer
Interaction 6, 1 (1991), 1-46.

[12] Renske Smetsers-Weeda and Sjaak Smetsers. 2017.

Problem solving and algorithmic development with
flowcharts. In Proceedings of the 12th Workshop on
Primary and Secondary Computing Education. 25-34.

[13] Sarah Weir, Juho Kim, Krzysztof Z Gajos, and Robert C

Miller. 2015. Learnersourcing subgoal labels for how-to
videos. In Proceedings of the 18th ACM Conference on
Computer Supported Cooperative Work & Social
Computing. 405-416.

[14] Shamama Zehra, Aishwarya Ramanathan, Larry Yueli

Zhang, and Daniel Zingaro. 2018. Student
misconceptions of dynamic programming. In
Proceedings of the 49th ACM Technical Symposium on
Computer Science Education. 556-561.

	Introduction
	Background
	Representations for Supporting Planning
	Novice Behaviors When Working with Plans

	Design Goals
	Subgoal Diagram
	System Overview
	Diagram Generation
	Diagram Comparison
	Implementation

	Evaluation
	Participants
	Study Design and Materials
	Results
	Support on planning
	Comparison
	Support on coding

	Conclusion and Future Work
	References

