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Crowdsourcing for Human Computation
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Crowdsourcing Strategy: Microtasking
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Crowdsourcing Strategy: Aggregation
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Crowdsourcing Strategy: Using Single Tool
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Problem with using a single tool:

Systematic bias can be accumulated,
resulting in inaccurate aggregated result.



Q. What is Systematic Bias?e

A. Reliable, but not valid performance

Reliable, Not Reliable, Not Reliable, Reliable,
not Valid But Valid not Valid Valid
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Example of Systematic (Error) Bias

Tool 1: Opensurfaces (TOG 2013) Tool 2: Click’'n’Cut (CrowdMM 2014)
Bell, Sean, et al. "Opensurfaces: A richly annotated Carlier, Axel, et al. "Click'n'Cut: Crowdsourced interactive
catalog of surface appearance." ACM Transactions on segmentation with object candidates." International ACM
Graphics (T0G)32.4 (2013): 111. Workshop on Crowdsourcing for Multimedia. 2014.
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Proposed Approach:

Use tool diversity as a means of improving
aggregate crowd performance



What is Tool Diversity?

A property that measures how different tools can
be built in terms of their induced biases.



Analogy to Ensemble Learning

Space of
hypotheses f: best performing hypothesis
h.: other hypotheses
w.: weights

Ensemble learning constructs a combination of

two alternative hypotheses %, and /., with

proper weights (w, and w,), and approximates

the best hypothesis /by averaging the two.
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Proposed Method: Leverage Tool Diversity
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Proposed Method: Leverage Tool Diversity

Semantic image segmentation task
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Choosing the Tools

Q. How to diversify errors produced by different tool types?
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Choosing the Tools

Q. How to diversify errors produced by different tool types?

Q. What are different types of objects?

T, T,
A. General objects, Fuzzy materials, plaﬁts, furry objects,
(ad Tas
transparent objects, reflective surfaces ( , deformability)
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Instructions and Worker Interface

Worker Interface :

2. Draw an outline of it by holding and draggi

3. You can clear the outline by clicking Space Bar in your keyboard.

4. You have 30 seconds 1o outline each object.
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Instructions and Worker Interface

Good example of aligning a flashlight

Instructions :

ATTENTION! Please carefully read the instructions before you ACCEPT HIT

(Please don't accept HIT if you've previously worked on this task.
You will not be paid more than onece even though you complete the HIT multiple times.)

Welcome to our object aligning system!
The task is to align all objects in the list with icon images. You |l have 30 seconds to align each object.

Bad examples of aligning a flashlight

Payments and Expected time:
* Task: (< 5 minutes) task; $0.35 for successful completion.
« IMPORTANT: You must finish(Submit HIT) to get paid.

Please ACCEPT HIT to start task!
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Experiment Settings

- 12 different visual scenes

- Total 51 objects

- Six unique workers for each tool-scene pair (total 288+ workers)
- Total 1224 object segmentations

- Platform: Amazon Mechanical Turk

Each worker was paid between $0.35 and $0.60 per task, depending on the
number of objects they had to segment or on the level of difficulty of given
tool (a pay rate of ~S10/hr).
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CROMA LAB & KIXLAB

Accuracy Metrics
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What we observed
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Some of the Answers from Workers

T 8
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How can we see
the effect of leveraging tool diversity?



Comparison of Aggregation Methods

Method 1. Single tool aggregation (Uniform majority voting): Baseline

T Q Q Q & — Aggregate
b OOT, e
6 6 6 6
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Comparison of Aggregation Methods

Method 2. Multiple tool aggregation (Uniform majority voting)
T, xT @ @ — Aggregate
O e
w 4% 14% 4%

Method 3. Multiple tool aggregation (Expectation maximization)

T,xT, @ @ — Aggregate
) )
Wy W, Wy W,
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Comparison of Aggregation Methods

* significant at p <.05, ** significant at p <.07 compared to Multiple (EM)
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Comparison of Aggregation Methods

Basic Trace (T,) Drag-and-Drop (T,)

High recall

High recall + high precision pairs gave the
highest performance improvement.

High precision

* significant at p <.05, ** significant at p <.07 compared to Multiple (EM)
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Generalizability: Expected Human Error is Diverse

Tool 1
(‘}1“‘;) Aggregate
I Reliable,
Valid
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Generalizability: Aggregation Improves Quality
BF & & ‘
B & &Y &
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Generalizability: Objective Correct Answer EXxists

Task with subjective answers:

Creative writing

This paper presents Soylent, a word processing interface
that uses crowd workers to help with proofreading, docu-
ment shortening, editing and commenting tasks. Soylent is
new-kind—of interactive user interface in
which the end user has direct access to a crowd of workers
for assistance with tasks that require human attention and
common sense. Implementing these kinds—ef—interfaces
requires new software programming patterns—fer—interface
seftware, since crowds behave differently than computer
systems. We have introduced one important pattern, Find-
Fix-Verify, which splits complex editing tasks into a series
of identification, generation, and verification stages thatuse
independent-agreement-and-vetingto produce reliable re-
sults. We evaluated Soylent with a range of editing tasks,
finding and correcting 82% of grammar errors-when-com-
i i i ing, shortening text to approx-
imately 85% of original length per iteration, and executing
a variety of human macros successfully.
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Generalizability: Tolerates Imperfections

Example: Scribe (UIST 2012)

W.S. Lasecki, C.D. Miller, A. Sadilek, A. Abumoussa, D. Borrello, R. Kushalnagar, J.P. Bigham.
Real-time Captioning by Groups of Non-Experts. UIST 2012.

learn g i suitcase word though right has a lot of there s
o learning i there a are
learning suitcase word though learning has i

lea ning i right so learning

: so learning i suitcase though learning has
learning i d though right
] i1 a =1 aQ € (@3 ! =
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Possible Future Applications

Application1: Tagging Long Videos Application2: Multichannel NLP

Granularity

Application3: Complex/Diverse Annotation Application4: Computer-Human Integration

Precision Recall
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Basic Trace (T,)

1. Please find a DOW ne below.
2. Draw an outline of it by holding and dragal ur left mouse button.

3. You can clear the outline by clicking Space Bar in your keyboard.
4. You have 30 seconds o outline each object.

Scene

Click below
to see the result:

Check the Result
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Tool 2

Drag-and-Drop (T,)

1. Please find a DOWI in Scene below.

2. Find the most similar icon image from the Icon List and click.
{Only shape matters. Colors do not have to match.)
3. Drag/scale/rotate the icon to overlap the bow! in Scene,

5. You have 30 seconds 1o align each object.

Click below
to see the result:

(click to select; scroll right to see more options)
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Pin-Placing (T5)

1. Please find a DOW/ in Scene beiow.
Countdown:

=14 sec

2. Find the most similar icon image from the Icon List and click.

{Only shape matters. Colors do not have to match.)
3. Place 4 markers on corresponding locations by Left Click.
4. You can deselect a marker by Right Clicking on it.

5. You have 30 seconds to align each object.
Scene Icon Image

Click below
1o see the result:

Check the Result
(Please put all 4 markers
on both Scene and Icon

mage before you click)

Clear All Markers
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Tool 4

Floodfill (T,)

You are highlighting a
bowl

Please note that you cannot cancel highlight once
you click the green button.

Go back to click different position m
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Pixel-Level Majority Voting (50% agreement)

Worker 1

Worker 3
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Worker 2

Worker 4

Final answer
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Expectation Maximization (Dawid-Skene Algorithm)

In an image, label a pixel as 1 if it belongs to a target object, and 0 if background.
Assume:
- image 4 having N total pixels
- M crowd workers
- The label a worker m assigns to each pixel is denoted as z
- all labels from worker m as a vector Z
- the true labels of 4 to be estimated are denoted as a vector Y
- B is the confusion matrices set to be estimated.
We can estimate the true labels Y by maximizing the marginal likelihood of the observed worker labels:

1(0):=log( Y L(6;Y,Z))

Ye{0,1}"

The EM algorithm works iteratively by applying the 1) expectation step and the 2) maximization step.
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