Current projects

KIXLAB's research is made possible by generous financial support from KAIST, the National Research Foundation of Korea (NRF), the Institute for Information and Communications Technology Promotion (IITP), LG Electronics, and Samsung Electronics.

RecipeScape: Mining and Analyzing Diverse Processes in Cooking Recipes

In this research, we explore how analyzing cooking recipes in aggregate and in scale helps discovering the core values in the collective cooking culture, and answer fundamental questions like ‘‘what makes a chocolate chip cookie a chocolate chip cookie’’. Aspiring cooks, professional chefs and cooking hobbyists share their recipes online resulting in thousands of different procedural instructions towards a shared goal. We introduce RecipeScape, a prototype interface which supports visually querying, browsing and comparing cooking recipes at scale. We also present the underlying computational pipeline of RecipeScape that scrapes recipes online, extracts their structural semantics from ingredient and instruction information, constructs a procedural graphical representation, and computes similarity between pairs of recipes.

Joint research project with Stanford University

Exprgram: Language Learning Interface for Development of Pragmatic Competence through Learnersourcing Video Annotation

The real world conversations are diverse in expressions depending on the context such as the relationship between speakers, location or time. While there are multiple ways to greet, apologize, compliment others, language learning materials often fail to provide enough diverse situations and rather put more focus on the meaning of words, reading or listening comprehension and grammar. This research combats the challenge by exploring large scale natural conversations through video mining. Unlike unauthentic dialogues from existing materials, videos in the target language can expose learners to authentic and diverse language situations. We introduce Exprgram, a learnersourced, web-based interface for teaching diverse language expressions.

Interaction Techniques for Intelligent Agents Powered by Large-Scale Conversation Mining

Even though recent improvement in speech recognition and NLP accelerated development in conversational agents, keeping user needs and usability in mind and setting the right expectation and mental model is crucial in improving interaction between agents and humans. We try to apply HCI approach to conversational agents and build right interaction model for conversational agents, which is proactive, natural and flexible. For those purposes, we are mining contexts from conversations and implementing strategies for conversational flow and user-agent collaboration.

Data-Driven Personas in Smart Space

In the design process, persona methods are widely used to better understand user needs, and to simulate user experiences for a successful product/service design. Traditionally personas were developed with user interviews and focus groups. However, these qualitative methods are subject to designer bias, costly, and time consuming. In this project, we aim to build data driven personas by analyzing interactions at scale captured by rich sensors in the smart spaces to complement these pitfalls of qualitative persona methods.

This research is sponsored by IITP (Ministry of Science and ICT) under “Development of Autonomous IoT Collaboration Framework for Space Intelligence” project.

Yggdrasil: Understanding events with crowdsourced knowledge base

Events keep happening everyday, with convoluted relations between them. Understanding their contents, contexts, and causalities is a difficult problem, with limited human cognitive capability. We aid people in understanding complex events with Yggdrasil, a knowledge base that contains extensive and reusable information on events. We utilized a human computation workflow that collects factual information and interpretation on events and restricts divergence between participants in generating Yggdrasil. We also present usage cases of Yggdrasil, which promote human understanding in intricate events with visualization and explanation.

Micro-NGO: An Online Social Activism Platform with a Mediator Bot

Real world problems are a popular theme of online discussions. While people can gather useful insights from diverse perspectives during the discussion, it is rare to observe deliberation of collective actions. Micro-NGO is a bot-mediated social discussion platform that fascilitates deliberation of self-organized collective action. The bot helps a group by assisting in task disambiguation and domain specific knowledge scaffolding.

Collaborative Dynamic Query

The goal of this project is to reduce the communication cost of small group decision making. When people make decisions on questions such as where to travel or what to eat with other people, a lot of conversation is required to make decisions reflect as many opinions as possible. As a solution, we suggest an interface called Collaborative Dynamic Query. It helps people represent their preferences for several criteria and shows the preferences of other group members. Also, preferences of a group can be used for recommendation for available items.

Rally(아, 쫌!): Facilitate communication between decision maker & citizens by empowering citizen’s voice with crowdsourced petition

Often complaints and request from community members’ happen in an ad-hoc manner, in turn, it couldn’t draw the attention from the decision maker. We propose a crowdsourced petition platform Rally to empower the community members’ voice with unified communication pipeline to the decision maker. We focus on the petition which is one of the most common protocols between community members’ and decision makers.

Check here: https://student.kaist.ac.kr/internet/

Improving Government Transparency with Social Computing

How can we build an interactive platform for citizens to learn, discuss, and take collective action on important social issues? The ambitious aim of this project is to design and experiment with a system that helps to increase transparency and public trust. We achieve this by employing social computing techniques and creating a new public monitoring and feedback channel. Citizens join our platform to learn and be empowered by participation, by giving their opinion about political issues and performing micro-tasks such as tagging, adding related information, and requesting missing information. The issues originate from current congressmen’s campaign promises.

Through a series of interviews, surveys, prototypes, and live deployments, we want to deepen our understanding of communities, citizensourcing, civic participation, personalization, and other related topics.

Previous projects

2017 Winter Intern Projects

Kyungje Jo: Learning Diverse Language Expressions through Video-mining
Jaesung Huh: Assisting essay writing through showing counter-arguments
Deokseong Kim: Constructing personas by using clusters of Instagram user activities

2016 Summer Intern Projects

Hyungyu Shin: Improving contents of lecture video by leveraging students’ questions
Hyeungshik Jung: Annotation interface for watching learning video in mobile devices
Dongkwan Kim: Identifying contributing factors of pairwise affinity between politicians
Jiwoo Park: Online Interface that Promotes Higher Level Questions
Taekyung Park: The Effect of Emphasizing Community and Individual Value in Learners’ Engagement in Activities